Conternational Cycling 11th International Cycling Safety Conference Safety Conference 15-17 November 2023, The Hague, the Netherlands

Review of the Literature on the Safety of Micromobility

V. Petraki, K. Deliali, G. Yannis

Department of Transportation Planning and Engineering

National Technical University of Athens

Introduction

The introduction of Micromobility (MM) services is leading to significant changes in urban transportation, bringing new challenges for policymakers. In 2019, 3.7 mil. e-bikes were sold and, by 2030 e-bike sales are expected to reach 17 mil. annually in the EU28 while e-scooter market is anticipated to be driven by increasing e-scooter sharing services. **The rise of MM share highlights the necessity of examining its safety.**

Objective

The analysis of the **most recent safety trends of e-scooters and e-bikes** based on the existing literature focusing on the traffic safety impact of both shared and owned escooters and e-bikes.

Methodology

An **extensive review** of the scientific and "grey" literature was conducted; 81 relevant studies were considered appropriate for this review. The e-scooter studies were published from 2018 to 2023, primarily utilizing data from 2018-2020. In contrast, e-bike research spans 2007-2022, employing data from the same timeframe.

Micromobility Crash & Injury

The traffic safety of e-scooters and e-bike operations were investigated based on 58 studies and analyses.

E-scooters

- Crashes often cause injuries mainly to upper body and head.
- Helmet use is low; 0-3% of all injured wore a helmet.
 Fatalities correspond up to 1% of reported injuries.

E-bikes

- Crash and injury data as well as exposure data for bikes are much more abundant
- Falls account for most incidents (80%) and injuries (64-85%).
- Single-user crashes are common, mostly involve the rider.
- 1-10% of **pedestrian injuries** are due to shared spaces with e-scooters.
- Most e-scooterist fatalities (85%) are due to motor vehicle crashes.
- Alcohol, night-time riding, poor road infrastructure, & speeding are **main injury factors**.

and reliable compared to e-scooter data.

E-bike crashes most of the times result in a minor injury (70%).

- **E-bike fatalities** correspond to 11% of reported injuries.
- E-bike crashes are in general **equally severe** as conventional bike crashes.

Surrogate Safety

With limited available crash MM data, surrogate safety studies offer valuable insights.

- E-scooters exhibit higher speeds compared to c-bikes on dedicated bike lanes.
- E-scooters attain higher speeds on low-traffic streets compared to sidewalks.
- E-scooters require longer braking distances.

Safety Implications of Modal Shift

Europe: e-scooters replace walking and Public Transport (PT), with higher substitution rates, and e-bikes replace cars, PT, and conventional bikes.

US: shared e-scooter users replace 46% of car trips, while e-bike users replace 57%.

China: e-bike usage significantly

replaces PT (54%).

A shift from car/taxi to MM can improve road safety as exposure to motor vehicles decreases.

Conclusion

MM safety results are not black and white; they depend on infrastructure, traffic volumes, speed, and safety culture. Future efforts should focus on renewing the findings from the literature and on extracting real-world datasets and conducting analyses to capture as early as possible the current safety trends, modal split and shift. Overall, addressing e-scooter and e-bikes safety issues requires a combination of measures, including improving infrastructure, promoting responsible behavior, and implementing regulations.