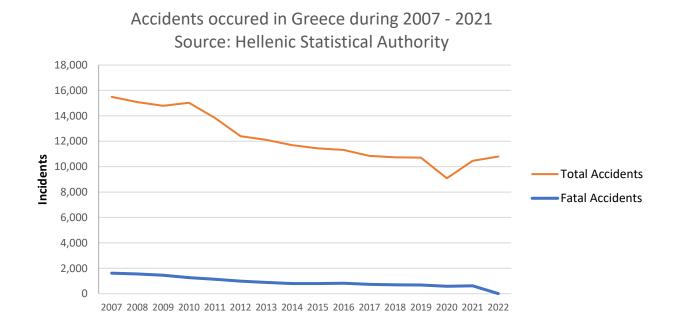


Risk analysis of Western Greece road network using the Highway Safety Manual (HSM)

Maria Giannoulaki¹, Emmanouil Orfanos¹, Aikaterini Maria Manoura¹, Christos Gioldasis ¹, Zoi Christoforou ¹ and George Yannis²


Department of Civil Engineering University of Patras
Department of Civil Engineering National Technical University of Athens

Transport Safety II 22/09/2023

Introduction

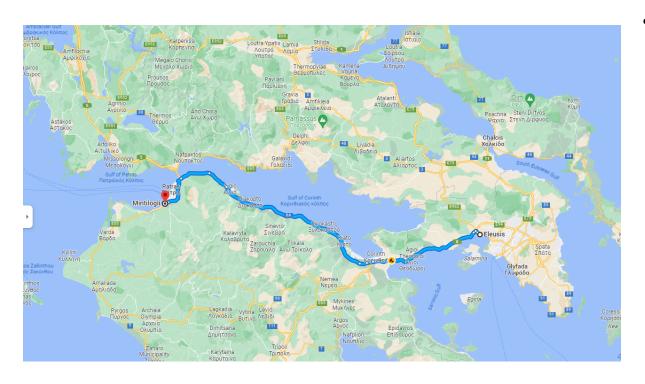
- Road collisions and traffic injuries are global concerns → societal and economic implications,
- Road safety is influenced by geometric characteristics of the road,
- Challenges in Greek highways in the early $2000 \rightarrow$ efforts in road infrastructure both quantity and quality,
- Downward trend in collisions, however, there has been an increase in the past few years

Highway Safety Manual

- Highway Safety Manual (HSM) proposes a predictive method for average crash frequency estimation under given time period, with constant:
 - a) Traffic volume (known or forecasted), and
 - b) Geometric design.
- HSM predictive method is a tool for:
 - a) Evaluation of any traffic flow changes, countermeasures implementation, or design features of an existing road network,
 - b) Evaluation and assessment of the design of a new proposed network (forecast traffic volumes).

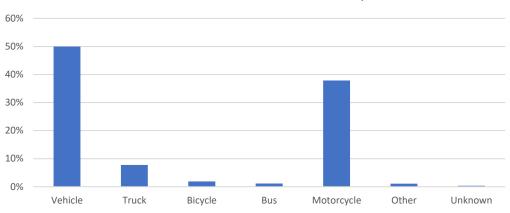
Other guidelines have been proposed, however, there are restrictions and limitations in their applicability

Objective


This study aims to assess the implementation of the proposed method in European context by evaluating its applicability to Greek highways Ionia and Olympia roadways.

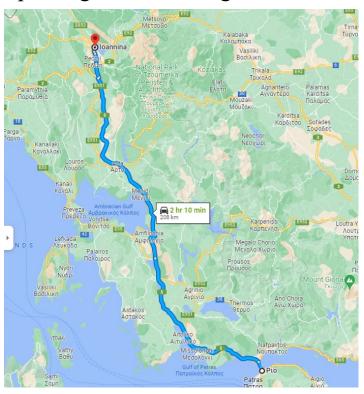
- HSM methodology was applied for Ionia and Olympia Odos,
- Predicted average crashes were calculated for each roadway,
- Comparison of the observed and predicted values was conducted.

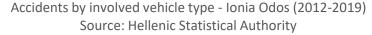
Case Study I – Olympia Odos

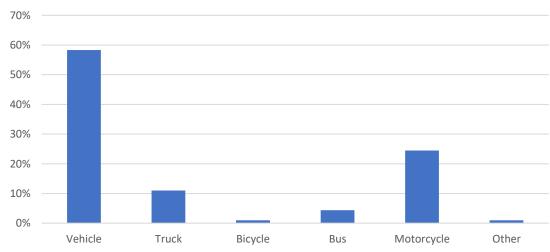


- Major transportation artery that connects Central and Western Greece 201.8km,
- Google maps for geometric design characteristics

- During 2009 2015: 5,954 collisions resulting in injuries or fatalities, 89% injuries (categorized as: 15% severe)
- Most collisions took place under ideal weather conditions (84%) and during daylight hours (63%),
- Korinthos Patras under construction during time period → road characteristic data used pertains to the completed highway.




Case Study II – Ionia Odos



- 196 kilometers motorway links Epirus and West Greece, serving as a transportation route for Ioannina, Arta, Agrinio, and Patras,
- Google maps for geometric design characteristics

- During 2012 2019: 503 collisions, 86% of them leading to injury (categorized as: 10% severe injury),
- Most of collisions occurred under ideal weather conditions (85%) and during daylight hours (76%),
- Under construction during 2016-2017 → road characteristic data used pertains to the completed highway.

HSM Predictive Method

Predicted average crash frequency

$$N_{predicted} = N_{spf,x} \times (AMF_{1x} \times AMF_{2x} \times \times AMF_{yx}) \times C_x$$

- Regression model for the prediction → Safety Performance Factor (SPF) for baseline conditions,
 - Different SPFs for different sites (divided or undivided highway, intersection etc.),
 - Baseline conditions concern: widths, lighting, traffic control feature, etc.
- Accident Modification Factors (AMFs) for adaptations regarding geometric design, traffic control features, lighting conditions, etc.
- Calibration factors (c_x) to incorporate local conditions in the jurisdiction of the network

Implementation of HSM methodology

- Data on:
 - Traffic flow: Hellenic Statistical Authority
 - Accident Data: Hellenic Statistical Authority
 - Geometric characteristics data: Google Maps
- Both networks separated into distinct roadway segments (sites) and HSM methodology was applied,
- Crash data were distributed to the sites based on vehicle-km.
- For Olympia Odos: 2009-2011 accident data \rightarrow to estimate 2012 C_x

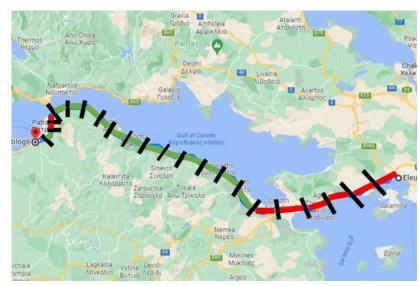
Likewise for 2013-2015 (Moving Average)

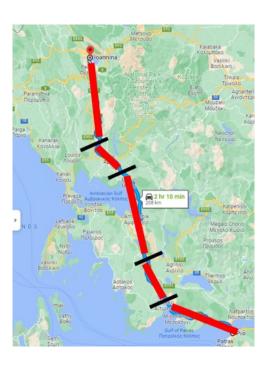
• For Ionia Odos: 2013-2015 accident data \rightarrow to estimate 2016 C_x

Likewise for 2017-2019 (Moving Average)

Results

The predictions presented in the table are derived from the analysis conducted on the distinct roadway segments


- Ionia Odos shows a significant underestimation of the predicted values,
- The highest variances are reported at the largest segments The highest variances are reported at the largest (-88.4%), and vice versa (-29.7%)
- Olympia Odos has better outcomes than Ionia Odos with highest value 50.1%,
 - segments (50.1%), and vice versa (0.3%)


	2016			2017			2018			2019		
	Nobserved	Npredicted	%									
Ionia Odos	18	13.08	-37.6%	19	15	-26.7%	18	16.1	-11.8%	17	13.65	-24.5%
		2012			2013			2014			2015	
	Nobserved	Npredicted	%									
Olympia Odos	61.06	56	-9.0%	57.36	44	-30.4%	49.55	46	-7.7%	49.03	69.98	29.9%

Conclusion and Recommendations

- Overall, the proposed prediction method showed mixed performance,
- Olympia Odos' better predictions due to the homogeneity of each roadway segment in contrast with Ionia Odos,
- Geometric factors and traffic volumes were identified as potential contributors to the prediction discrepancies.
- For better outcomes:
 - High quality data collection,
 - Optimal segment size, homogeneity, and well-distribution of accident data

Thank you for your attention!

Maria Giannoulaki

mgiannoulaki@upnet.gr