An Roinn Iompair Department of Transport

10th Transport Research Arena Conference Advancing Sustainable and Inclusive Mobility Dublin, Ireland, April 15-18, 2024

Ireland

Enterprise Ireland

Safety evaluation via conflict classification during automated shuttle bus service operations

Transportation Engineer, PhD

The SHOW project

- 70 partners from 13 EU-countries
 National Technical University of Athens
- Duration of the project:
 48 months (January 2020 September 2024)

Framework Program:

<u>Horizon 2020</u> - The EU Union Framework Programme for Research and Innovation - Mobility for Growth

Project Website:

Full information at: show-project.eu

Introduction

- The SHOW project aims at developing shared automation operating models for worldwide adoption.
- Real-life mass transit Autonomous Vehicle (AVs) demonstrations are taking place in 20 cities across Europe.
- The project vision is to investigate the integration of AVs into various transport aspects.
- The present study aims to examine the safety effects of different shuttle bus service speeds in various future mobility conditions.

Study area

- One such demonstration site of the project is the Madrid site of Villaverde, which comprises a dense urban traffic network.
- The network is simulated in the Aimsun Next software.
- In order to provide impacts of AV operation that could not feasibly be measured in reality, the microscopic simulation method was used.
- The simulated network consisted of 365 nodes and 668 sections, featuring vehicle O-D matrices of 30×30 centroids.

AV operation & integration

- An autonomous shuttle bus line was implemented, operating along with the existing 23 public transport lines
- Cycle route frequency: 15 min
- > Total capacity: 60 passengers & 25 seated passengers
- 3+1 simulated operational speeds of the service: 15km/h, 30km/h, and 45km/h + baseline (no shuttle)
- Eleven simulated traffic mixes: 0%-100% (10% increments) Market Penetration Rate of AVs in general traffic
- > Thus, $(3+1) \times 11 = 44$ simulated scenarios in total

Traffic conflicts: Surrogate Safety Measures

- Traffic conflicts serve as Surrogate Safety Measures (SSMs) from the microsim analysis to gauge safety levels proactively (as crashes are not simulated)
- Conflicts are registered when time-to-collision (TTC) <0.5s and post-encroachment time (PET) <5.0s for AVs.</p>

> A database comprising 638,163 conflicts was extracted from the <u>SSAM add-on</u> software

Variable	Source	Type	Description		Ν	Min	Median	Mean	Max	Std.
PET	SSAM	Numeric	The minimum post encroachment time obse during the conflict	erved second	s 638,163	0.00	0.40	0.883	4.80	1.098
MPR	SSAM	Numeric	The total Market Penetration Rate of CAVs	s %	638,163	0.00	40.00	41.210	100.00	30.747
MaxDeltaV	SSAM	Numeric	The maximum difference in vehicle speeds involved vehicles in the occurred conflict	of the km/h	638,163	0.00	3.47	4.656	25.30	4.061
ConflictAngle	SSAM	Numeric	The angle of hypothetical collision between conflicting vehicles, based on the estimated heading of the each vehicle	i degree	s 638,163	- 180.00	-0.35	-10.420	180.00	72.190
Variable	Source	Туре	Description Level	s				Ν	Per	centage
Conflict type	SSAM	Faster	Rear-	end			3	12,368		48.9%
			Type of the second of appliet Lane	Lane change Crossing			1	105,571 220,224		16.5%
		Pactor	Cross				2			34.5%
			Total				6	38,163	(100.0%)

Modelling scope

- Traffic conflicts are maneuvers describing physical movement of the vehicles.
- Classification of conflict types supported by geometrical, network and traffic variables.
- Mixed-Effects Multinomial Logit Regression (ME-MLR) models are fitted.
- For the best model, the constant varies across MPR percentages.
- ME-MLR models outperform fixed-effects MLR models (lower residual Deviance).

ME-MLR model

- Crossing conflicts are the reference category for multiclass classification.
- Almost all variables are statistically significant
- A lot of information to unpack, an interpretation mechanism will help...

ME-MLM results with crossing conflicts as reference category

	ConflictType: lane change					ConflictType: rear end					
Predictors	Coefficient	SE	OR	CI	Р	Coefficient	SE	OR	CI	р	
Intercept	-6.043	0.266	0.00	0.00 - 0.00	<0.001	-2.169	0.299	0.11	0.06 - 0.21	⊲0.001	
PET	0.329	0.007	1.39	1.37 - 1.41	<0.001	0.656	0.007	1.93	1.90 - 1.95	<0.001	
MPR.	-0.000	0.001	1.00	1.00 - 1.00	0.511	-0.001	0.001	1.00	1.00 - 1.00	0.124	
MaxDeltaV	-0.178	0.002	0.84	0.83 - 0.84	<0.001	-0.741	0.003	0.48	0.47 - 0.48	<0.001	
ConflictAngle	0.010	0.000	1.01	1.01 - 1.01	<0.001	0.006	0.000	1.01	1.01 - 1.01	⊲0.001	
ControlTypeNone [Give way]	1.867	0.027	6.47	6.13 - 6.82	<0.001	1.200	0.024	3.32	3.17 - 3.48	<0.001	
ControlTypeStop [Give way]	-1.358	0.108	0.26	0.21 - 0.32	<0.001	0.928	0.040	2.53	2.34 - 2.74	⊲0.001	
ControlTypeTraffic Light [Give way]	2.006	0.036	7.43	6.93 - 7.97	<0.001	1.591	0.032	4.91	4.61 - 5.22	⊲0.001	
Road TypeResidential [Primary]	2.617	0.049	13.69	12.44 - 15.06	<0.001	2.312	0.047	10.09	9.21 - 11.06	<0.001	
Road TypeSecondary [Primary]	2.238	0.041	9.37	8.66 - 10.14	<0.001	2.440	0.039	11.47	10.62 - 12.39	⊲0.001	
Road TypeTertiary [Primary]	2.258	0.046	9.56	8.73 - 10.47	<0.001	1.138	0.046	3.12	2.85 - 3.41	<0.001	
Road TypeUnclassified [Primary]	4.181	0.048	65.45	59.56 - 71.92	<0.001	2.633	0.050	13.92	12.61 - 15.36	⊲0.001	
Speed.Limit	-0.017	0.001	0.98	0.98 - 0.99	<0.001	0.028	0.001	1.03	1.03 - 1.03	⊲0.001	
ScenarioIrB15 [Baseline]	0.013	0.014	1.01	0.99 - 1.04	0.338	0.073	0.016	1.08	1.04 - 1.11	⊲0.001	
ScenarioIrB30 [Baseline]	-0.009	0.013	0.99	0.96 - 1.02	0.483	-0.032	0.015	0.97	0.94 - 1.00	0.039	
ScenarioIrB45 [Baseline]	0.007	0.013	1.01	0.98 - 1.03	0.627	-0.018	0.015	0.98	0.95 - 1.01	0.254	
Number of Lanes	2.171	0.020	8.78	8.44 - 9.13	<0.001	1.968	0.019	7.16	6.89 - 7.43	⊲0.001	
Number.of.Public.Transport.Lines	-0.089	0.004	0.92	0.91 - 0.92	<0.001	-0.146	0.004	0.86	0.86 - 0.87	<0.001	
FirstHeading	-0.003	0.000	1.00	1.00 - 1.00	<0.001	-0.002	0.000	1.00	1.00 - 1.00	⊲0.001	
EirstLane	0.062	0.003	1.06	1.06 - 1.07	<0.001	0.075	0.003	1.08	1.07 - 1.08	⊲0.001	
FirstLength	-0.061	0.011	0.94	0.92 – 0.96	<0.001	-0.051	0.012	0.95	0.93 - 0.97	<0.001	
EirstWidth	-0.099	0.042	0.91	0.83 - 0.98	0.018	-0.262	0.048	0.77	0.70 - 0.85	⊲0.001	
FirstVehTypeConvCars [Conv Buses]	-0.125	0.100	0.88	0.73 - 1.07	0.213	-1.046	0.109	0.35	0.28 – 0.44	⊲0.001	
FirstVehTypeConvTrucks [Conv_Buses]	-0.160	0.058	0.85	0.76 – 0.96	0.006	-0.967	0.060	0.38	0.34 - 0.43	⊲0.001	
FirstVehTypeCAVs [Conv.Buses]	-0.042	0.101	0.96	0.79 – 1.17	0.678	-0.768	0.109	0.46	0.37 – 0.57	⊲0.001	
FirstVehTypeAutomatedTrucks [Conv Buses]	-0.219	0.059	0.80	0.72 – 0.90	<0.001	-0.884	0.061	0.41	0.37 - 0.47	<0.001	
<pre>FirstVehTypeShuttle[Conv_Buses]</pre>	-0.310	0.130	0.73	0.57 – 0.95	0.017	-0.893	0.167	0.41	0.28 - 0.57	⊲0.001	
SecondHeading.	0.006	0.000	1.01	1.01 - 1.01	<0.001	0.003	0.000	1.00	1.00 - 1.00	⊲0.001	
SecondLane	-0.175	0.011	0.84	0.82 - 0.86	<0.001	0.252	0.012	1.29	1.26 - 1.32	<0.001	
SecondLength	-0.037	0.012	0.96	0.94 - 0.99	0.002	-0.058	0.014	0.94	0.92 - 0.97	⊲0.001	
SecondWidth	0.013	0.043	1.01	0.93 - 1.10	0.760	-0.078	0.050	0.93	0.84 - 1.02	0.119	
SecondVehTypeConvCars [Conv Buses]	0.606	0.104	1.83	1.49 - 2.25	<0.001	-0.111	0.118	0.90	0.71-1.13	0.349	
SecondVehTypeConvTrucks [Conv Buses]	0.333	0.057	1.39	1.25 - 1.56	<0.001	-0.579	0.063	0.56	0.50- 0.63	⊲0.001	
SecondVehTypeCAVs [Conv Buses]	0.578	0.104	1.78	1.45 - 2.19	<0.001	-0.607	0.118	0.55	0.43-0.69	⊲0.001	
SecondVehTypeAutomatedTrucks [Conv Buses]	0.394	0.059	1.48	1.32 - 1.66	<0.001	-0.733	0.066	0.48	0.42-0.55	⊲0.001	
SecondVehTypeShuttle[Cony Buses]	1.236	0.043	3.44	3.16 - 3.75	<0.001	0.984	0.069	2.68	2.34 - 3.07	<0.001	
lane change/crossing x VCov(~1,~1)	0.004	0.000				0.001	0.000				
rear end/crossing x <u>VCov(</u> ~1,~1)	0.001	0.000				0.008	0.000				
Groups by MPR.	11										
	602 710										

Modelling results (1/3)

Interpretation via Odds Ratios (ORs):

- OR>1 (Blue) contributes towards examined category
- OR<1 (Red) contributes towards reference category

Modelling results (2/3)

- Lane change and rear-end conflicts are more likely to occur when:
- PET increases
- MPR, overall lanes and higher maximum speed difference decrease
- Road type is not Primary
- More rear-end conflicts during 15 km/h and 30 km/h operational speed
- Different control types and no control type exist instead of the 'Give way' control type (but not always in 'Stop')
 - ... and more...

Modelling results (3/3)

- Random effects are statistically significant.
- Each MPR value provides a unique constant component to the model (in addition to the entire variable).
- Random effects fluctuate more:
 In lower MPR values for rear-end conflicts and...
 In higher MPR values for lane change

conflicts.

Probability predictions

- \succ The overall probability predictions are plotted for each conflict category.
- > Sharper curves: More concentrated density, indicating higher certainty in predictions.
- Present model performance appears quite satisfactory.

lane change

Conclusions

- The quantification of safety impacts is critical to enable stakeholders for the deployment and operation of automated services.
- A large array of geometric, network and traffic variables influence conflict type classification.
- MPR, describing the automated traffic mix, strongly governs conflict type generation and frequency.
- Surrogate Safety Measures offer insights in uncharted scenarios before crashes occur; nonetheless, validation is required.

An Roinn Iompair Department of Transport

10th Transport Research Arena Conference Advancing Sustainable and Inclusive Mobility Dublin, Ireland, April 15-18, 2024

Ireland

Enterprise Ireland

Safety evaluation via conflict classification during automated shuttle bus service operations

Transportation Engineer, PhD

