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Abstract. This paper aims to leverage large-scale spatio-temporal data from 

smartphone sensors and geometric design characteristics for spatial analysis of 

telematics-based surrogate safety measures across various road environments. 

Two distinct statistical models have been developed: a non-spatial log-linear 

model and a spatial error model. The dependent variable in both models is the 

logarithm of the number of harsh braking events observed in each considered 

segment. The study area is located within the Western Greece Region and en-

compasses 9,355 road segments. The findings reveal a positive correlation be-

tween harsh braking events and the length of road segments as well as the number 

of recorded trips per segment. Furthermore, variables associated with speeding, 

mobile phone usage, and road segment linearity exhibit positive correlations with 

the number of harsh braking events in the examined segments. Moreover, harsh 

braking events on motorways are found to be lower when compared to other road 

types. In conclusion, the results of this study indicate that the spatial error model 

outperforms the non-spatial model in terms of data fit and yields more reliable 

outcomes. 
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1 Introduction 

In recent years, there has been growing research focus on Surrogate Safety Measures 

(SSMs). Several factors have contributed to this research direction, primarily driven by 

technological advancements that have made data acquisition and analysis significantly 

more feasible and cost-effective (Nikolaou et al., 2023c). SSMs offer several compar-

ative advantages over crash data. They serve as proactive road safety indicators, ena-

bling the analysis of road safety conditions before crashes occur, or even when events 

do not necessarily lead to crashes. Moreover, the crash data collection processes remain 

non-automated and may carry inherent limitations and biases, such as unavailable or 

inaccurate data (Imprialou & Quddus, 2019), or variations in under-reporting rates 

among countries (Yannis et al., 2014). These are issues that can be mitigated by 
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leveraging automatically collected SSMs. Tarko (2018) emphasized that SSMs assist 

in identifying excessive crash risks on the road, enhancing the understanding of crash 

conditions, and providing a more robust evaluation of the effectiveness of experimental 

and existing countermeasures. 

In a study of 668 road sections of the Olympia Odos motorway in Greece, a Negative 

Binomial regression model was developed with the number of road crashes (property 

damage and injury) as the dependent variable and two telematics-based SSMs (harsh 

accelerations and harsh brakings), the Annual Average Daily Traffic (AADT) and the 

segment length as independent variables (Nikolaou et al., 2023a). The results of the 

study indicated a statistically significant and positive correlation between the two harsh 

driving behaviour metrics and road crash frequency. However, as a follow-up to this 

research, it was found that harsh brakings contribute significantly to predicting the 

crash risk level of the road segments under consideration, which is not the case for 

harsh accelerations (Nikolaou et al., 2023b). It is therefore concluded that harsh brak-

ings are a plausible SSM that can be used in various proactive road safety analyses. 

Another notable study is that of Stipancic et al. (2018). The authors modelled road 

crash frequencies using a Full Bayes model with SSMs as independent variables. The 

study used large-scale GPS data from smartphones and obtained several SSMs such as 

harsh braking and traffic flow parameters. The authors used a Latent Gaussian spatial 

model to model crash frequencies and reported that incorporating spatial correlations 

provided the greatest improvement in model fit. 

Based on the aforementioned, the objective of this research is to use large-scale spa-

tio-temporal data from smartphone sensors and geometric design characteristics for 

spatial analysis of telematics-based surrogate safety measures across different road en-

vironments in the Region of Western Greece. 

2 Methodology 

2.1 Data Collection 

In the framework of the SmartMaps research project, data collection from various 

sources has been carried out to develop maps of driver behaviour with online infor-

mation on safety conditions and eco-driving. The ultimate goal is to create a complete 

and comprehensive tool to promote driving behaviour in order to make it safe and en-

vironmentally friendly, while making the overall traffic more efficient and manageable, 

with application in Greece and around the world. 

The dataset examined for the region of Western Greece comprises 9,355 road sec-

tions, with an average length of 223 meters. In terms of road types, the distribution is 

as follows: residential roads (74%), tertiary roads (7%), primary roads (6%), secondary 

roads (5%), motorways (4%), and the remaining 4% comprises other road types. These 

data were derived by utilizing OpenStreetMap data, which were processed using ap-

propriate packages in the R programming language (Padgham et al., 2017).  

With regard to the naturalistic driving data, this study utilizes data obtained from an 

existing smartphone application developed by OSeven Telematics (www.oseven.io). A 

total of 14,161 trips in the study area within the year 2021 were examined, and a spatial 

http://www.oseven.io/
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matching of the naturalistic driving data and the road segments examined was per-

formed. Table 1 demonstrates some key descriptive statistics of the collected data by 

road segment. 

Table 1. Key descriptive statistics of geometry and driving behaviour data per road segment. 

Variable Min. Mean Max. 

trip [count] 0.0 61.3 1,293.0 

length [m] 1.3 222.7 18,029.1 

linearity index [0-1] 0.03 0.95 1.00 

harsh braking [count] 0.0 1.3 221.0 

speeding [sec] 0.0 30.5 27,279.0 

mobile phone usage [sec] 0.0 35.2 8,561.0 

2.2 Statistical Analysis 

The data presented in section 2.1. including road geometric features and naturalistic 

driving behaviour data via smart phone sensors were analysed by applying two distinct 

statistical models: a non-spatial log-linear model and a spatial error model. Log-linear 

regression is a widely known and simple technique and as such the mathematics behind 

it are omitted. The spatial error model handles the spatial autocorrelation in the residu-

als. The idea is that residuals from regression are autocorrelated in that the error from 

one spatial feature can be modeled as a weighted average of the errors of its neighbors. 

This model can be expressed as: 

 

𝑦 = 𝑋𝛽 + 𝑢,     𝑢 = 𝜆𝐸𝑟𝑟𝑊𝑢 + 𝜀  (1) 

 
where 𝑦 is a (N×1) vector of observations on a dependent variable taken at each of 

N locations, 𝑋 is a (N×k) matrix of covariates, 𝛽 is a (k×1) vector of parameters, 𝑢 is a 

(N×1) spatially autocorrelated disturbance vector,  𝜀 is a (N×1) vector of independent 

and identically distributed disturbances and 𝜆𝐸𝑟𝑟 is a scalar spatial parameter.  

The non-spatial log-linear regression model and the spatial error model can be com-

pared using the Akaike Information Criterion (AIC), where lower values of this crite-

rion indicate better statistical model quality (Akaike, 1970). 

3 Results and Discussion 

As mentioned in the Introduction, harsh brakings are SSMs that can be used in analyses 

before road crashes occur. To this end, harsh brakings were used as a dependent varia-

ble in both the non-spatial log-linear model and the spatial error model of this study. 

The results of the two developed statistical models are presented in Table 2. 
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Table 2. Non-spatial log-linear regression and Spatial Error Model results. 

Dependent variable: log (harsh brakings + 1) 

 Log-linear Model Spatial Error Model 

Parameters Estimate p-value Estimate p-value 

(Intercept) -0.756 <0.001 -0.756 <0.001 

trip count 0.003 <0.001 0.003 <0.001 

log(1+length) 0.099 <0.001 0.099 <0.001 

log(1+speeding) 0.115 <0.001 0.115 <0.001 

log(1+linearity index) 0.468 <0.001 0.467 <0.001 

Mob. phone use/trips 0.012 <0.001 0.012 <0.001 

Motorway -0.169 <0.001 -0.167 <0.001 

Lamda - - 0.016 0.041 

R-squared 0.556 - - - 

AIC 11,826 - 11,824 - 

 

Based on Table 2 results, the values and the signs of the independent variables’ co-

efficients remain consistent between the two developed models. Specifically, both the 

length of the road segment under consideration and the number of trips per road seg-

ment can be considered as indicators of risk exposure and, as expected, are positively 

correlated with the number of harsh brakings. In addition, the positive sign of the inde-

pendent variable of the road segment linearity index suggests that road segments with 

fewer curves have a higher number of harsh braking events. Moreover, the variables 

related to speeding and mobile phone use are positively correlated with the number of 

harsh brakings on the road segments considered. Lastly, harsh braking events on mo-

torways are found to be lower when compared to other types of roads. 

Regarding the spatial error model, the Lambda value of 0.016 is statistically signifi-

cant, indicating that the error term is spatially autoregressive. Moreover, based on AIC 

values, it can also be observed that the spatial error model outperforms the non-spatial 

log-linear model. The spatial error model's predictions for harsh braking events in the 

Western Greece Region's road network are illustrated in Figure 1. Figure 2 offers a 

close-up look at the predictions specifically for the city of Patras, Greece. 



5 

 

Fig. 1. Spatial error model results for the examined road network of Western Greece. 

 

Fig. 2. Spatial error model results for the center of Patras, Greece. 

4 Conclusions 

This research aims to utilize spatiotemporal data from smartphone sensors on driving 

behaviour and geometric road features for spatial analysis of SSMs in various road en-

vironments in the Western Greece region. Specifically, two different types of statistical 

models were developed: a non-spatial log-linear model and a spatial error model. The 

dependent variable in the developed models was the logarithm of the number of harsh 
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braking events per examined segment, as it constitutes a SSM that can be used in road 

safety analyses either in cases where the exact location of road crashes is not available 

or as a proactive indicator before road crashes occur. 

The results indicated that the number of harsh brakings in the examined road seg-

ments is positively correlated with the length and the number of recorded trips per seg-

ment. This finding can be considered expected since these variables are risk exposure 

indicators, and an increase in them leads to more harsh braking events. Furthermore, 

variables related to speeding and mobile phone use were positively associated with the 

number of harsh brakings in the examined road segments. Moreover, the results of this 

research revealed that the spatial error model demonstrates better fit to the data and lead 

to more reliable results than the non-spatial model. 

Finally, it is worth noting that the ultimate goal and the intention of the research team 

is to create a comprehensive mapping tool covering all regions of Greece, promoting 

safe and environmentally friendly driving behaviour. 
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