

¹National Technical University of Athens, Department of Transportation Planning and Engineering, Athens, Greece ²UHasselt, School for Transportation Sciences, Transportation Research Institute (IMOB), Hasselt, Belgium

Introduction

Road safety is a critical concern worldwide, as road crashes claim the lives of millions and cause countless injuries each year. Factors such as human behavior, road design, vehicle safety features, environmental conditions and socioeconomic disparities significantly influence the occurrence and severity of road crashes. Despite advancements in technology and infrastructure, human error remains a significant contributor to traffic collisions.

The ongoing progress in autonomous vehicles holds promise for enhancing road safety by reducing reliance on human drivers. Moreover, intelligent monitoring systems, equipped with real-time interventions, have shown remarkable effectiveness in enhancing road safety. By combining the benefits of autonomous vehicles and monitoring systems, there is a strong potential for mitigating the impact of human error and creating a safer road environment for all road users.

Objective

This paper endeavours to **model the inter-relationship** among task complexity, coping capacity (i.e. vehicle and operator state) and crash risk.

Experimental Design

A naturalistic driving experiment was carried out involving 80 drivers and data from Belgian truck drivers, German drivers and Portuguese bus drivers were analyzed, as shown in Figure 1.

Belgium	Germany	Portugal
trucks	cars	buses
 23 drivers 6346 trips 590,356 minutes 	 28 drivers 5344 trips 84,434 minutes 	 29 drivers 7331 trips 703,921 minutes

Figure 1: Number of drivers, trips and minutes per country and transport mode

The on-road trials focused on monitoring driving behavior and the impact of **real-time interventions** (i.e., in-vehicle warnings) and **post-trip interventions** (i.e., post-trip-feedback and gamification) on driving performance. Figure 2 provides an overview of the different phases of the experimental design.

Phase 1 (Baseline)	 Intervention: NO Description: a reference period after the installation of the i-DREAMS system in order to monitor driving behavior without interventions Duration: 4 weeks
Phase 2	 Intervention: Real-time Description: a monitoring period during which only in vehicle real-time warnings provided using adaptive ADAS Duration: 4 weeks
Phase 3	 Intervention: Real-time + Post-trip Description: a monitoring period during which in addition to real-time in vehicle warnings, drivers received feedback on their driving performance through the app Duration: 4 weeks
Phase 4	 Intervention: Real-time + Post-trip + Gamification Description: a monitoring period during which in vehicle real-time interventions were active along with feedback but at the same time gamification elements were also active Duration: 6 weeks

Figure 2: Overview of the different phases of the experimental design

Contact Information: Eva Michelaraki, PhD Candidate NTUA Department of Transportation Planning and Engineering Email: <u>evamich@mail.ntua.gr</u> Website: https://www.nrso.ntua.gr/p/evamich/

Car w

- Car h

GLMs were employed to investigate the relationship of key performance indicator of speeding for Belgian truck drivers, German car drivers and Portuguese bus drivers. For all models applied, the dependent variable is the dummy variable "speeding", which is coded with 1 if there is a speeding event and with 0 if not. It can be observed that all explanatory variables are statistically significant at a 95% confidence level; there is no issue of multicollinearity as the VIF values are much lower than 5. The model parameter estimates are summarized Table 1.

Identifying the Impact of Task Complexity and Coping Capacity on Driving Risk: **Comparison among Different Countries and Transport Modes** Eva Michelaraki¹, Stella Roussou¹, Thodoris Garefalakis¹, Muhammed Adnan², Muhammad Wisal Khattak², Tom Brijs², George Yannis¹

Methodology

Generalized Linear Models (GLMs) were developed and the most appropriate variables associated to the latent variable task complexity and coping capacity were estimated. □ Structural Equation Models (SEMs) were used to explore how the model variables were inter-

related, allowing for both direct and indirect relationships to be modelled.

Comparisons on the performance of such models, behaviors and driving patterns across different countries and transport modes were also provided.

Explanatory variables of risk and the most reliable indicators, such as time headway, distance, speed, forward collision, time of the day or weather were assessed, as depicted in Figure 3.

omplexity	Coping Capacity- Vehicle State	Coping Capacity – Operator state		Risk
pers	Vehicle Age	Distance	Inter Beat Interval	Headway map lev
gh beam	First Vehicle Registration	Duration	Headway	Speeding map lev
ndicator	Fuel Type	Average speed	Overtaking	Overtaking map l
ce	Engine Cubic Centimeters	Harsh acceleration/braking	Fatigue	Fatigue map level
on	Engine Horsepower (HP)	Forward collision warning (FCW)	Gender	Harsh acceleratio
	Gearbox	Pedestrian collision warning (PCW)	Age	Harsh braking
the week	Vehicle brand	Lane departure warning (LDW)	Educational level	Vehicle control e

Figure 3: Variables for task complexity and coping capacity (vehicle and operator state) and risk

GLM Results

✓ For Belgian trucks, the indicators of task complexity, such as time indicator and wipers were positively correlated with speeding, which means that higher speeding events occur during adverse (e.g. rainy) weather conditions. Distance travelled was negatively correlated with speeding which may be due to the fact that the longer a person drives, the more fatigued they may become, causing them to drive slower and more cautiously.

For German cars, fuel type and vehicle age were positively correlated with speeding. Taking into consideration socio-demographic characteristics, results showed that the vast majority of male drivers displayed less cautious behavior during their trips and exceeded more often the speed limits than female drivers. Moreover, young drivers appeared to have a riskier driving behavior than the elderly and were more prone to exceed the speed limits.

For Portuguese buses, higher speeding events occur at night compared to during the day. This may be due to fewer cars on the road, lower visibility and a false sense of security that comes with driving in the dark. Lastly, fatigue was negatively correlated with speeding which implies that the more fatigued the driver is, the slower they drive.

Variables	Estimate	Standard Error	z-value	Pr(z)	VIF						
Belgian (Trucks)											
(Intercept)	3.668	0.043	85.768	< .001	-						
Time indicator	0.908	0.078	11.683	< .001	1.882						
Weather	0.009	4.217×10-4	20.952	< .001	1.228						
High beam – Off	-0.018	7.062×10-4	-25.286	< .001	1.47						
Harsh acceleration	2.661	0.181	14.689	< .001	1.013						
Distance	-65.28	7.273×10-5	-8.426	< .001	1.678						
German (Cars)											
(Intercept)	1.105	0.057	19.549	< .001	-						
Duration	0.003	3.414×10⁻⁵	73.366	< .001	1.262						
Distance	5.735×10 ⁻⁴	3.723×10⁻⁵	15.404	< .001	1.029						
Harsh acceleration	1.282×10 ⁻⁴	1.974×10⁻ ⁶	64.951	< .001	1.222						
Fuel type - Petrol	0.219	0.01	21.446	< .001	1.328						
Vehicle Age	3.162×10 ⁻⁵	3.340×10⁻ ⁶	9.469	< .001	1.277						
Gender - Female	-0.275	0.021	-13.025	< .001	1.256						
Age	-0.003	0.001	-2.289	0.022	1.076						
Drowsiness	1.009×10 ⁻⁵	2.656×10⁻ ⁶	3.8	< .001	1.113						
Time indicator	8.547×10 ⁻⁵	1.925×10⁻ ⁶	44.405	< .001	1.08						
High beam - On	0.817	0.059	13.963	< .001	1.073						
Portugal (Buses)											
(Intercept)	3.441	0.02	168.858	< .001	-						
Time indicator	0.164	0.008	21.306	< .001	1.002						
Harsh braking	0.294	0.082	3.594	< .001	1.051						
Harsh acceleration	0.49	0.112	4.371	< .001	1.052						
Fatigue	-0.095	0.008	-12.527	< .001	1.378						
Distance	0.01	1.038×10 ⁻⁴	99.797	< .001	1.379						

 Table 1: Parameter estimates and
 multicollinearity diagnostics of the GLM

SEM Results

Four separate SEMs were estimated to explore the relationship between the latent variables of task complexity, coping capacity and risk (expressed as the 3 STZ levels).

Belgian trucks

- Task complexity and coping capacity are inter-related with a **positive correlation**. This positive correlation indicates that higher task complexity is associated with higher coping capacity implying that drivers coping capacity increases as the complexity of driving task increases.
- Coping capacity is **negatively associated** with normal driving or inverse of risk. Coping capacity indicators include static demographic and self-reported behavior parameters and therefore are more representative of driver personality and general driving styles, and less so of the real-time operator state during the experiment.

German cars

Figure 5: German cars – experiment phase 1 (a), 2 (b), 3 (c), 4 (d)

Portuguese buses

- The measurement equations of task complexity and coping capacity are consistent among the different phases. The structural model between task complexity and inverse risk (normal driving) are positively correlated in phases 1, 3 and 4, while a negative correlation of phase 2 was identified. Coping capacity and risk found to have a negative relationship in all phases of the experiment.
- Task complexity was positively associated with the latent variable risk. The higher the complexity, the higher the chance to drive normally and more carefully. On the other hand, coping capacity was negatively associated with risk (or normal driving) which implied that higher coping capacity might encourage normal driving and reduce risk.

Conclusions

- tasks, leading to reduced attention to the road and other traffic participants.
- coping capacity can manifest as slower reaction times, impaired judgment, and difficulties in prioritizing information.
- could be explored for the understanding of the relationship between task complexity, coping capacity and crash risk.
- cognitive load associated with complex tasks and providing support to drivers in challenging driving conditions.

Acknowledgments

IDREAMS The research was funded by the EU H2020 i-DREAMS project (Project Number: 814761) funded by European Commission under the MG-2-1-2018 Research and Innovation Action (RIA).

103rd Annual Meeting of the Transportation Research Board, January 7–11, 2024

>> UHASSELT

Figure 4: Belgian trucks – experiment phase 1 (a), 2 (b), 3 (c), 4 (d)

Task complexity and coping capacity are inter-related with a positive correlation which reduces in magnitude as the driver's progress from phases 1 and 2 though phases 3 and 4. This positive correlation indicates that higher task complexity is associated with higher coping capacity implying that drivers coping capacity increases as the complexity of driving task increases.

The structural model between task complexity and risk shows a positive coefficient, which means that increased task complexity relates to increased risk according to the model (regression coefficient=2.19).

On the other hand, the structural model between coping capacity and risk shows a negative coefficient, which means that increased coping capacity relates to decreased risk according to the model (regression coefficient=-0.05).

Figure 6: Portuguese buses – experiment phase 1 (a), 2 (b), 3 (c), 4 (d)

* Higher task complexity was associated with an increased crash risk. Drivers could probably become overwhelmed by the demands of complex

* Conversely, drivers with limited coping capacity may struggle to manage effectively complex tasks, leading to higher crash risk. Reduced

The interventions had a positive impact on risk, increasing the operators' coping capacity and reducing the risk of dangerous driving behavior. Further task complexity and coping capacity factors, such as road type, more personality traits and driving profiles could be utilized. Data could be enhanced by including additional measurements such as electrocardiogram and electroengephalogram readings, traffic conflicts and transport emissions. Finally, additional methodologies such as imbalanced learning and models taking into account unobserved heterogeneity

* Lastly, technological advancements in vehicle automation and driver assistance systems can play a role in mitigating crash risk by reducing the

TRBAM-24-01951