Leveraging Machine Learning Algorithms to Predict and Analyze Single-Vehicle and Multi-Vehicle Crash Occurrences on Motorways

Saumik Sakib Bin Masud, Kirti Mahajan, Alexandra Kondylí, Katerina Deliali, George Yannis

INTRODUCTION & MOTIVATION

Road crashes occur in all parts of the world causing significant loss of life, injury, and economic damage.

Objectives

1. Developing separate prediction models for SV and MV crashes and identify prominent factors contributing to each crash type.
2. Comparing the classification accuracy of different models using ML and statistical analysis techniques.

DATA OVERVIEW

Crash records from the year 2015 to 2020

- The dataset contained 1,306 road segments where 946 SV and 492 MV crashes occurred.
- Contained information related to -
 - Traffic flow measurement (AADT)
 - Roadway design parameters

OBJECTIVES

1. Developing separate prediction models for SV and MV crashes and identify prominent factors contributing to each crash type.
2. Comparating the classification accuracy of different models using ML and statistical analysis techniques.

RESULTS

Model Type	Model names	MV Crash Prediction	SV Crash Prediction
	Accuracy	ROC-AUC	F1 score
Boosting-based ensemble ML | LightGBM | 0.74 | 0.82 | 0.74 | 0.76 | 0.82 | 0.76
Boosting-based ensemble ML | XGBoost | 0.75 | 0.83 | 0.76 | 0.75 | 0.80 | 0.76
Bagging ensemble ML | Random Forest (RF) Classifier | 0.71 | 0.74 | 0.71 | 0.73 | 0.81 | 0.73
Support Vector Machine | NuSVC | 0.69 | 0.69 | 0.69 | 0.65 | 0.66 | 0.65
Non-parametric ML | K-Nearest Neighbor (K-NN) | 0.67 | 0.66 | 0.66 | 0.62 | 0.63 | 0.63
Statistical model | Binary Logistic Regression (BLR) | 0.64 | 0.71 | 0.64 | 0.59 | 0.61 | 0.59

FINDINGS

Prominent Factors of SV and MV Crash Occurrence (SHAP Analysis):

- Longer length of road segment, speed limit, radius of 1st curve of the road, and the length of the 2nd curve of the road increase the probability of SV crash occurrences on motorways (positively correlated).
- Higher AADT, distance from the edge of outer shoulder to barrier face, median width, paved outside shoulder width, and radius of 2nd curve of the road decrease the SV crash occurrences (negatively correlated).

MV Crash

- Higher AADT, speed limit, and wider median width increase the probability of the MV crash occurrences on motorways.
- Higher number of lanes and wider lane width decrease the MV crash occurrences.
- Higher length of exit and entrance ramp, and the curvature of the road decrease the MV crash occurrences on rural motorways.

KEY FINDINGS

- All the ML models outperformed the BLR model, and among the ML models, the boosting-based algorithms (LightGBM and XGBoost) showed the best performances.
- AADT, median width, and shoulder width showed the opposite contributions to the SV and MV crashes.
- The contribution of some variables was not found to be straightforward positive and negative, rather the combinations of other variables were necessary to extract the exact relationship. For example, the effect of shoulder width on MV crashes also depended on the speed limit and the number of lanes of that facility.