Outcome Evaluation of i-DREAMS (H2020 Project) Interventions: Multi-Country Comparison of Driving Behvavior

Muhammad Adnan¹, Kris Brijs¹, Muhammad Wisal Khattak^{1,*}, Laurie Brown², Rachel Talbot², Christelle Al Haddad³, Constantinos Antoniou³, Virginia Petraki⁴, **DUBLIN 2024** George Yannis⁴, Tom Brijs¹

¹UHasselt, Transportation Research Institute (IMOB), Martelarenlaan 42, 3500 Hasselt, Belgium, ²Transport Safety Research Centre, School of Design & Creative Arts, Loughborough University, Loughborough LE11 3TU, UK, ³Chair of Transportation Systems Engineering, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany, ⁴National Technical University of Athens, Dept of Transp. Planning and Engineering, 5 Heroon Polytechniou str, 15773 Athens, Greece

Method (Contd.) Introduction **Result (Contd.)** The i-DREAMS project (<u>https://idreamsproject.eu/wp/</u>) introduced the **Real-time interventions Table 4** GLMM estimation results – Headway, Speed, Fatigue, Illegal overtaking, Lane departure 'Safety Tolerance Zone' (STZ) concept, a context-aware safety and Pedestrian collision envelope designed to prevent unsafe driving by providing real-time and post-trip interventions. **Post-trip interventions** - Feedback is given to the driver after driving, with the help of a In-vehicle interventions inform or warn drivers in real-time to avoid ____ smartphone applications which also provides gamification potential dangers (nudging) elements (e.g. leaderboard, goals, pros and cons for certain – Post-trip interventions inform drivers after driving through an app-

based gamified coaching platform to improve driving behaviour (boosting)

driving behaviour).

Fixed Effects*	Combined (danger + Avoidable accidents) STZs		Avoidable ad STZ	cidents	Danger STZ	
	Estimate	p-value	Estimate	p-value	Estimate	p-value
Intercept	5.114	< 0.001	3.652	<0.001	4.835	<0.001
Phase 2	-0.026	0.277	-0.055	0.064	-0.019	0.433
Phase 3	-0.071	0.003	-0.140	<0.001	-0.045	0.072
Phase 4	-0.116	<0.001	-0.195	<0.001	-0.088	<0.001
GER	-0.316	0.020	0.058	0.725	-0.457	0.001
UK	0.234	0.039	0.140	0.308	0.264	0.002

UHASSEL'

NOWLEDGE IN AC

This study focuses on the outcome (or effectiveness) evaluation of the i-DREAMS (H2020 Project) interventions using multi-country comparison analysis of driving performance in the UK, Belgium and Germany.

Research Questions and Hypotheses

Research Question 1

10th CONFERENCE • 15-18 April

Do real-time and post-trip interventions of the i-DREAMS project make driving safer across different phases of the field trials?

Research Question 2

Do cross-country differences exist in the effectiveness of real-time and post-trip interventions of the i-DREAMS project considering naturalistic data from the UK, Belgium, and Germany?

Based on these research questions, the following hypotheses were tested:

Hypothesis 1

There is no significant difference in the effectiveness of the i-DREAMS interventions across different phases of the field trials.

Hypothesis 2

There is no significant difference in the effectiveness of the i-DREAMS interventions across the UK, Belgium, and Germany

Sample: 48 Belgian and 49 UK and 25 German car drivers

Analysis

- **Descriptive comparison:** Changes in number of normalized events (i.e. events/100km) for the two highest risk stages of STZ
- **Statistical tests:** Repeated measures ANOVA (if normally distributed), otherwise equivalent non-parametric Friedman test.
- **Statistical model:** *Generalized Linear Mixed Model (GLMM)*
- Individual driver level analysis to investigate the differences (not detectable in group level analysis).

Results

Total events

- The UK's drivers generated more events/100 km
- Consistent reduction pattern over the subsequent intervention phases for the UK only
- Investigation further revealed that the **higher number of** events for UK drivers is mainly attributed to the higher number of trips in urban areas, which means higher interactions with other vehicles.

Table 2 Total events/100km with respect to intervention phases

	Belgium (n=48)	UK (n=49)	Germany (n=25)
hase			

Dandom Efforte

User ID (Variance)	0.281	0.445	0.294

* Phase 1 as reference for phases and 'BE' as reference for countries

- The events per 100km decreased consistently from Phase 1 (baseline) to each of Phase 2, Phase 3 and Phase 4 for the combined case
- Country comparison indicates more events in the UK compared to Belgium for all cases
- Variance between drivers was found more for avoidable accident stage than the danger stage

Differences between drivers

- Type A: Outcome is improved
- Type B: Outcome is not improved

Table 5 Drivers type and summary statistics

Country	Type A (outcome	e improved)	Type B (outcome not improved)			
	No. of Drivers	Percentage Decrease	No. of Drivers	Percentage Increase		
BE	31 (65%)	-17.0%	17 (35%)	26.1%		
UK	37 (76%)	-23.5%	12 (24%)	10.8%		
GER	16 (64%)	-26.4%	9 (36%)	22.2%		

- Belgium and Germany: (around) Two thirds showed improved outcomes
- UK: Three quarters showed improved outcomes

Method Longitudinal field operational test Baseline Phase 1 - Duration: 4 weeks Real-time interventions Phase 2 - Duration: 4 weeks Real-time interventions & smartphone app Phase 3 - Duration: 4 weeks Real-time intervention & smartphone app Phase 4 & gamification - Duration: 6 weeks

Figure 1 Intervention phases of the i-DREAMS project

Naturalistic driving data collected concerns a variety of data about:

Safety promoting goals (SPG)

	Events/100km*	SD	Events/100km	SD	Events/100km	SD
1	180.8	94.5	275.3	249.6	152.2	153.7
2	185.7	97.5	261.3	223.8	151.0	114.7
3	188.0	107.0	251.0	225.2	137.3	123.6
4	177.2	105.6	240.7	219.2	149.6	126.2

*Events/100km are mentioned as total events occurred for all risk indicators (POs) in danger and avoidable accidents stages of STZ

Safety Promoting Goal Level Effectiveness

- UK drivers show improved behaviour in almost all SPGs
- Belgium drivers show improved behaviour for RS type events only.
- **For German drivers**, at this level results seems not very promising.
- Further separation of these events for danger and avoidable accident stages of STZ noted that for **German drivers speeding events/100km** belonging to avoidable accident stage was **decreased consistently** and that **decrease** is also **statistically significan**t.
- To summarise, the i-DREAMS interventions were effective not for all SPGs but for specific SPGs.

Table 3 Events/100km with respect to intervention phases

		Belgium (n=48)	UK (n=49)		Germany (n=25)	
SPG	Phase	Events/ 100 km*	p-value	Events/ 100km	p-value	Events/ 100km	p-value

Discussion & Conclusion

Research Question 1

- For combined sample, statistically **significant decrease** in events from Phase 1 to Phase $4 \rightarrow$ shows effectiveness of the i-DREAMS interventions
- The effectiveness holds for 'medium severity', 'high severity', 'total', 'vehicle control', 'speeding' and 'road sharing' events.
- Most significant results from Phase 3 to Phase 4 (when gamification elements were introduced)
- Greatest and most consistent impact on 'road sharing' events (data only available for Belgium and the UK).
- 'Vehicle control' events were least significantly impacted (no real-time warnings)

Research Question 2

- The **UK drivers** had the **largest number** of events and greatest impact on more 'risky' drivers compared to the other countries
- Little or inconsistent demographic differences across countries

Acknowledgements

The authors thank all project participants, partners and members of expert and user advisory boards.

Funding

Performance objectives (PO)

Table 1 SPG, PO and their interrelationship.

Safety Promoting Goals (SPG)	Performance Objectives (PO)
Vehicle Control (VC)	Acceleration, Deceleration, Steering Control
Speed Management (S)	Speed
Road Sharing (RS)	Headway, Illegal Overtaking, Lane
	Discipline, Forward Collision Warning, and
	Pedestrian Collision Warning
Driver Fitness	Fatigue and Handheld mobile phone use
	(during driving)

Three stages of STZ:

- Normal Driving (low severity level): No real-time intervention
- Danger (medium severity level): A real-time intervention via an alert
- Avoidable Accident (high severity level): An intrusive warning signal (either or not accompanied by an instruction)

	1	101.5		136.7		96.8	
VC	2	107.9	0 070	131.7	0.060	94.1	0.691
	3	109.9	0.070	130.7		89.5	
	4	102.7		130.6		97.3	
	1	65.4		119.7			
RS	2	62.3	0.017	113.8	<0.001	N1/A	
	3 61.8	0.017	106.0	<0.001	IN/A		
	4	59.4		96.2			
	1	13.9		18.8		55.8	
S	2	15.5	0.122	15.8	-0.004	56.8	0.218
•	3	16.2		14.3	NU.UU I	47.9	
	4	15.1		13.9		52.3	

*Events/100km are mentioned as events occurred for all risk indicators (POs in specific SPG) in danger and avoidable accidents stages of STZ

Generalized linear mixed effect models (GLMM)

- Dependent variable = Events/100km (danger and avoidable) accident stages of STZ, only danger STZ and only avoidable accidents STZ)
- Independent variables = **Phase** (Phase 1 as reference) and **Country** (BE as reference)

This project was funded by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 814761.

Contact Information

Muhammad Wisal Khattak

Address: Hasselt University, Transportation Research Institute (IMOB), Martelarenlaan 42, 3500 Hasselt, Belgium Email: muhammadwisal.khattak@uhasselt.be Web: https://www.uhasselt.be/en/instituten-en/transportation-researchinstitute-imob

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101056931