Q’?

AL X-T4-3

™

-
>
-
o
> &
L
o
o

5

3

Dimitrios l. Tselentis, Thodoris Garefalakis, Dimitrios Nikolaou, Eva Michelaraki, George Yannis
National Technical University of Athens, Department of Transportation Planning and Engineering, Athens, Greece

ol

Methodology Microscopic Risk Predic
Accurate prediction of driving risks is crucial for urban road d Long Short-Term Memory (LSTM) networks were employed to predict driving risk by modeling sequential data. , |
safety. With traffic crashes resulting in significant human and Both uni-directional and bi-directional LSTMs were explored, where the former processed data in a single The performance of the LSTM models was evaluated using Table 2: performance metrics for the LSTM models
economic losses globally, real-time risk estimation is vital. temporal direction, and the latter considered both forward and backward temporal sequences to enhance the accuracy, precision, recall, and AUC. These metrics provided a mw
. . | . - - comprehensive assessment of the models' ability to predict ey . . e
Traffic modeling is approached at three levels: macroscopic contextual understanding of risky events. rivi . | ) . 1 B84% 6% 22% 5%
. . . . . riving risk events, ensuring robust evaluation for real-time ; 33% 87% 10% 719
(overall flow), microscopic (individual driver-vehicle behaviors), r — e Jssesements : o S B o
and mesoscopic (group interactions). Microscopic models, d The models utilized driving metrics such as vehicle type, —:‘\i: — | | = - | ; 85(;; 850/: 250/: 77(;:
Involving car-following and lane-changing, help identify and speed, longitudinal acceleration, relative distance, and = ! = e > S Table 2 SUMmarizes the performance metrics for the tested LSTM 5 840, 200, 189, 240,
mitigate risky behaviors like frequent lane changes. time-to-collision for the ego vehicle and its closest — == : 2 m.odel.s. B|-d|rect|onf:l| models gener?l.ly outperformed uni- 6 86% 86% 27% 7%
Macroscopic models use aggregated data to reveal broader neighbors. Target variables included lane changing, ) v 5 N d'T?Ct'O“al “?0d9|5 in terms of precision, likely due to their 7 85% 94% 18% 76%
safety trends, such as speed dispersion correlating with speeding, harsh acceleration, and harsh braking. Figure | ability to consider future states. 8 82% 520% 27°% 69°%
collision risks. Integrating these two scales offers a more 2 depicts the ego vehicle (green) and surrounding vehicles mmens | SPACSSSCHOR For example, Model 7, a bi-directional LSTM with three layers and ? o1 377 Vo otk
comprehensive understanding of road safety, yet such (black), whose data were used to estimate microscopic Iﬁ T%mﬁ__,/ﬁ 40% dropout, achieved the highest precision of 94% but had a 1:) :;; ;20// Z; 2:;
Integration, especially using new technologies like drones, risks. — oistance - lower recall of 18%, indicating it was highly accurate when . 820/: 720/: 2/ 65(;:
remains underexplored Figure 2: Ego Vehicle and Spatiotemporal Risk Aggregation identifying speeding events but struggled to detect all 13 829 68% 3% 66%
Objective d The LSTI\/I .models featured a robust architecture with at least two layers using 'tanh’ activatjon f.unctic?ns,.LZ gfg;ggﬁcf; %;ije;ng thsrlligg’lcl;scﬁlic;?\aelrLrSeTc:l\el/ll] rc])?‘dzglegs};wtclx/vliﬁge;
regularization, and dropout rates over 40% to prevent overfitting. The output layer used a sigmoid activation . ’
. . . , : : oL - : - : trade-off between precision and recall.
This study utilizes drone-based data to capture high-resolution function for binary classification. Models were trained with a batch size of 32 for up to 400 epochs, applying early
driver behavior and traffic patterns on an urban arterial. stopping to halt training when validation loss stopped improving. Configurations were optimized by varying layers,
Leveraging these insights, Al-driven models are developed to dropout rates, neurons, and optimizers (Adam and SGD). Macroscopic Driving Ri
estimate traffic risk probabilities at both microscopic and | O The LSTM analyzed driving data through a 10-second observation window (X), a 1-second reaction window (Y)
macroscopic levels, addressing research gaps and offering a for driver response exclusion, and a 2-second prediction window (Z) to flag risky events. As shown in Figure 3, Microscopic driving risk probabilities predicted by _ . _ o
more holistic, real-time perspective on road safety the model used sequential data from the observation window (X) to predict events in the prediction window (2). LSTM models were aggregated to assess risk at the Time evolution of relative macroscopic risk
I The input data shape was (250, 35, 69505), representing observations, features, and snapshots. road section level. Risk probabilities of individual 100%
Data Overvi vehicles and their interactions within specific road 90%
. RS segments were analyzed over 102-second intervals. 32 80%
The pNEUMA dataset, collected in Athens, Greece (2018), 10 seconds Ysccond 2 saconds This transformed microscopic predictions into a S 70%
consists of high-frequency (25Hz) vehicle trajectory data Total window of 13 seconds macroscopic view, offering insights into overall risk S 0%
captured by ten drones over five days. As shown in Figure 1, the Figure 3: Time-Series Windows for Driving Metrics and Event Prediction profiles. % 50%
drones covered a 1.3 km,z area with over 100 kilometers of . . ) Model 7 initially estimated microscopic risk, focusing ° 40%
roadways and nearly 100 intersections, capturing nearly half a MlCl‘OSCOplC Risk Prec on speeding events at the vehicle level, and 2 30%
million vehicle trajectories. This study focused on Panepistimiou aggregated this data at the road section level. Future < 00
Stre’ flv_ln urte”al N ens (.., Block 2,3 and 5). Table 1: Configuration of the LSTM tested for the prediction of speeding events research should expand this approach to include lane . 10%
s ”"'-,’ el The dataset was | LSTM models were developed to predict c 8 2 &8 | 2 & g changes, harsh acceleration, and braking, considering 0%
T RIS @y restructured into  0.04s|  microscopic driving risks, specifically focusing 532 3EEF | 5z €| 5 all road users. 10 20 30 40 S0 6 /40 8 90 100 110
' PR ntervals, and ' on speeding events. Models included uni-  EEEEEEEEAIN-RCE S NCE-S NI, a— LI Road segments were divided, and risk probabilities Time (seconds)
Panepistimiou lanes were| and bi-directional configurations with 2 Ui 2 50% @ 16 : Adam 1E-4 64 50 were summed over time to generate segment-specific
TR mapped as polyg.o.ns.for varying layers (2-3), dropout rates (40-50%), 2 g: g 28(2 gi ;g : ﬁgzm Ej gj ?80 scores. Aggregated risk data, normalized and Figure 3: Evolution of aggregated macroscopic risk in time for a specific section
SERRe accurate positioning. | neurons (16-128), and optimizers (Adam and 5 8 5 s% 32 16 16 Adam B4 64 50 visualized in Figure 4, highlight the variation in driving of Paneptstimiou street for 100 seconds
T 5 A Three dataframes were  SGD). Uni-directional models processed 7 & T T et s i 4 ot 5 risk for a specific road section across time
S SR R e developed  and  merged sequences in a single direction, while bi- SGD
GO IRIE CRONEEESSHSSENE into a unified dataframe: directional models captured both past and 8 8 3 4% &4 32 32 oomeo00r, B384 -
Figure 1: Blocks covered by each drone of the swarm future contexts, offering potentially richer nesteyrov.=FaIs’e) COHCIUSIOHS
. . SGD
Dataframe Dataframe Dataframe insights and improved accuracy. 9 g 3 4% 32 18 5 (momentum=06, -, 5y g “ LSTM-based modeling shows strong potential for real-time driving risk prediction, demonstrating effectiveness at
Vehicle Metrics La“e'sﬂngj;T’afﬁc Traffic Events Bi-directional models were . expected to ﬁiﬁf‘e{()ﬁ”ﬁf@; both microscopic and macroscopic levels when combined with drone-collected data.
raareastod data forveticte pare. [ et metrice for snch notvaon et B risky o events. setine perform better by leveraging temporal s < Bi-directional LSTM models offer slightly better precision than uni-directional models due to their ability to capture
(following and leading vehicles) il every 0.04s timeframe, including: [l thresholds for safety indicators: dependencies in both directions, which is 108 Bi 2. |40% |64 132 - g@g:ye%%rgom B4 |64 60 future states, but both configurations still struggle with low recall, indicating difficulty in identifying all true risky events.
f”‘_’r::k":;‘”“s AEHEnG « Average vehicle speed = Thiesholds used included: critical for predicting sequential behaviors nesterov=True) <» Drone-collected traffic data provides a richer, more dynamic perspective compared to traditional static or vehicular
« Position by = 21 . Hreh beaking: 48 i such as harsh braking or speed changes | 0 (Srr?o[r)nentum=0.5, data, enabling more comprehensive risk assessments.
! spoed :;‘::s'i;‘;ﬁﬁ;j:;’ehic'eﬁ i e o A based on both past and future contexts. As i B S L A ' decay=00005 L A » Further refinement and integration of additional data sources - including traffic, infrastructure, environmental factors,
; Longhudnal sccelerson o « Lane change detection was shown in Table 1, the models were designed mosterovThue) and other road users - can enhance accuracy and generalizability.
« Time-to-Collision (TTC) L (vehih) s S V\;I]:c 4 varying CompIeX|ty O eyaluate their 12 B 3 4% 128 64 64 g;‘g;“ye:%“ggggfs 1E4 256 200
FESUSITEAN Ve et e e Cenomonee, 1 captnng o these witorTus Acknowledgments
. ‘, Where: ¥ speed of the i-th vehicle (km/h), z
posion L g e . 0 A L 16 ocaotuns, T4 @ 400 Tneuma $8 The authors would like to acknowledge the use of the pNEUMA dataset in this study — open-traffic.epfl.ch
nesterov=True)

Eva Michelaraki, PhD"; Research.Associate NIUA.
Department of Transportation Planning and Engineering

Email: evamich@mail.ntua™gr ; TRBAM -25-0081 7

Website: hitps://www.nrso.ntua.qr/p/evamich



mailto:evamich@mail.ntua.gr
https://www.nrso.ntua.gr/p/evamich/

