
Identifying the Impact of Task Complexity and Coping Capacity on Driving Risk - 1 

Comparison among Different Countries and Transport Modes 2 
 3 
Eva Michelaraki 4 
Ph.D. Candidate, Research Associate 5 
Department of Transportation Planning and Engineering 6 
National Technical University of Athens, Athens, Greece, GR15773 7 
Email: evamich@mail.ntua.gr 8 
 9 
Stella Roussou 10 
Research Associate 11 
Department of Transportation Planning and Engineering 12 
National Technical University of Athens, Athens, Greece, GR15773 13 
Email: s_roussou@mail.ntua.gr 14 
 15 
Thodoris Garefalakis 16 
Research Associate 17 
Department of Transportation Planning and Engineering 18 
National Technical University of Athens, Athens, Greece, GR15773 19 
Email: tgarefalakis@mail.ntua.gr 20 
 21 
Muhammad Adnan 22 
Associate Professor 23 
UHasselt, School for Transportation Sciences 24 
Transportation Research Institute (IMOB), Agoralaan, 3590 - Diepenbeek, Belgium 25 
Email: muhammad.adnan@uhasselt.be 26 
 27 
Muhammad Wisal Khattak 28 
Ph.D. Candidate, Research Associate 29 
UHasselt, School for Transportation Sciences 30 
Transportation Research Institute (IMOB), Agoralaan, 3590 - Diepenbeek, Belgium 31 
Email: muhammadwisal.khattak@uhasselt.be 32 
 33 
Tom Brijs 34 
Professor 35 
School for Transportation Sciences 36 
Transportation Research Institute (IMOB), Agoralaan, 3590 Diepenbeek, Belgium 37 
Email: tom.brijs@uhasselt.be 38 
 39 
George Yannis 40 
Professor 41 
Department of Transportation Planning and Engineering 42 
National Technical University of Athens, Athens, Greece, GR15773 43 
Email: geyannis@central.ntua.gr 44 
 45 
Word Count: 6,450 words + 4 tables (250 words per table) = 7,450 words 46 
 47 
Submitted: July 31, 2023  48 

mailto:evamich@mail.ntua.gr
mailto:s_roussou@mail.ntua.gr
mailto:tgarefalakis@mail.ntua.gr
mailto:muhammad.adnan@uhasselt.be
mailto:muhammadwisal.khattak@uhasselt.be
mailto:tom.brijs@uhasselt.be
mailto:geyannis@central.ntua.gr


Michelaraki E. et al.  

2 

ABSTRACT 1 
 2 
Considering the significant influence of the human factor on safe driving behavior, the i-DREAMS project 3 
developed a ‘Safety Tolerance Zone (STZ)’ to define the precise boundary where self-regulated control can 4 
be maintained safely. This paper endeavors to model the inter-relationship among task complexity, coping 5 
capacity (i.e. vehicle and operator state) and crash risk. Towards that aim, 80 drivers participated in a 6 
naturalistic driving experiment carried out in three countries (i.e. Belgium, Germany and Portugal) and a 7 
large dataset of 19,000 trips was collected and analyzed. Exploratory analysis, such as Generalized Linear 8 
Models (GLMs) were developed and the most appropriate variables associated to the latent variable “task 9 
complexity” and “coping capacity” were estimated from the various indicators. In addition, Structural 10 
Equation Models (SEMs) were used to explore how the model variables were inter-related, allowing for 11 
both direct and indirect relationships to be modelled. Comparisons on the performance of such models, 12 
behaviors and driving patterns across different countries and transport modes were also provided. Results 13 
showed positive correlation of task complexity and coping capacity that implies that driver’s coping 14 
capacity increased as the complexity of driving task increases. The integrated treatment of task complexity, 15 
coping capacity and risk can improve behavior and safety of all travellers, through the unobtrusive and 16 
seamless monitoring of behavior. Thus, authorities may use data systems at population level to plan 17 
mobility and safety interventions, set up road user incentives, optimize enforcement and enhance 18 
community building on safe traveling. 19 
 20 
Keywords: Task Complexity; Coping Capacity; Crash Risk; Generalized Linear Models; Structural 21 
Equation Models.  22 
  23 
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INTRODUCTION 1 
 2 
Road safety is a critical concern worldwide, as road crashes claim the lives of millions and cause 3 

countless injuries each year. Factors such as human behavior, road design, vehicle safety features, 4 
environmental conditions, and socioeconomic disparities significantly influence the occurrence and 5 
severity of road crashes (8). A substantial portion of these crashes can be attributed to driver behavior, 6 
making it a vital area of focus in traffic safety research (11). Recognizing the significance of this issue, the 7 
European Union and the World Health Organization have set ambitious targets to reduce fatal traffic crashes 8 
by 50% from 2021 to 2030, with emerging technologies playing a pivotal role in achieving road safety 9 
improvements (7). 10 

 11 
Traffic circumstances, environmental conditions and driver’s state are some of the risk factors that 12 

influence road safety. Despite advancements in technology and infrastructure, human error remains a 13 
significant contributor to traffic collisions (12). However, the ongoing progress in autonomous vehicles 14 
holds promise for enhancing road safety by reducing reliance on human drivers (5). Additionally, intelligent 15 
driving behavior monitoring systems, equipped with real-time interventions, have shown remarkable 16 
effectiveness in enhancing road safety. By combining the benefits of autonomous vehicles and intelligent 17 
monitoring systems, there is a strong potential for mitigating the impact of human error and creating a safer 18 
road environment for all road users. 19 

 20 
Numerous studies have focused on understanding the impact of various factors on unsafe driving 21 

and have sought to develop suitable models for identifying risky driving behavior and establishing 22 
intervention frameworks within vehicles. While there have been proposals for various interventions during 23 
and post-trip the personalization of these interventions and a direct connection between real-time driving 24 
behavior and intervention activation remain areas for improvement. 25 

 26 
The i-DREAMS project, funded by the European Commission Horizon 2020 initiative, aims to 27 

address these challenges by establishing, developing, testing, and validating a 'Safety Tolerance Zone' 28 
(STZ) to ensure safe driving behavior. By continuously monitoring risk factors associated with task 29 
complexity (e.g., traffic conditions and weather) and coping capacity (e.g., driver's mental state, driving 30 
behavior, and vehicle status), i-DREAMS aims to determine the appropriate level within the STZ and 31 
implement interventions to maintain drivers' operations within acceptable safety limits. The STZ comprises 32 
three levels: 'Normal', 'Dangerous', and 'Avoidable Accident'. The 'Normal' level indicates a low likelihood 33 
of a crash, while the 'Dangerous' level suggests an increased possibility of a crash without inevitability. The 34 
'Avoidable Accident' level signifies a high probability of a crash, but it also allows sufficient time for drivers 35 
to take action and prevent it.  36 

 37 
In line with the primary objective of the i-DREAMS project, this study aims to explore the dynamic 38 

interplay between task complexity and coping capacity, encompassing both vehicle state and operator state 39 
factors. For that purpose, data collected from a naturalistic driving experiment with a total sample of 80 40 
drivers from Belgian truck drivers, German drivers and Portuguese bus drivers were collected and analyzed. 41 
Explanatory variables of risk and the most reliable indicators, such as time headway, distance travelled, 42 
speed, forward collision, time of the day (lighting indicators) or weather conditions were assessed.  43 

 44 
The selection of both SEM and GLM for the implementation of the analyses was guided by the 45 

need to conduct a comprehensive investigation into the interaction between task complexity and coping 46 
capacity in the realm of road safety. SEM is a powerful tool for testing theoretical models, examining causal 47 
relationships, and analyzing latent variables, making it well-suited for exploring the intricate relationships 48 
among vehicle, operator, and context characteristics in influencing risk under various conditions (4, 14). 49 
Furthermore, GLMs are effective in handling non-normal data, modeling categorical outcomes, addressing 50 
heteroscedasticity, and incorporating non-linear relationships, which is crucial for analyzing road safety 51 

https://idreamsproject.eu/
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data with diverse distributions and complex patterns (1, 11). By strategically employing both SEM and 1 
GLM, the research aimed to holistically explore the nuanced relationships between risk factors, driving 2 
behavior, and road safety outcomes, thereby contributing valuable insights to enhance road safety measures 3 
and reduce crash risk (2, 9). This integrative approach allowed for a robust and multifaceted analysis, 4 
offering a comprehensive understanding of the factors influencing road safety and paving the way for 5 
evidence-based interventions to promote safer driving practices. 6 

 7 
The paper is structured in the following manner. At the beginning, a detailed introduction to the 8 

project and its general objective is highlighted with a literature review presented concerning the analysis of 9 
driving behavior utilizing statistical methods. The research methodology is outlined, including the 10 
explanantion of collecting the data and the theoretical foundations of the underlying models employed. 11 
Finally, the results of the study are presented, followed by significant conclusions regarding the relationship 12 
between key factors of task complexity and coping capacity on risk. 13 
 14 
DATA DESCRIPTION 15 
 16 
Experimental processing 17 

A naturalistic driving experiment was carried out involving 80 drivers from Belgium, Germany and 18 
Portugal and a large database of 19,000 trips and 847,711 minutes was created to investigate the most 19 
prominent driving behavior indicators available, including speeding, headway, duration, distance and harsh 20 
events (i.e. harsh acceleration and harsh braking). The total number of drivers, trips and minutes per country 21 
and transport mode is presented in Figure 1 below: 22 

Figure 1 Number of drivers, trips and minutes per country and transport mode 23 
 24 

The on-road trials in i-DREAMS were designed based on several proven principles derived from 25 
previous literature focusing on testing interventions in order to assist drivers in maintaining the STZ. The 26 
on-road trials focused on monitoring driving behavior and the impact of real-time interventions (i.e., in-27 
vehicle warnings) and post-trip interventions (i.e., post-trip-feedback and gamification) on driving 28 
behavior. Figure 2 provides an overview of the different phases of the experimental design of the i-29 
DREAMS on-road study based on which the each SEM models was implemented.  30 
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 1 
Figure 2 Overview of the different phases of the experimental design 2 

 3 
Variables used to define task complexity and coping capacity 4 

 5 
The most appropriate variables used in order to define task complexity and coping capacity (vehicle 6 

and operator state) along with the variables finally utilized to represent risk are shown in Figure 3.  7 
 8 

Figure 3 Variables for task complexity and coping capacity (vehicle and operator state) and risk 9 

METHODS 10 
 11 
Generalized Linear Models (GLMs) 12 

In statistics, the GLM is a flexible generalization of ordinary linear regression that allows for 13 
response variables that have error distribution models other than a normal distribution. The GLM 14 
generalizes linear regression by allowing the linear model to be related to the response variable via a link 15 
function and by allowing the magnitude of the variance of each measurement to be a function of its predicted 16 
value (13). 17 

 18 
In a GLM, each outcome Y of the dependent variables is generated from a particular distribution 19 

in an exponential family, a large class of probability distributions that includes the normal, binomial, 20 
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Poisson and gamma distributions, among others. The mean, μ, of the distribution depends on the 1 
independent variables, X, through: 2 

 3 
E(Y|X) =μ= g -1(Xβ)        (1) 4 

 5 
where: E(Y|X) is the expected value of Y conditional on X; Xβ is the linear predictor, a linear combination 6 
of unknown parameters β; g is the link function. 7 

 8 
In this framework, the variance is typically a function, V, of the mean: 9 

 10 
Var(Y|X) =V (g -1(Xβ))        (2) 11 
 12 

The unknown parameters, β, are typically estimated with maximum likelihood, maximum quasi-13 
likelihood, or Bayesian techniques.  14 

 15 
GLMs were formulated as a way of unifying various other statistical models, including linear 16 

regression, logistic regression, and Poisson regression. In particular, McCullagh (13) proposed an 17 
iteratively reweighted least squares method for maximum likelihood estimation of the model parameters. 18 
Maximum-likelihood estimation remains popular and is the default method on many statistical computing 19 
packages. Other approaches, including Bayesian approaches and least squares fits to variance stabilized 20 
responses, have been developed.  21 

 22 
Structural Equation Models (SEMs) 23 

 24 
Structural Equation Modelling (SEM) or path analysis is a multivariate method used to test 25 

hypotheses regarding the influences among interacting observed (measurable) and unobserved variables or 26 
latent constructs (10).  27 

 28 
SEM consist of two components: a measurement model and a structural model (2, 4). The 29 

measurement model is used to assess how well various observable exogenous variables can measure the 30 
latent variables, as well as the measurement errors associated with them. The structural model is used to 31 
investigate the relationships among the model variables, enabling the modeling of both direct and indirect 32 
linkages (1). In this regard, SEMs distinguish themselves from regular regression techniques by deviating 33 
from direct relationships between variables. 34 

 35 
The general formulation of SEM is as follows (9): 36 

 37 
η = βη + γξ + ε         (3) 38 

 39 
In equation (3), η represents a vector of endogenous variables, ξ represents a vector of exogenous variables, 40 
β and γ are vectors of coefficients to be estimated, and ε represents a vector of regression errors. 41 

 42 
The measurement models can be described as follows: 43 

 44 
x= Λxξ + δ, for the exogenous variables         (4) 45 
y=Λyη + ζ, for the endogenous variables         (5) 46 

 47 
In Equations (4) and (5), x and δ represent vectors associated with the observed exogenous variables 48 

and their errors, while y and ζ are vectors represent vectors associated with the observed endogenous 49 
variables and their errors. Λx, Λy are structural coefficient matrices that capture the effects of the latent 50 
exogenous and endogenous variables on the observed variables. 51 
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 1 
Model goodness-of-fit measures 2 

 3 
In the context of model selection, model Goodness-of-Fit measures consist of an important part of 4 

any statistical model assessment. Several goodness-of-fit metrics are commonly used, including the 5 
goodness-of-fit index (GFI), the (standardized) Root Mean Square Error Approximation (RMSEA), the 6 
comparative fit index (CFI) and the Tucker-Lewis Index (TLI). Such criteria are based on differences 7 
between the observed and modelled variance-covariance matrices. 8 

 9 
The Akaike Information Criterion (AIC), which accounts for the number of included independent 10 

variables, is used for the process of model selection between models with different combination of 11 
explanatory variables (6): 12 

 13 
AIC= -2L(θ)+ q         (6) 14 

 15 
where: q is the number of parameters and L(θ) is the log-likelihood at convergence. Lower values of AIC 16 
are preferred to higher values because higher values of -2L(θ) correspond to greater lack of fit. 17 

 18 
The Bayesian Information Criterion (BIC) is used for model selection among a finite set of models; 19 

models with lower BIC are generally preferred. 20 
 21 

BIC= -2L(θ)+ q ln(N)        (7) 22 
 23 
The Comparative Fit Index (CFI) is based on a noncentral x2 distribution. It evaluates the model fit 24 

by comparing the fit of a hypothesized model with that of an independence model. The values of CFI range 25 
from 0 to 1, indicating a good fit for the model when the value exceeds 0.95 (3). In general, values more 26 
than 0.90 for CFI are generally accepted as indications of very good overall model fit (CFI>0.90). The 27 
formula is represented as follows: 28 

 29 

𝐶𝐹𝐼 = 1 − 
max (𝑥𝐻

2−𝑑𝑓𝐻,0)

max (𝑥𝐻
2−𝑑𝑓𝐻,𝑥𝐼

2−𝑑𝑓𝐼)
       (8) 30 

 31 
where: xH

2 is the value of x2 and dfH is the degrees of freedom in the hypothesized model, and xI
2 is the 32 

value of x2 and dfI is the degrees of freedom in the independence model. 33 
 34 
The Tucker Lewis Index (TLI) considers the parsimony of the model. Therefore, if the fit indices 35 

of two models are similar, a simpler model (i.e. greater degrees of freedom) is chosen. TLI is an 36 
unstandardized value, so it can have a value less than 0 or greater than 1. It indicates a good fit for the model 37 
when the value exceeds 0.95. In general, values more than 0.90 for TLI are generally accepted as indications 38 
of very good overall model fit (TLI>0.90). The formula is represented as follows: 39 

 40 

𝑇𝐿𝐼 =

𝑥𝐼
2

𝑑𝑓𝐼
−

𝑥𝐻
2

𝑑𝑓𝐻
𝑥𝐼

2

𝑑𝑓𝐼
−1

        (9) 41 

 42 
Currently, one of the most widely used goodness-of-fit indices is the Root Mean Square Error 43 

Approximation (RMSEA). RMSEA measures the unstandardized discrepancy between the population and 44 
the fitted model, adjusted by its degrees of freedom (df). RMSEA is considered a “badness-of-fit measure” 45 
meaning that lower index values represent a better-fitting model. RMSEA index ranges between 0 and 1. 46 
Its value 0.05 or lower is indicative of model fit with observed data. P close value tests the null hypothesis 47 
that RMSEA is no greater than 0.05. If P close value is more than 0.05, the null hypothesis is accepted that 48 
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RMSEA is no greater than 0.05 and it indicates the model is closely fitting the observed data 1 
(RMSEA<0.05). The formula is represented as follows: 2 

 3 

𝑅𝑀𝑆𝐸𝐴 = √
𝑥𝐻

2− 𝑑𝑓𝐻

𝑑𝑓𝐻(𝑛−1)
        (10) 4 

 5 
where: n is the sample size. 6 
 7 
RESULTS  8 
 9 
GLM Results 10 

GLMs were employed to investigate the relationship of key performance indicator of speeding for 11 
Belgian truck drivers, German car drivers and Portuguese bus drivers. The relationship between speeding 12 
and risk is widely recognized in the road safety community and as such, speeding is a commonly used 13 
dependent variable in transportation human factors research. 14 

 15 
Belgian trucks 16 

 17 
The first GLM investigated the relationship between the speeding and several explanatory variables 18 

of task complexity and coping capacity (operator state) in Belgium. In particular, the dependent variable of 19 
the developed model is the dummy variable “speeding”, which is coded with 1 if there is a speeding event 20 
and with 0 if not. For task complexity, the variables used are time indicator, wipers and high beam, while 21 
for coping capacity - operator state, the variables used are distance traveled and harsh acceleration. It should 22 
be mentioned that the explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox, or 23 
socio-demographic characteristics, such as gender, age or educational level are not statistically significant 24 
at a 95% confidence level; thus, these variables are not included in the models. The model parameter 25 
estimates are summarized in Table 1. 26 
 27 

TABLE 1 Parameter estimates and multicollinearity diagnostics of the GLM 28 

Variables Estimate Standard Error z-value Pr(|z|) VIF 
(Intercept) 3.668 0.043 85.768 < .001 - 
Time indicator 0.908 0.078 11.683 < .001 1.882 
Weather 0.009 4.217×10-4  20.952 < .001 1.228 
High beam – Off -0.018 7.062×10-4  -25.286 < .001 1.470 
Harsh acceleration 2.661 0.181 14.689 < .001 1.013 
Distance -6.128×10-4  7.273×10-5  -8.426 < .001 1.678 
Summary statistics      
AIC 17404.428     
BIC  17413.817     
Degrees of freedom 88377     

 29 
Based on Table 2, it can be observed that all explanatory variables are statistically significant at a 30 

95% confidence level; there is no issue of multicollinearity as the VIF values are much lower than 5. With 31 
regard to the coefficients, it was revealed that the indicators of task complexity, such as time indicator and 32 
wipers were positively correlated with speeding. The former refers to the time of the day (day coded as 1, 33 
dusk coded as 2, night coded as 3) which means that higher speeding events occur at night compared to 34 
during the day. This may be due to fewer cars on the road, lower visibility, and a false sense of security that 35 
comes with driving in the dark. Interestingly, wipers (wipers off coded as 0, wipers on coded as 1) were 36 
also found to have a positive correlation with speeding which means that there are more speeding events 37 
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during adverse (e.g. rainy) weather conditions. This may be due to the fact that wet and slippery roads can 1 
make it more difficult to maintain control of the vehicle. Additionally, rain can reduce visibility and make 2 
it harder to see other cars or obstacles on the road. Taking into account the indicator of high beam (indicating 3 
lighting conditions; no high beam detected), a negative correlation was identified which means that when 4 
high beam was off - and, therefore, it was daytime - there were less speeding events. This finding comes in 5 
agreement with the previous argument with the indicator of time of the day that higher speeding events 6 
occur at night compared to the rest of the day. 7 

 8 
Regarding the indicators of coping capacity - operator state, harsh accelerations had a positive 9 

relationship with the dependent variable (i.e. speeding), indicating that as the number of harsh acceleration 10 
increases, speeding also increases. This is a noteworthy finding of the current research as it confirms that 11 
harsh driving behavior events present a statistically significant positive correlation with speeding. Lastly, 12 
total distance travelled was negatively correlated with speeding which may be due to the fact that the longer 13 
a person drives, the more fatigued they may become, causing them to drive slower and more cautiously. 14 

 15 
German cars  16 

 17 
The second GLM investigated the relationship between the speeding and several explanatory 18 

variables of task complexity and coping capacity (vehicle and operator state) in Germany. For task 19 
complexity, the variables used are time indicator and high beam, for coping capacity - vehicle state, the 20 
variables used are type of fuel and vehicle age, while for coping capacity - operator state, the variables used 21 
are distance traveled, duration, harsh acceleration, drowsiness, gender and age. The model parameter 22 
estimates are summarized in Table 2. 23 
 24 

TABLE 2 Parameter estimates and multicollinearity diagnostics of the GLM 25 

Variables Estimate Standard Error z-value Pr(|z|) VIF 
(Intercept) 1.105 0.057 19.549 < .001 - 
Duration 0.003 3.414×10-5  73.366 < .001 1.262 
Distance 5.735×10-4  3.723×10-5  15.404 < .001 1.029 
Harsh acceleration 1.282×10-4  1.974×10-6  64.951 < .001 1.222 
Fuel type - Petrol 0.219 0.010 21.446 < .001 1.328 
Vehicle Age 3.162×10-5  3.340×10-6  9.469 < .001 1.277 
Gender - Female -0.275 0.021 -13.025 < .001 1.256 
Age -0.003 0.001 -2.289 0.022 1.076 
Drowsiness 1.009×10-5  2.656×10-6  3.800 < .001 1.113 
Time indicator 8.547×10-5  1.925×10-6  44.405 < .001 1.080 
High beam - On 0.817 0.059 13.963 < .001 1.073 
Summary statistics      
AIC 127971.813     
BIC  127981.881     
Degrees of freedom 174299     

 26 
Based on Table 3, it can be observed that all explanatory variables are statistically significant at a 27 

95% confidence level; there is no issue of multicollinearity (VIF<5). With regards to the coefficients, it was 28 
revealed that the indicators of task complexity, such as time and high beam (indicating lighting conditions; 29 
no high beam detected) were positively correlated with speeding. Regarding the indicators of coping 30 
capacity – vehicle state, such as fuel type and vehicle age were positively correlated with speeding. 31 
Furthermore, it was demonstrated that indicators of coping capacity – operator state, such as harsh 32 
accelerations, distance, duration and drowsiness had a positive relationship with the dependent variable (i.e. 33 
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speeding), indicating that as the values of the aforementioned independent variables increases, speeding 1 
also increases. This is a noteworthy finding of the current research as it confirms that harsh driving behavior 2 
events present a statistically significant positive correlation with speeding. 3 

 4 
Taking into consideration socio-demographic characteristics, gender and age were negatively 5 

correlated with speeding. In particular, the negative value of the “Gender” coefficient implied that as the 6 
value of the variable was equal to 1 (males coded as 0, females as 1), the speeding percentage was lower. 7 
Results revealed that the vast majority of male drivers displayed less cautious behavior during their trips 8 
and exceeded more often the speed limits than female drivers. It is also remarkable that the negative value 9 
of the “Age” coefficient implied that as the value of the variable increased (higher value indicates increased 10 
age and, therefore, increased years of participant’s experience), the speeding percentage was lower. Young 11 
drivers appeared to have a riskier driving behavior than older drivers and were more prone to exceed the 12 
speed limits. 13 

 14 
Portuguese buses 15 

 16 
The third GLM investigated the relationship between speeding and several explanatory variables 17 

of task complexity and coping capacity (vehicle and operator state) in Portugal. More specifically, for task 18 
complexity, the variable used is time indicator while for coping capacity - operator state, the variables used 19 
are distance traveled, harsh acceleration, harsh braking and fatigue. It should be mentioned that the 20 
explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox, or socio-demographic 21 
characteristics, such as gender, age or educational level are not statistically significant at a 95% confidence 22 
level; thus, these variables are not included in the models. The model parameter estimates are summarized 23 
Table 3. 24 

 25 
TABLE 3 Parameter estimates and multicollinearity diagnostics of the GLM 26 

Variables Estimate Standard Error z-value Pr(|z|) VIF 
(Intercept) 3.441 0.020 168.858 < .001 - 
Time indicator 0.164 0.008 21.306 < .001 1.002 
Harsh braking 0.294 0.082 3.594 < .001 1.051 
Harsh acceleration 0.490 0.112 4.371 < .001 1.052 
Fatigue -0.095 0.008 -12.527 < .001 1.378 
Distance 0.010 1.038×10-4  99.797 < .001 1.379 
Summary statistics      
AIC 153657.374     
BIC  153668.223     
Degrees of freedom 380656     

 27 
It can be observed that all explanatory variables are statistically significant at a 95% confidence 28 

level; there is no issue of multicollinearity (VIF<5). With regard to the coefficients, it was revealed that the 29 
indicators of task complexity, such as time indicator was positively correlated with speeding. Time indicator 30 
refers to the time of the day (day coded as 1, dusk coded as 2, night coded as 3) which means that higher 31 
speeding events occur at night compared to during the day. This may be due to fewer cars on the road, 32 
lower visibility, and a false sense of security that comes with driving in the dark. Regarding the indicators 33 
of coping capacity - operator state, distance and harsh events (i.e. harsh acceleration and harsh braking) had 34 
a positive relationship with the dependent variable (i.e. speeding), indicating that as the total distance 35 
traveled and the number of harsh events increases, speeding also increases. Lastly, fatigue was negatively 36 
correlated with speeding which implies that the more fatigued the driver is, the slower and more cautiously 37 
they drive. 38 
 39 
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SEM Results 1 
Four separate SEM models were estimated in order to explore the relationship between the latent 2 

variables of task complexity, coping capacity and risk (expressed as the three stages of the STZ). 3 
 4 

Belgian trucks 5 
 6 
The results for each phase are shown in Figure 4 below. The latent variable risk is measured by 7 

means of the STZ levels for acceleration (level 1 ‘normal driving’ used as the reference case), with negative 8 
correlations of risk with the STZ indicators. The negative sign shows that the latent variable risk could in 9 
fact be representing an inverse of risk, more like a normal driving. The structural model between the latent 10 
variables shows some interesting findings: first, task complexity and coping capacity are inter-related with 11 
a positive correlation. This positive correlation indicates that higher task complexity is associated with 12 
higher coping capacity implying that drivers coping capacity increases as the complexity of driving task 13 
increases.  14 
 15 

Task complexity increase is associated with higher (risk) normal driving (lower risk), which is not 16 
intuitive. Although the initial assumption was that task complexity would increase risk or decrease normal 17 
driving, once its effect is moderated by that of coping capacity the opposite is the case. It is noted however 18 
that the task complexity latent variable is measured by environmental indicator (i.e. rainy weather) and 19 
situational indicator (i.e. speed) which are known to induce compensatory behaviors by drivers, in particular 20 
expressed as reduced speed during the more demanding conditions. 21 

 22 
At the same time, coping capacity is negatively associated with normal driving or inverse of risk, 23 

again an interesting finding. It could be assumed that higher coping capacity might reduce risk or improve 24 
normal driving but this is not the case here. Furthermore, the coping capacity indicators in our sample 25 
include static demographic and self-reported behavior indicators and therefore are more representative of 26 
driver personality and general driving styles, and less so of the real-time operator state during the 27 
experiment. For instance, indicators related to the level of sleepiness, fatigue or distraction were either not 28 
available or not significant in this model. Therefore, it can be concluded that younger, more confident truck 29 
drivers exhibited (higher risk) lower normal driving in this experiment, in terms of exceeding the STZ 30 
acceleration boundaries, without however taking into account the variations of their state during these trips. 31 
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(a)        (b) 1 

  (c)       (d) 2 
Figure 4: Results of SEM on risk – Belgian truck drivers – experiment phase 1 (a), 2 (b), 3 (c), 4 (d) 3 
 4 

It is observed that the relationships among risk, task complexity and coping capacity are consistent 5 
between the different phases (except for phase 3 where coping capacity and risk have positive relationship). 6 
In particular, in phase 3, the structural relationship between coping capacity and (inverse) risk changes to a 7 
positive coefficient. This finding may not be directly interpreted, but it is possible that the presence of real 8 
time and post trip i-DREAMS interventions in phase 3 lead to a different interaction between the latent 9 
variables coping capacity and risk, which would need additional indicators available in order to draw 10 
conclusions. Also, the magnitude of the correlation between latent variables coping capacity and task 11 
complexity reduces to extremely small value. 12 

 13 
The loading of 'trip duration’ in phase 2 changes to positive sign which shows an improvement in 14 

the coping capacity of drivers in the presence of real-time interventions. However, in the later phases 3 and 15 
4, this trend is back as the phase 1. The loadings of the observed proportions of the STZ of acceleration are 16 
consistent between the different phases (The loadings of 2nd STZ level have consistently higher negative 17 
sign across all phases while the loadings of 3rd STZ level have consistently lower sign across all phases). 18 
The loading of 1st STZ level becomes notably higher in the 4th phase of the experiment. This may indicate 19 
that drivers tend to have normal driving in 4th phase in the presence of all interventions. 20 

 21 
Looking at the observed risk factors, it was demonstrated that for harsh accelerations in Belgian 22 

trucks, the correlation of coping capacity and task complexity was in general positive along the same 23 
magnitude for all phases. 24 
 25 
 26 
 27 
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German cars 1 
 2 
To begin with, risk is measured by means of the STZ levels for speeding (level 1 ‘normal driving’ 3 

used as the reference case; level 2 refers to ‘dangerous driving’, while no incidents with regards to level 3 4 
‘avoidable accident driving’ were found). In particular, positive correlations of risk with the STZ indicators 5 
were found. It should be noted that the identified model indicated that level 3 of speeding variable does not 6 
have significant loading in the measurement model for the latent variable risk and thus, this level was not 7 
included in the final model. Level 1 and level 2 of speeding (or STZ 1 and STZ 2 indicators) have positive 8 
loadings in relationship to the latent variable Risk, respectively. 9 

 10 
The latent variable task complexity is measured by means of the environmental indicator of 11 

“ME_AWS_time_indicator_median” (indicating time of the day). It should be noted that based on the 12 
definition of task complexity, road layout, time, location, traffic volumes and weather variables should be 13 
included in the analysis. However, road type (i.e. urban, rural, highway), location, traffic volumes (i.e. high, 14 
medium, low) and weather were not available in German dataset. Thus, only the time indicator was able to 15 
be used in the models applied. To that aim, exposure indicators, such as trip duration and distance traveled 16 
were included in the task complexity analysis. In particular, time of the day, distance and duration found to 17 
have a positive correlation with task complexity.  18 

 19 
Furthermore, it is shown that the latent coping capacity is measured by means of both vehicle state 20 

indicators, such as “VehicleAge” (indicating the age of the vehicle), “Gearbox” (indicating the type of 21 
gearbox; automatic or manual) and “Fuel_type” (indicating the type of fuel; diesel, hybrid electric, petrol). 22 
At the same time, operator state indicators, such as “Gender” (indicating the gender of the driver; male or 23 
female) and “Age” (indicating the age of the driver) are included in the SEM applied.  24 

 25 
The structural model between the latent variables shows some interesting findings: first, task 26 

complexity and coping capacity are inter-related with a positive correlation (regression coefficient=0.03) – 27 
which reduces in magnitude as the driver’s progress from phases 1 and 2 though phases 3 and 4. This 28 
positive correlation indicates that higher task complexity is associated with higher coping capacity implying 29 
that drivers coping capacity increases as the complexity of driving task increases. Overall, the structural 30 
model between task complexity and risk shows a positive coefficient, which means that increased task 31 
complexity relates to increased risk according to the model (regression coefficient=2.19). On the other 32 
hand, the structural model between coping capacity and risk shows a negative coefficient, which means that 33 
increased coping capacity relates to decreased risk according to the model (regression coefficient=-0.05). 34 

 35 
It is observed that the measurement equations of task complexity and coping capacity are consistent 36 

between the different phases. At the same time, the loadings of the observed proportions of the STZ of 37 
speeding are consistent between the different phases. The structural model between task complexity and 38 
inverse risk (normal driving) are positively correlated among the four phases, while coping capacity and 39 
risk found to have a negative relationship in all phases of the experiment. 40 

 41 
In Germany, the model for speeding revealed a positive correlation of task complexity and coping 42 

capacity, but with the largest correlation on phase 2 of the experiment, where real-time warnings were 43 
introduced. At the end of the experiment (phase 4), coping capacity was found to have its largest correlation 44 
with risk, while task complexity had its greatest loading during phase 3 of the experiment. 45 

 46 
The results for all phases are shown in Figure 5 below. 47 
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(a)        (b)  1 

(c)        (d) 2 
Figure 5: Results of SEM on risk – German car drivers – experiment phase 1 (a), 2 (b), 3 (c), 4 (d) 3 

 4 
Portuguese buses 5 

 6 
Risk is measured by means of the STZ levels for headway (level 1 ‘normal driving’ used as the 7 

reference case; level 2 refers to ‘dangerous driving’, while level 3 refers to ‘avoidable accident driving’. In 8 
particular, negative correlations of risk with the STZ indicators were found.  9 

 10 
The latent variable task complexity is measured by means of the environmental indicator of 11 

“ME_AWS_time_indicator_median” (indicating time of the day) and total duration. It should be noted that 12 
based on the definition of task complexity, road layout, time, location, traffic volumes and weather variables 13 
should be included in the analysis. However, road type (i.e. urban, rural, highway), location, traffic volumes 14 
(i.e. high, medium, low) and weather were not available in Portuguese dataset. Thus, only the time indicator 15 
was able to be used in the models applied. To that aim, exposure indicators, such as trip duration was 16 
included in the task complexity analysis. In particular, time of the day and duration found to have a positive 17 
correlation with task complexity. 18 

 19 
Moreover, it is shown that the latent coping capacity is measured by means of operator state 20 

indicators, such as average speed, distance, harsh acceleration and harsh braking. It should be noted that 21 
vehicle state indicators, such as vehicle age, gearbox, fuel type or socio-demographic characteristics were 22 
not provided.  23 

 24 
The structural model between the latent variables shows some interesting findings: first, task 25 

complexity and coping capacity are inter-related with a positive correlation (regression coefficient=0.96) – 26 
which reduces in magnitude as the driver’s progress from phases 1 and 2 though phases 3 and 4. This 27 
positive correlation indicates that higher task complexity is associated with higher coping capacity implying 28 
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that drivers coping capacity increases as the complexity of driving task increases. Overall, the structural 1 
model between task complexity and risk shows a positive coefficient, which means that increased task 2 
complexity relates to increased risk according to the model (regression coefficient=5.36). On the other 3 
hand, the structural model between coping capacity and risk shows a negative coefficient, which means that 4 
increased coping capacity relates to decreased risk according to the model (regression coefficient=-5.02). 5 

 6 
The results for all phases are shown in Figure 6 below. It is observed that the measurement 7 

equations of task complexity and coping capacity are consistent between the different phases. The structural 8 
model between task complexity and inverse risk (normal driving) are positively correlated in phases 1, 3 9 
and 4, while a negative correlation of phase 2 was identified. At the same time, coping capacity and risk 10 
found to have a negative relationship in all phases of the experiment.  11 

 12 
In Portugal, task complexity was positively associated with the latent variable risk, which was 13 

defined by different levels of headway. The higher the complexity, the higher the chance to drive normally 14 
and more carefully. On the other hand, coping capacity was negatively associated with risk (or normal 15 
driving) which implied that higher coping capacity might encourage normal driving and reduce risk. Task 16 
complexity and coping capacity were inter-related with a positive correlation – which reduced in magnitude 17 
as the driver’s progress from phase 1 though phase 4. Similar patterns of professional drivers (in terms of 18 
loadings and signs among phases for Belgian truck and Portuguese bus drivers) were observed. 19 
 20 

(a)        (b) 21 

(c)        (d) 22 
Figure 6: Results of SEM on risk – Portuguese bus – experiment phase 1 (a), 2 (b), 3 (c), 4 (d) 23 

 24 
Table 4 summarizes the model fit of SEM applied for different counties (Germany, Belgium, Portugal), 25 
transport modes (cars, trucks, buses) and experimental phases. 26 
 27 
 28 
 29 
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TABLE 4 Model Fit Summary for different counties, transport modes and experimental phases 1 

Model Fit measures Phase 1 Phase 2 Phase 3 Phase 4 
Belgian (Trucks) 

AIC 2730.212 6417.821 3177.783 6089.699 
BIC 2730.234 6417.839 3177.802 6089.713 
CFI 0.921 0.813 0.882 0.843 
TLI 0.881 0.719 0.778 0.764 
RMSEA 0.062 0.088 0.064 0.077 
Hoelter's critical N (α = .05) 386 197 372 256 
Hoelter's critical N (α = .01) 456 232 439 302 
 German (Cars) 
AIC 813827.574 676463.527 282420.347 525983.888 
BIC 814118.257 676746.197 282625.175 526243.996 
CFI 0.981 0.960 0.996 0.978 
TLI 0.974 0.944 0.993 0.966 
RMSEA 0.079 0.117 0.059 0.100 
Hoelter's critical N (α = .05) 0.961 0.920 0.983 0.943 

Portugal (Buses) 
AIC 3.328×10+6 1.699×10+6 1.511×10+6 1.594×10+6 
BIC 3.328×10+6 1.699×10+6 1.511×10+6 1.595×10+6 
CFI 0.983 0.985 0.998 0.964 
TLI 0.974 0.978 0.997 0.946 
RMSEA 0.053 0.052 0.019 0.051 
Hoelter's critical N (α = .05) 0.985 0.986 0.998 0.986 
Hoelter's critical N (α = .01) 533.123 556.489 4284.444 582.268 

 2 
DISCUSSION 3 

 4 
As task complexity increased, drivers may experience greater cognitive load and divided attention, 5 

potentially leading to decreased situational awareness and slower response times. These factors can impair 6 
decision-making abilities and increase the likelihood of errors or collisions.  7 

 8 
Results indicated that higher task complexity was associated with an increased crash risk due to 9 

several reasons. Firstly, drivers could probably become overwhelmed by the demands of complex tasks, 10 
leading to reduced attention to the road and other traffic participants. This can result in delayed detection 11 
of critical events and inadequate responses. Secondly, complex tasks may require drivers to allocate more 12 
mental resources, causing them to divert attention from essential driving activities. For instance, interacting 13 
with in-vehicle technology or navigation systems can increase cognitive workload and lead to decreased 14 
focus on the primary task of driving.  15 

 16 
Conversely, drivers with limited coping capacity may struggle to manage effectively complex 17 

tasks, leading to higher crash risk. Reduced coping capacity can manifest as slower reaction times, impaired 18 
judgment, and difficulties in prioritizing information. In situations where the demands of the driving task 19 
exceed a driver's coping capacity, there is an increased likelihood of errors, misjudgments, and collisions. 20 

  21 
It is worth noting that the relationship between task complexity and risk, as well as coping capacity 22 

and risk, may depend on the specific context and the type of task or activity involved. In general, higher 23 
task complexity may increase the potential for errors or crashes, as it can lead to greater cognitive or 24 
physical demands on the individual performing the task. However, it is also possible that increased 25 
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experience or training can help to mitigate the risk associated with higher task complexity. Similarly, a 1 
higher coping capacity may help to reduce the risk of crashes or errors, as it can provide individuals with 2 
the resources or strategies needed to manage effectively challenging or stressful situations. However, the 3 
effectiveness of coping strategies may depend on the specific context and the individual's ability to apply 4 
them in real-world situations. Overall, it is important to consider the specific factors and context involved 5 
when assessing the relationship between task complexity, coping capacity, and risk. 6 

 7 
The developed models presented can be further exploited by researchers and practitioners. 8 

Additional task complexity and coping capacity factors, such as road type, more personality traits and 9 
driving profiles could be utilized for example. Furthermore, data could be enhanced by including additional 10 
measurements such as electrocardiogram and electroengephalogram readings, traffic conflicts and transport 11 
emissions. Finally, additional methodologies such as imbalanced learning and models taking into account 12 
unobserved heterogeneity could be explored for the understanding of the relationship between task 13 
complexity, coping capacity and crash risk. 14 
 15 
CONCLUSIONS 16 
 17 

The ultimate goal of the analyses in this work was to identify the impact that the balance between 18 
task complexity and coping capacity has on the risk of a crash. To that end, 80 drivers participated in a 19 
naturalistic driving experiment carried out in three countries (i.e. Belgium, Germany and Portugal) and a 20 
large dataset of 19,000 trips was collected and analyzed. 21 

 22 
In order to fulfil the aforementioned objective, exploratory analysis, such as GLMs were developed 23 

and the most appropriate variables associated to the latent variable “task complexity” and “coping capacity” 24 
were estimated. Moreover, SEMs were used to explore how the model variables were inter-related, allowing 25 
for both direct and indirect relationships to be modelled. 26 

 27 
Results showed that higher task complexity levels lead to higher coping capacity. This means that 28 

drivers, when faced with difficult conditions, tend to regulate well their capacity to apprehend potential 29 
difficulties, while driving. It was revealed task complexity and inverse risk were positively correlated in all 30 
phases of the experiment, which means that increased task complexity relates to increased risk. On the other 31 
hand, coping capacity and inverse risk found to have a negative relationship in all phases, which means that 32 
increased coping capacity relates to decreased risk. Overall, the interventions had a positive influence on 33 
risk, increasing the coping capacity of the operators and reducing the risk of dangerous driving behavior. 34 

 35 
All in all, the inter-relationship between driving task complexity, coping capacity, and crash risk is 36 

a multifaceted and crucial area of study in traffic safety research. The interplay between driving task 37 
complexity and coping capacity directly impacts crash risk, as drivers who are overwhelmed by high task 38 
complexity and have limited coping capacity may experience reduced situational awareness, slower 39 
reaction times, impaired decision-making, and increased likelihood of errors or collisions. Conversely, 40 
drivers with better coping capacity can effectively handle complex driving tasks, mitigate risks, and 41 
maintain safer driving behaviors. 42 
 43 

Understanding and modeling this inter-relationship between task complexity, coping capacity and 44 
crash risk is vital for developing targeted interventions and countermeasures to enhance traffic safety and 45 
reduce crash risk on our roadways. This includes improving road infrastructure, implementing appropriate 46 
signage and road markings, educating drivers about the impact of task complexity on their performance, 47 
and promoting the development of coping strategies to manage complex driving situations. Lastly, 48 
technological advancements in vehicle automation and driver assistance systems can play a role in 49 
mitigating crash risk by reducing the cognitive load associated with complex tasks and providing support 50 
to drivers in challenging driving conditions. 51 
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