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Abstract 
Road safety is a subject of significant concern and substantially affects individuals across 
the globe. Thus, real-time, and post-trip interventions have gained significant importance 
in the past few years. The European Union’s Horizon 2020 project i-DREAMS has also 
directed its attention towards this aspect. In particular, i-DREAMS aimed to define, 
develop, test, and validate a ‘Safety Tolerance Zone (STZ)’ in order to prevent drivers 
from risky driving behaviors using interventions both in real-time and post-trip. This study 
aimed to analyze different classification techniques and examine their ability to identify 
dangerous driving behavior based on a dual-approach study. The analysis was based on 
the investigation of important risk factors such as average speed, harsh acceleration, 
harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In 
order to achieve the objective of this study, significant data were collected through a 
driving simulator as well as a naturalistic driving experiment. Based on the data collected 
for each of the two approaches, several classification models were developed, analyzed, 
and compared, according to their performance. To that end, four classification algorithms, 
namely Support Vector Machines (SVMs), Random Forest (RFs), AdaBoost, and 
Multilayer Perceptron (MLP) Neural Networks were implemented. The proposed methods 
were compared based on different evaluation metrics and it emerged that RFs and MLPs 
outperformed the rest of the classifiers with 84% and 82% overall accuracy, respectively, 
while the maximum average speed of the vehicle was found to be the most crucial 
predictor for identifying the driving time at each safety level. Risky and aggressive driving 
behavior is a worldwide critical social and public health concern. The findings of this 
research could provide essential guidance for decision-makers to initiate concrete steps 
for engineering applications in road safety management. 
 
Keywords: Driving behavior, Random Forests, Machine Learning models, Classification 
algorithms, Driving Simulator Study, Naturalistic Driving Study 

1. Introduction 
 

Despite global and extensive efforts to mitigate crashes, casualties have not disappeared 
- with significant social consequences constantly emerging. According to the World Health 
Organization (WHO), 1.3 lives are lost each year due to road crashes, becoming the 8th 
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cause of death for all ages and the 1st for people aged between 5-29 years old (WHO, 
2018). Considering the evolution in transport and the complexity of modern transportation 
systems, an opportunity is offered for safer driving behavior, which of course poses 
certain challenges and risks. In line with this direction, the WHO and the European Union 
have set a 50% reduction goal in road crashes for the decade 2021-2030 focusing on 
using new technologies.  

Driving behavior is a complex issue that is affected by a wide range of factors, including 
driver’s characteristics as well as environmental and traffic variables. However, human 
error stands out as the most significant contributor to road crashes (Staubach, 2009). 
Cognitive processes such as attention, perception, and decision-making each play an 
essential role in how drivers adapt to changing road conditions and make split-second 
decisions. Understanding these factors and their interrelationship is essential for 
developing effective road safety interventions and integrating emerging technologies to 
mitigate human errors and reduce the number of road crashes. Emerging technology 
systems can significantly reduce the likelihood of such collisions by reducing cognitive 
overload and thus removing human involvement in driving tasks (Khoury & Hussein, 
2023). 

Based on the integration of emerging technologies in the European Union's commitment 
to improve road safety and minimize road fatalities, the European H2020 project i-
DREAMS aims to define, develop, test, and validate a ‘Safety Tolerance Zone’ (STZ) 
(Michelaraki et al., 2021). Through a smart system, i-DREAMS aims to identify the level 
of ‘STZ’, by monitoring and evaluating risk indicators related to the complexity of the 
driving task as well as the ability to cope with the challenges posed by it, and thus support 
drivers to operate within safe boundaries. The STZ is classified into three risk levels: 
‘Normal’, ‘Dangerous’, and ‘Avoidable Accident’. The distinction between the three levels 
lies in whether the driver is operating with safety (i.e., ‘Normal’ level) or not (i.e., 
‘Dangerous’, ‘Avoidable Accident’ level). Levels ‘Dangerous’ and ‘Avoidable Accident 
refer to the high probability of collision, with the significant difference that in the case of 
‘Avoidable Accident’ the need for action is more urgent. 

Therefore, based on the above framework this paper aims to develop and evaluate 
different classification models, leveraging two distinct data sources: simulator data and 
naturalistic driving data. This dual-source methodology not only enhances the diversity 
and richness of the dataset but also allows for a comprehensive evaluation of machine 
learning models in both controlled and real-life driving conditions, thereby advancing our 
understanding of driver behavior across different contexts. 

The paper is structured as follows. In the beginning, an overview of this paper's objective 
and the gaps it seeks to fill is provided. This is followed by the description of the research 
methodology, encompassing the theoretical foundations of the models utilized. Moreover, 
the collection process (i.e., simulator and field trials) and the processing of the dataset 
are described. Finally, the results of the analysis are presented accompanied by relevant 
conclusions on the different data collection approaches and road safety in general. 
  



3 

2. Literature Review 
 

Driving Simulator Studies (DSS) and Naturalistic Driving Studies (NDS) are the two main 
approaches that have been extensively employed in driving behavior analysis research 
(Osman et al., 2019). These research methodologies have provided valuable insights into 
the multifaceted nature of risky driving behaviors and have become indispensable tools 
for understanding the factors that contribute to road safety challenges. A recent study 
(Wijayaratna et al., 2019) has examined the use of both methodologies to analyze the 
impact of mobile phone conversation on the task of driving. Results showed that DSS 
tend to reveal an increased risk of crash due to mobile phone use, while the NDS, 
suggested a reduction in crash risk. The benefit of each approach is different, and it would 
be helpful to compare them in order to draw comprehensive conclusions. For example, 
DSS offers a wide range of driving scenarios and requires less time to collect data in well-
controlled environments compared to field studies (Nasr Azadani & Boukerche, 2022). 
On the other hand, NDS has a higher degree of realism reflecting more accurately the 
natural driving situation (Wang et al., 2022). 

Due to their high accuracy, machine learning-based models are widely used in the field 
of road safety and are exploited to predict risky driving behavior. Given this context, recent 
studies utilized such models such as Random Forest (RFs; (Song et al., 2021)), Multilayer 
Perceptron (MLP; (Shangguan et al., 2021)), Support Vector Machines (SVMs; (K. Yang 
et al., 2021; Zhang et al., 2016)), eXtreme Gradient boosting (XGBoost; (Shi et al., 2019)), 
Decision Trees (DT; (K. Yang et al., 2021)), Gradient Boosting (GB; (Ghandour et al., 
2021)) and Logistic Regression (LR; (Papadimitriou et al., 2019)).  

Various methodologies have been proposed in recent studies to assess and predict risky 
driving behavior, each employing diverse approaches and algorithms. For instance, 
Shangguan et al. (2021) devised a framework encompassing feature extraction, 
clustering techniques, feature importance analysis, and the utilization of machine learning 
algorithms including RF, XGBoost, SVM, and MLP, demonstrating an accuracy exceeding 
85%. Similarly, Yang et al. (2021) investigated a driving simulator dataset, developed 
clustering techniques to distinguish the different levels, and applied three classification 
algorithms (i.e., SVM, Decision Tree, and Nave Bayes classifier), with the highest 
accuracy being 95%, to classify and evaluate different risk levels of driving behavior. 
Additionally, Shi et al. (2019) introduced a risk prediction framework, incorporating feature 
selection, risk level labeling, addressing imbalanced datasets, and employing an 
XGBoost classification model with an overall accuracy of 89%. 
 
Furthermore, Zhang et al. (2016) successfully classified driving behaviors by utilizing low-
level sensors, combining smartphone and OBD data, and applying an SVM algorithm, 
resulting in an accuracy of 86.67%. Another study by Papadimitriou et al. (2019) 
quantified the correlation between dangerous driving and mobile phone usage through 
logistic regression, with a marked accuracy of 70%. Lastly, Ghandour et al. (2021) 
classified driving behavior based on psychological states, employing machine learning 
techniques, and identified Gradient Boosting as the optimal method for level prediction 
within this context. 
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Therefore, based on the gaps in the literature, this research aims to gain deeper 
knowledge and understanding regarding the development of driver behavior identification 
models and the factors that affect it. Through the dual approach (i.e., Driving Simulator 
Study and Naturalistic Driving Study), a holistic overview of the topic is pursued. 

3. Data Collection 
 

For the purpose of the study, a simulator experiment and a naturalistic driving experiment 
were carried out in order to collect and analyze data from Belgian car drivers. The value 
of the two data sources is that they address driving behavior in controlled conditions and 
a specific environment (i.e., Simulator experiment) as well as in a real-world context (i.e., 
Naturalistic Driving experiment). Both approaches have certain limitations. While in the 
first case simulator data are difficult to apply to real-world conditions, on the other hand, 
the absence of experimental control in the context of natural driving (ND) data collection 
inherently limits the possibility of establishing unambiguous causal relationships between 
specific variables and road user behavior (van Schagen & Sagberg, 2012). 

Within the framework of the simulation experiment, and to determine the three safety 
levels (i.e., the dependent variable of the classification process), specific headway 
thresholds were applied (Garefalakis et al., 2022) based on the literature. Conversely, in 
the second approach of the Naturalistic Driving experiment, these thresholds were 
integrated into mapping the different safety levels during the driving task. The range of 
values for the headway corresponding to each safety level is: 
 

• ‘Normal’ Level: Headway > 2 sec 

• ‘Dangerous’ Level: Headway > 1.4 sec and Headway < 2 sec 

• ‘Avoidable Accident’ Level: Headway < 1.4 sec 
 
The variables collected for the analysis were the same in both approaches to ensure 
consistency. In addition, the variables that were finally evaluated were three, as shown in 
Table 1, following the process of feature selection and permutation feature importance. 
 
Table 1: Description of variables collected 

Variable Description Units Type 

Speed Vehicle speed Kilometers per hour Numeric 

Distance travelled Distance driving Meters Numeric 

Speed Limit Current speed limit Kilometers per hour Numeric 

 
The permutation feature importance technique calculates the prediction error by 
permuting the feature value. This approach severs the connection between the feature 
and the objective, allowing one to discern the model's dependence on the feature by 
evaluating its prediction error after the feature's value has been permuted (Molnar et al., 
2021). An added benefit of Permutation Feature Importance is its time-saving aspect, as 
it eliminates the need for model retraining, potentially saving a significant amount of time. 
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Moreover, this method offers another advantage by taking into account all interactions 
with other attributes. 

3.1 Simulator Experiment 
The simulator experiment was carried out with the contribution of 36 drivers and was 
based on principles that have been comprehensively documented in the literature (Fisher 
et al., 2011; Tipton et al., 2014). The experiment was implemented based on three 
scenarios as shown in the Τable 2. 
 
Table 2: Different scenarios applied during the driving simulator experiment. 

Scenario Road Section Number of lanes Speed Limits 

A 
0-6300 m 1x1 70 km/h 

6300-11300 m 2x2 90 km/h 
11300-16500 m 2x2 120 km/h 

B 
0-6100 m 2x2 90 km/h 

6100-12000 m 2x2 120 km/h 
12000-18200 m 1x1 70 km/h 

C 
0-6000 m 2x2 120 km/h 

6000-11000 m 2x2 90 km/h 
11000-17200 m 1x1 70 km/h 

 
Each participant performed three separate drives. 

• Drive 1: No interventions 

• Drive 2: Interventions 

• Drive 3: Interventions with modifying condition 

3.2 Naturalistic Driving Experiment 
The design and implementation of the on-road experiment was conducted following 
certain principles from the existing literature focusing on testing interventions to assist 
drivers in operating within safe boundaries. The ND experiment was divided into four 
phases and focused on monitoring driving behavior and the impact of real-time 
interventions (e.g., in-vehicle warnings) and post-trip interventions (e.g., post-trip 
feedback & gamification) on driving behavior. The description of the four phases as well 
as the drivers and trips that were collected are outlined in the following Table 3: 
 
Table 3: Description of each Phase. 

Phases Description Drivers Trips 

Phase 1 Monitoring (baseline measurement; no interventions) 39 1,173 trips (23,725 minutes) 

Phase 2 In-vehicle intervention 43 1,549 trips (31,414 minutes) 

Phase 3 Post-trip feedback on the smartphone 51 1,973 trips (40,121 minutes) 

Phase 4 Post-trip feedback on smartphone + gamified web platform 49 2,468 trips (52,077 minutes) 

4. Methods 

4.1 Classification Algorithms 
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According to the literature review, four classification models were applied to achieve the 
objective of this research, namely (i) Support Vector Machines, (ii) Random Forest, (iii) 
AdaBoost, and (iv) Multilayer Perceptron. 

4.1.1 Support Vector Machines (SVM) 
SVMs are supervised machine-learning models used for data analysis, and pattern 
detection and apply to both classification and regression problems (Roy et al., 2015). The 
context of the SVM model is to develop a hyper-plane in a multidimensional space to 
separate different class boundaries (Ghosh et al., 2019). The key advantage of SVMs is 
that they can handle high-dimensional datasets (Xia, 2020). Utilizing the hyperparameter 
tuning technique called GridSearchCV from the scikit-learn Python library, the optimal 
values for SVMs hyperparameters were emerged as: (a) kernel type = 'rbf'; (b) 
regularization parameter C = 50; and (c) kernel coefficient gamma = 'scale'. 

4.1.2 Random Forest (RF) 
The RF classifier is an ensemble approach that trains several decision trees in parallel 
employing bootstrapping and aggregation, often known as the bagging technique (Misra 
& Li, 2020). The bootstrapping technique concerns simultaneously training multiple 
decision trees using different subsets of the dataset. By aggregating the outcomes of 
these individual decision trees, the final decision is reached. Additionally, RF offers the 
advantage of overcoming the common overfitting problem associated with decision trees 
(Shangguan et al., 2021), making it a preferred choice for identifying risky driving 
behavior. In this case, Grid Search was also applied and the optimal hyperparameters 
were: (a) the number of estimators/trees of the forest = 200 and (b) the function to 
measure the quality of a split (criterion) = ‘entropy’. 

4.1.3 AdaBoost 
The AdaBoost algorithm is extensively used due to its high speed, low complexity, and 
good compatibility (Liu, 2021). AdaBoost represents an ensemble technique that trains 
and deploys sequential trees using the boosting methodology, which involves linking a 
series of weak classifiers, each of which aims to improve the classification of samples 
previously misclassified by the previous weak classifier (Misra & Li, 2020). This approach 
effectively combines these weak classifiers into a series to produce a strong classifier. 
The ideal maximum number of estimators was determined to be 500 using 
GridSearchCV. 

4.1.4 Multilayer Perceptron (MLP) 
The MLP is a feed-forward neural network complement and consists of three types of 
layers: (i) the input layer, (ii) the output layer, and (iii) the hidden layer (Abirami & Chitra, 
2020). The main advantage of the MLP algorithm is its ability to handle non-linear 
problems with large datasets while providing quick predictions. Applying the Grid Search 
method for MLP resulted in the following six optimal hyperparameters: (a) number of 
hidden layers = (500, 500, 500,), (b) activation function = "relu" and (c) alpha parameter 
of the regularization term = 0.0001. 

4.2 Multiclass Classification 
The three-level classification of driving behavior (i.e., "Normal", "Dangerous" and 
"Avoidable Accident") is a multi-classification problem. In order to assess the 
effectiveness of classification algorithms, the dataset is initially segmented into training 
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and testing datasets. The training dataset is structured as Xtraining = {(xn, yn), n = 1, N}, 
with xn representing predictor variables and yn taking values from the set {0, 1, 2} as the 
target variable. Through model training, it gains the capacity to accurately classify new 
data instances. The classification model's performance can easily be demonstrated with 
a confusion matrix, where one axis represents the actual class and the other denotes the 
predicted class. The results showcased in this paper were achieved by employing 10-fold 
cross-validation. The metrics utilized to evaluate the models are accuracy, precision, 
recall, f1-score, and false alarm rate defined by Equation (1) to Equation (5) 
 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (1) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

f1-score = 
2𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)𝑥 (𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+(𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 

False Alarm Rate = 
𝐹𝑃 

𝐹𝑃+𝑇𝑁
 (5) 

 
where True Positives (TP) denote instances from class i that were classified correctly 
within it. True Negatives (TN) represent instances not belonging to class i, correctly 
excluded from it. False Positives (FP) indicate instances not belonging to class i but 
incorrectly classified within it. False Negatives (FN) signify instances from class i that 
were erroneously not classified within it. 

5. Results 
 

This study aimed to comprehensively assess the performance of four machine learning 
classifiers (i.e., SVM, RF, AdaBoost, and MLP) across two distinct datasets (i.e., 
Simulator experiment dataset and Naturalistic Driving experiment dataset). Due to the 
phenomenon of "accuracy paradox" (Valverde-Albacete & Peláez-Moreno, 2014) the 
evaluation was conducted based on several metrics, such as accuracy, precision, recall, 
false alarm rate, and F1-score, as otherwise the evaluation of accuracy alone would be 
misleading. 

Due to the fact that risky driving is less common than normal driving and since the 
classification algorithms operate on the assumption of equal distribution of samples, the 
Adaptive Synthetic (ADASYN) (He et al., 2008) technique was applied to address the 
imbalanced problem. 

5.1 Classification Models on Simulator Experiment 
Considering Figure 1 and Table 4, overall, the four algorithms had insightful and 
satisfactory results in terms of accuracy and recall. Among the different algorithms, RF 
stands out with the highest accuracy of 84.00%, indicating its ability to accurately classify 
driving behaviors in a controlled environment. RF also achieves a well-balanced precision 
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(59.41%) and recall (70.27%), demonstrating its robustness and versatility. The MLP 
model also performs admirably with an accuracy of 81.28%, highlighting its capability in 
this simulation framework, balancing precision (57.51%) and recall (72.04%) effectively, 
achieving a competitive f1-score (61.79%). 

 

Figure 1: Classification metrics of the four machine learning models 

Table 4: Classification metrics for the Simulator Experiment dataset 

Classifier Accuracy Precision Recall False Alarm 
Rate 

f1-score 

SVM 68.67 % 51.35 % 74.72 % 12.47 % 53.22 % 
RF 84.00 % 59.41 % 70.27 % 11.47 % 63.42 % 

AdaBoost 75.08 % 52.31 % 70.71 % 11.30 % 55.87 % 
MLP 81.28 % 57.51 % 72.04 % 11.37 % 61.79 % 

 
Furthermore, the AdaBoost model achieves reasonable accuracy (75.08%) but has lower 
precision (52.31%) and recall (70.71%) compared to RF and MLP. While the SVM shows 
a strong recall of 74.72%, indicating its ability to effectively capture true positive instances, 
it comes at the cost of lower precision (51.35%), resulting in a trade-off between recall 
and precision. 

5.2 Classification Models on Naturalistic Driving Dataset 
The results of the naturalistic driving experiment were similar to those of the simulation 
experiment. RF achieved an adequate accuracy of 75.00% and a balanced precision 
(56.77%) and recall (66.28%) demonstrating a robust performance in classifying real-
world driving behavior. In the Naturalistic Driving Dataset, MLP maintains its strong 
performance with an accuracy of 73.26% but faces challenges with lower accuracy 
(52.14%) and recall (56.57%) which is reflected in the f1-score (52.65%).  



9 

 

Figure 2: Classification metrics of the four machine learning models 

Table 5: Classification metrics for the Naturalistic Driving Experiment dataset 

Classifier Accuracy Precision Recall False Alarm 
Rate 

f1-score 

SVM 72.05 % 55.51 % 66.31 % 13.39 % 56.37 % 
RF 75.00 % 56.77 % 66.28 % 12.97 % 59.03 % 

AdaBoost 76.76 % 57.91 % 65.81 % 11.47 % 60.19 % 
MLP 73.26 % 52.14 % 56.57 % 16.66 % 52.65 % 

 
AdaBoost, scored the highest accuracy (76.76%) maintaining a competitive performance 
consistent with the simulator data, with a balanced precision (57.91%), and recall 
(65.81%) achieving the highest f1-score (60.19%). Finally, SVM maintains its proficiency 
in recall (66.31%), showing consistency in capturing true positives. However, similar to 
the Simulator Experiment, this is accompanied by lower precision (55.51%). Also, SVM 
achieves an accuracy of 72.05%, which is relatively competitive but falls behind compared 
to the other models. 

6. Discussion 
 

Overall, the findings of this study provided valuable insights while supporting its objective, 
which was the investigation of various classification models utilizing two distinct data 
sources. These findings are essential for advancing the understanding of driving behavior 
across various contexts, ultimately contributing to the development of safer and more 
efficient transportation systems.  

The evaluation of the four machine learning classifiers (SVM, RF, AdaBoost, and MLP) 
revealed varying performance across the two datasets. In the simulator experiment, RF 
emerged as the top-performing model with an accuracy of 84%, demonstrating its ability 
to accurately classify driving behavior in a controlled environment. Following the MLP 
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model which also performed well scoring a notable 81.28% accuracy. Regarding, 
AdaBoost and SVM models, they underperformed compared to the other two 
underperformed compared to the other two, displaying a lower weighted accuracy and 
recall. In the naturalistic driving dataset, RF and AdaBoost maintained robust 
performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced 
precision and recall. Furthermore, MLP while still effective, faced challenges with lower 
accuracy (73.26%) and recall (56.57%) compared to the simulator experiment. Finally, 
SVM, although competitive, lagged behind other models. These performance variations 
underscore the importance of selecting the right model based on data characteristics and 
precision-recall trade-offs, essential for real-world applications. Since, in the context of 
the current study, it is more dangerous to misidentify driving behavior as less dangerous, 
the recall metric is the most significant metric to consider. Thus, evaluating the results of 
both approaches (i.e., the Driving Simulator experiment and the Naturalistic Driving 
experiment), the RF model emerged as the most efficient one. 

Based on comparable driving behavior studies, the findings of this study were very similar 
to those described in the literature. For instance, J. Yang et al. (2023) achieved an 80% 
accuracy, which is relatively close to the accuracy of the two approaches (84% and 75%), 
as well as better performance in terms of False Alarm Rate. However, in terms of recall 
the RF model of this research underperforms by 13% (for the simulator experiment) and 
17% (for the naturalistic driving experiment). In another study by Song et al. (2021), the 
RF classifier exhibited a remarkable 90% accuracy, surpassing the performance in this 
study. This discrepancy may be attributed to differences in input variables, as this study 
focused on driving behavior characteristics while Song et al. (2021) considered variables 
such as gender, age, and driver perception. In contrast to the outcomes of this research, 
findings from the literature regarding the SVM classifier showed higher performance, 
especially with K. Yang et al. (2021) having an outstanding accuracy rate of 95%. 
Additionally, in contrast to the research of (Shangguan et al., 2021), this study's accuracy 
metric findings for the MLP classifier were identical. Nonetheless, the MLP classifier that 
was developed in previous literature exhibited better performance than the one employed 
in this study, with a notable 20% difference in the f1-score between them. Finally, 
regarding the AdaBoost model, it showed promising findings for real-world data. Since its 
application is limited in the literature, to the author’s knowledge, in the field of road safety 
it offers a robust approach. 

In conclusion, the findings of this study not only contribute to a better understanding of 
driving behavior in various circumstances, but they also show the crucial importance of 
model selection and data features in establishing accurate classifications. The findings 
highlight the RF model's effectiveness, particularly in controlled environments, while also 
shining light on AdaBoost's potential for real-world driving data analysis. 
 

7. Conclusions 
 

The research aimed to develop and evaluate four classification models on two distinct 
data sources (i.e., Simulator Experiment and Naturalistic Driving Experiment). This 
methodological approach has facilitated a comprehensive evaluation of machine learning 
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models within controlled and real-life driving contexts. Consequently, this study has 
significantly contributed to advancing the understanding of driver behavior across diverse 
scenarios (i.e., controlled, and real-world) as well as the ability of machine learning 
models to effectively capture driving behavior, as well as the performance of various 
models in the two distinct experiments. RF model emerged as a strong performer, offering 
a balanced approach between precision and recall in both simulated and real-world 
driving scenarios. Given that misidentifying dangerous driving behavior as less dangerous 
would have serious implications for road safety, recall is a key metric with SVMs 
outperforming in capturing true positive instances in both datasets.  
 
The findings of this study offer valuable guidance to researchers and practitioners in 
model selection for driving behavior classification tasks. Considering the dual-source 
methodology, drivers' risky behavior can be assessed by comparing both simulator and 
field-trials experiment data, highlighting key road safety factors. 
 
Future research could examine the usefulness of deep learning (DL) techniques on this 
matter, such as Long Short-Term Memory (LSTM) (Banan et al., 2020; Chen et al., 2022). 
DL models are increasingly utilized due to their ability to capture complex temporal 
dependencies of features, thus potentially improving the accuracy and predictive 
capabilities of driver behavior classification models. Furthermore, the examination of 
additional data sources such as Naturalistic Driving experiment dataset involving drivers 
from different countries or transport modes, would assist in the comprehensive 
understanding and evaluation of the models utilized. 
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