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Introduction
➢ Road crashes claim 1.3 million lives annually, the leading cause of 

death for those under 29 and among the top 10 globally.

➢ IVORY framework.

• European Union’s Horizon Europe research and innovation programme Marie 

Skłodowska-Curie Industrial Doctorates (grant No 101119590).

• It develops fair and explainable Artificial Intelligence (AI) to analyze driver 

behavior, predict crashes, and enhance road safety while sharing knowledge.

• DC9 focuses on creating an AI framework to analyze road safety KPIs, predicts 

crashes, and evaluates the scalability of models primarily across spatial.

➢ Traditional crash prediction relies on econometrics; now enhanced by 

Machine Learning (ML) & Deep Learning (DL), with Graph Neural 

Networks (GNNs) extend DL to graph-structured data.

https://ivory-network.eu/
https://ivory-network.eu/
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OSeven Telematics Data
➢ OSeven Telematics provided telematics data collected via smartphone 

hardware sensors to monitor driver behavior.

➢ All trips are anonymized and compliant with Greek and 

European personal data protection regulations (GDPR). 

➢ Raw data are processed by proprietary machine 

learning algorithms. Reliability is validated against 

OBD data, on-road tests, simulators, and literature 

benchmarks.

➢ Selected features: geographic coordinates, 

smoothened speed, and binary flags for speeding, 

mobile usage, harsh acceleration, and harsh 

braking.
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OpenStreetMap

➢ A free, editable global map created by volunteers 

and released under an open-content license.

➢ The previous dataset defines a coordinate bounding 

box used to extract a structured graph from 

OpenStreetMap via the OSMnx Python library.

• Study area: urban road network in Athens, Greece.

➢ From the extracted graph, node and edge features 

were saved into two separate datasets.

• These datasets were cleaned and preprocessed by 

removing irrelevant columns and ensuring data quality 

(e.g., handling duplicates and missing values).
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Telematics Aggregation

➢ Telematics features were aggregated to OSM nodes using summation or averaging 

within a 50-meter buffer.

➢ Each raw telematics point was matched to its closest edge, and features were 

aggregated per edge similarly to the node-level process.

Features Description

Street_Count Number of streets connected to the intersection 

SmoothenedSpeed Average speed of vehicles near the node

SpeedingFlag Count of speeding events near the node

Mobile_usage Number of instances of phone usage near the node

Harsh_acc Number of harsh acceleration events near the node

Harsh_brk Number of harsh braking events near the node

Trips_count Number of trips recorded near the node 

➢ The number of trips was calculated 

for each node and edge as exposure 

metric and the street_count attribute 

from OSM was added.

➢ Not all nodes/edges contain 

telematics data—coverage depends 

on trip paths.



This project has received funding from the European 

Union’s Horizon Europe research and innovation 

programme under grant agreement No 101119590

Clustering with K-means
➢ Given a dataset of points {𝑥1, 𝑥2, … , 𝑥𝑛}, K-Means aims to partition them into 𝐾, 

clusters {𝐶1, 𝐶2, … , 𝐶𝑘}, by minimizing the total within-cluster sum of squared 

distances:
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Where 𝜇𝑘 is the centroid (mean) of cluster 𝐶𝑘 , and ||𝑥𝑖 − 𝜇𝑘||2 is the squared 

Euclidean distance.

➢ K-Means: efficient and widely used. 

▪ Linear time complexity, fast convergence, low memory use. 

▪ Easy to implement and interpret, using clear centroids and simple assignments.

▪ It is sensitive to initial centroids (can converge to local minima).
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Choosing the Optimal Number of Clusters (K)
➢ Elbow Method

• Plots Within-Cluster Sum of Squares (WCSS) against 𝐾 to identify the 

"elbow point“ where adding more clusters no longer significantly reduces 

WCSS.

• This point indicates a good trade-off between model complexity and 

explained variance.

➢ Silhouette Score

• It measures how well a data point fits within 

its own cluster compared to other clusters.

Average silhouette score quantifies 

overall cluster cohesion and separation.
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Artificial Neural Networks
➢ Inspiration: Modeled after the structure of the human brain, consisting of 

layers of interconnected neurons.

➢  Structure:

▪ Input layer receives raw data.

▪ This data pass through one or multiple hidden layers that 

transform the input into data that is valuable for the 

output layer. 

▪ The output layer produces the predicted result based on 

the transformed information from the hidden layers.

➢  Key Concepts:

▪ Activation functions introduce non-linearity.

▪ Backpropagation updates parameters to minimize loss.

▪ Loss Function guides learning, depending on the task.
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Introduction to GNNs
➢ GNNs are specialized artificial neural networks that are designed for 

tasks whose inputs are graphs.

➢ GNNs can be used to learn node embeddings: compact 

vector representations capturing each node’s structural 

role, neighborhood context, and features.

➢ They encode graph-structured data by leveraging 

topological relationships rather than flattening the 

graph into vectors.

➢ Advancements include Graph Convolutional 

Networks (GCN) using convolution operations, and 

Graph Attention Networks (GAT) applying 

attention mechanisms.
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Attention-Based GNNs
➢ The GAT model is a novel neural network architecture leveraging 

attention mechanisms.
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➢ It is a specialized form of GCN that improves how 

neighbor information is aggregated by learning 

attention weights dynamically.

➢ A simple neural network with two GAT layers has 

been defined.

• Leverages attention coefficients (𝛼𝑖𝑗) to weigh neighbors 

differently and to incorporate both edge features and 

neighboring nodes.

• Using a multi-head attention (𝛼𝑖𝑗
𝑘) to stabilize training, 

improve accuracy and simplify output by averaging 

heads.
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Attention for Node Embeddings
➢ The attention coefficients quantify how much influence node 𝑗 should have when 

updating node 𝑖's embedding.

• A node is not equally influenced by all its neighbors, the GAT learns which surrounding nodes 

matter more prioritizing those that provide more meaningful context through attention. 

➢  Edge Features Matter

• If you include edge features, the model learns attention based on how nodes are connected, not 

just if they are connected.

➢ The attention coefficient 𝛼𝑖𝑗  can be interpreted as a learned weight of relevance:

• High 𝛼𝑖𝑗 → Neighbor 𝑗 is highly relevant for understanding node 𝑖’s role in the network.

• Low 𝛼𝑖𝑗  → Neighbor 𝑗 is less informative for understanding node 𝑖’s role in the network.

➢  Localized understanding of how risk or driver patterns propagate across a road 

network.

𝛼𝑖𝑗 =
𝑒(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝒂𝒔

𝑇𝜣𝒔𝒙𝒊+𝒂𝒕
𝑇𝜣𝒕𝒙𝒋+𝒂𝒆

𝑇𝜣𝒆𝒆𝒊,𝒋))

σ𝑘∈𝑁𝑖∪𝑖 𝑒(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝒂𝒔
𝑇𝜣𝒔𝒙𝒊+𝒂𝒕

𝑇𝜣𝒕𝒙𝒌+𝒂𝒆
𝑇𝜣𝒆𝒆𝒊,𝒌))
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Self-Supervised Training
➢ Inspired by contrastive learning frameworks.

• For each node, compute cosine similarity with neighbors and random non-neighbors.

• Scale similarities with temperature and apply exponential function → 𝑒
𝑆𝑖

+
𝑗

•  Sum values over neighbors and non-neighbors separately.

• Compute ratio of neighbor sum to total sum, then apply logarithm.

• Final loss is averaged over all nodes, optimizing to learn embeddings that reflect shared 

characteristics and connectivity.

• Training over 10 epochs using subgraphs sampled by PyG NeighborLoader.

• Optimization done with Adam optimizer.
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Clustering on Raw Features
➢ Clustering on Raw Features: 

• No clear elbow in the inertia curve → suggests gradual 

improvement without a sharp optimal K. 

• K-Means clustering on raw features yielded a highest 

silhouette score of 0.58 for K = 2→ modest separation 

between the two clusters.

•  Inertia of 145909, a 20% reduction from K=1 (inertia of 

192556).



This project has received funding from the European 

Union’s Horizon Europe research and innovation 

programme under grant agreement No 101119590

Embeddings
➢ At this stage, the GAT model was used to involve the features of the edges 

connected to each node, besides the road network topology. 

➢ The edge features mirror those of the nodes, excluding street_count and 

supplemented by four additional features:

• Edge length.

• Two binary features were derived via one-hot encoding from a three-category variable 

indicating road type (service, urban, rural).

• A binary oneway column shows if vehicles can go in only one direction or in both 

directions.
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Clustering on Embeddings
➢ Clustering on Embeddings: 

• No clear elbow in the inertia curve → suggests gradual 

improvement without a sharp optimal K.

• K-Means applied to GNN-generated embeddings showed a 

silhouette score of 0.73 for K=2 → strong separation between the 

two clusters.

•  Inertia of 2530, a 28% reduction from K=1 (inertia of 3501).

• GNN has captured latent network structure that may not be visible 

in raw features.
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Clustering Comparison
➢ The groups identified by both clustering methods exhibit similar 

characteristics upon comparison.

➢ Green nodes represent safer behaviors, while red nodes are 

associated with less safe events and more trips. 

Clustering type Safer nodes Riskier nodes 

Simple Clustering 24776 2732

Embeddings Clustering 26587 921

➢ However, the clustering based on the 

embeddings tends to polarize the nodes, 

shrinking the less safe cluster while expanding 

the other one.
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Assessing Clustering Results
➢ Each metric captures a different aspect of clustering quality:

•  WCSS
Measures intra-cluster compactness. 

❖ Lower values suggest tighter, more cohesive clusters.

•  Silhouette
Evaluates how similar a point is to its own cluster vs others. 

❖ Higher values indicate well-separated, dense clusters.

•  Davies-Bouldin Index (DBI)
Compares intra-cluster and inter-cluster distances.

❖ Lower values reflect tighter and better separated clusters.

•  Calinski-Harabasz Index (CHI)
Assesses cluster dispersion relative to the overall data spread.

❖ Higher scores indicate well-separated, distinct clusters.

Index Simple 
Clustering value 

Embeddings Clustering 
value 

WCSS 145909 2530

Silhouette 0.58 0.73

DBI 1.41 0.98

CHI 8794 10551
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Overview of the Identified Groups

➢ Mapped embedding cluster labels to raw data and 

averaged features per cluster to interpret differences.

• Within the risky group of nodes, drivers tend to travel at 

higher speeds, with SpeedingFlag triggered on average 

20 times more often. 

• There is also a higher prevalence of phone usage and 

harsh driving events. 

• These nodes are more heavily trafficked, as indicated by 

a greater number of trips.

• In contrast, the safer group is characterized by lower 

traffic volumes and generally better driving behavior, 

including reduced speeds and fewer risky events.

Street_Count Smoothened
Speed

SpeedingFlag Mobile_usage Harsh_acc Harsh_brk Trips_count

Risky Cluster 3.15 47.93 19.78 6.42 0.38 0.33 92.2

Safer Cluster 3.34 28.55 0.92 2.27 0.09 0.08 20.24



This project has received funding from the European 

Union’s Horizon Europe research and innovation 

programme under grant agreement No 101119590

Discussion
➢  Numerical and Conceptual Reflections

• The clear quantitative separation between groups validates the use of 

embedding-based clustering for identifying meaningful clusters. The 

magnitude of difference in key indicators (e.g., 20× speeding events) supports 

the practical relevance of the classification.

• The results align with known road safety principles: higher speeds and 

distracted driving increase risk.

➢  Methodology Suitability

• Clustering telematics and geometric features effectively identifies distinct areas 

within a road network.

• Reliance on aggregate averages may mask temporal variations.

• Integrating cluster labels with raw features and averaging values per cluster 

bridges the gap between complex representation learning and real-world 

feature insights, improving explainability.
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Potential applications

➢ The work provides actionable insights, informing 

on where to focus safety efforts and resources, 

aiming to improve overall traffic management and 

public safety.

• Risky cluster areas can be targeted for interventions, such 

as infrastructure improvements, awareness campaigns, or 

enforcement measures, to enhance road safety.

• Insurers can use this clustering to define risk profiles by 

identifying patterns of risky or safe driving behavior.  

• Drivers in high-risk clusters may face higher premiums, 

while those in safer clusters could benefit from discounts.

• This also enables insurers to offer more accurate, 

location-based pricing and targeted advice.
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Conclusions
➢ Graph-based representations enhance understanding of 

complex road safety data.

➢ By incorporating node features, topology, and edge 

attributes clustering performance are improved. 

➢ K-Means used as baseline for efficiency; alternative 

clustering methods could be explored.

➢ Future directions include testing different GNN 

architectures and loss functions.

➢ Adding traffic and temporal features may increase 

real-world applicability and impact.
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