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ABSTRACT 1 
 2 
Recent advances in machine learning and computer vision have significantly impacted traffic monitoring 3 
and safety analysis, particularly in urban environments. The integration of advanced object detection 4 
models, such as YOLOv8, with machine learning algorithms like Long Short-Term Memory (LSTM) and 5 
Gated Recurrent Unit (GRU), offers new opportunities for analyzing pedestrian and vehicle behaviors. 6 
This paper presents a comparative analysis of LSTM and GRU models for predicting pedestrian and 7 
vehicle movements, focusing on illegal crossings in Panepistimiou road, near Omonoia, in the center of 8 
Athens, Greece. The study leverages data from video footage of one peak traffic hour, processed through 9 
the YOLOv8 object detection algorithm, integrated with ResNet-50 for feature extraction, Kalman 10 
filtering, homography transformations, and object re-identification to ensure high accuracy in detecting 11 
pedestrian and vehicle interactions. The primary goal of this study is to evaluate and compare the 12 
predictive performance of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models 13 
in predicting pedestrian behavior, focusing on illegal crossings during different traffic light phases on 14 
Panepistimiou Road, near Omonoia, in Athens, Greece. Both the LSTM and GRU models were trained to 15 
predict pedestrian violations, with performance evaluated based on Precision, Recall, and F1-Score. 16 
While both models performed well, the LSTM model showed a better balance between precision and 17 
recall, while the GRU model demonstrated higher recall, effectively identifying more violations but at the 18 
cost of more false positives. The findings suggest that while GRU is better at detecting violations, LSTM 19 
provides a more reliable solution in scenarios where minimizing false alarms is important. These results 20 
underline the trade-offs between model performance and the specific needs of real-time traffic monitoring 21 
systems, where both accuracy and efficiency are critical. In conclusion, this study highlights the strengths 22 
and limitations of LSTM and GRU in predicting pedestrian violations and suggests future work in 23 
optimizing threshold settings, feature engineering, and model tuning to further improve performance for 24 
urban traffic safety systems. 25 
 26 
 27 
Keywords: Object Detection, Urban Traffic Safety, YOLOv8, LSTM, GRU   28 
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INTRODUCTION 1 
 2 

Millions of lives are lost and a high number of injuries are recorded every year emphasizing the 3 
global impact of road traffic crashes. Human behavior, road characteristics (design and condition of 4 
roads), vehicle safety standards, environmental factors, and socioeconomic differences, are some of the 5 
complex factors which contribute to road incidents. Road safety is a matter of critical concern and this is 6 
why it is very important to address these issues. The European Union and the World Health 7 
Organization have set an ambitious goal to reduce by 50% the number of fatal traffic crashes by the year 8 
2030 (6; 21). A crucial role to succeed at this target is the rise of new technologies, especially in the 9 
sector of advanced traffic monitoring and analysis. 10 

A dynamic but often hazardous urban environment is created due to the co-existence of vehicles, 11 
pedestrians, and vulnerable road users (cyclists, scooters, children, etc.). To mitigate the risks, it is very 12 
important to implement effective traffic management and safety interventions (7). The city of Athens, 13 
Greece, presents an interesting case study, as it is an urban environment with very high levels of 14 
motorization, high traffic density, and urban challenges, and in the meantime, it lacks a comprehensive 15 
network of integrated traffic cameras and real-time monitoring systems in all its network. The absence 16 
and the dysfunctionality of this infrastructure raise the need for innovative solutions to address this 17 
problem and enhance road safety.  18 

To confront this issue, computer vision and video recognition technologies are providing tools 19 
and methods to monitor and analyze traffic and in this way becoming fundamental techniques for road 20 
safety (8). The main aspect of these technologies is the ability to detect and track objects, and in the case 21 
of the urban road environment, vehicles and any transport mode, pedestrians, and other road users. In 22 
this way, they offer real-time insights regarding urban traffic conditions and possible dangers, which 23 
could affect road safety (14).  24 

Object detection models like YOLO (You Only Look Once) have been extensively studied for 25 
their ability to deliver real-time performance, framing object detection as a single regression problem. 26 
YOLO models, such as YOLOv3 and YOLOv4, have demonstrated exceptional speed and accuracy, 27 
making them well-suited for applications like traffic monitoring and autonomous driving (7; 10). A 28 
study highlights the effectiveness of YOLO in pothole detection, demonstrating its potential in various 29 
road safety applications (18). The rise of object detection technologies, such as YOLOv8 (You Only 30 
Look Once), has revolutionized traffic monitoring by enabling the detection and tracking of objects in 31 
real-time from video streams. YOLOv8, in combination with advanced feature extraction models like 32 
ResNet-50 and tracking algorithms such as Kalman filters, has been employed in the context of the EU 33 
PHOEBE project ("Predictive Approaches for Safer Urban Environment") project (15), which aims to 34 
advance the application of traffic simulation tools and road safety assessments to enable transport 35 
planners and managers to fully understand and address the safety implications of changes in road 36 
conditions, mode choice, new modes, road user behaviors, and other factors.  37 

While object detection and tracking provide essential data, the analysis of dynamic behaviors, 38 
such as pedestrian compliance with traffic signals, requires predictive modeling. Deep learning 39 
architectures, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, 40 
excel in modeling temporal dependencies and dynamic sequences, making them ideal for forecasting 41 
pedestrian and vehicle behaviors in urban encironments (21). These models can identify patterns in 42 
pedestrian and vehicle movements, predict violations like illegal crossings, and provide actionable 43 
insights to improve traffic management and safety. However, the effectiveness of these models depends 44 
not only on the quality of the algorithms but also on the availability of accurate and comprehensive data 45 
for model training. 46 

This study evaluates and compares the predictive performance of LSTM and GRU models in 47 
forecasting pedestrian behavior during different traffic light phases (green, red, and intergreen). By 48 
leveraging YOLOv8 (24) for object detection and ResNet-50 for feature extraction, the study focuses on 49 
predicting illegal pedestrian crossings, a significant contributor to urban traffic risks. The models are 50 
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assessed using accuracy, precision, recall, and F1-score to determine their effectiveness in real-world 1 
scenarios. This comparison aims to identify the model that best balances prediction accuracy and false 2 
positive rates, thus enhancing the reliability of traffic safety systems. 3 

A significant challenge to this endeavor is the limited availability of video data in Athens. The 4 
lack of integrated cameras and comprehensive street view data in most parts of the city of Athens poses 5 
a significant gap in the video footage availability and consecutively to the effective function of traffic 6 
management systems and safety interventions. Matters are further complicated by the fact that there are 7 
significant recording restrictions and overall enforcement imposed by the police as the city center is rife 8 
with governmental and public service buildings and facilities while being simultaneously critical for the 9 
regulation of traffic throughout the city. As a consequence, transport engineers needing to analyse video 10 
data for Athens traffic are very frequently required upon to conduct field research without relying on 11 
fixed infrastructure oriented on key locations on the transport network.  12 

The findings of this research contribute to the development of innovative traffic safety solutions, 13 
particularly for cities like Athens, where limited monitoring infrastructure and high urban density 14 
demand advanced technologies. By demonstrating the utility of LSTM and GRU models in analyzing 15 
pedestrian behavior, this study provides valuable insights for urban traffic safety strategies and informs 16 
the broader field of machine learning applications in transportation engineering. 17 

Conducted within the framework of the EU PHOEBE project (15), this research aligns with the 18 
project's goals to improve urban mobility and road safety through advanced simulation and assessment 19 
tools. By addressing the challenges of pedestrian compliance and traffic signal interactions, the study 20 
supports efforts to create safer urban environments and meet the ambitious road safety targets set by 21 
global initiatives. 22 

The paper is structured as follows. The Introduction provides a comprehensive overview of the 23 
background, objectives, and significance of the study, emphasizing the context of the PHOEBE project 24 
and the integration of advanced object detection technologies for pedestrian behavior prediction. The 25 
Data Description section details the dataset utilized in this study, including the video footage, object 26 
detection models (YOLOv8 and ResNet-50), and the tracking methods applied to capture pedestrian and 27 
vehicle behavior. The Methodology section outlines the steps involved in data preparation, the training 28 
of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, and the evaluation of 29 
their performance based on key classification metrics such as precision, recall, F1-score, and confusion 30 
matrix. In the Results section, the performance of the LSTM and GRU models is discussed and 31 
compared, particularly regarding their ability to predict illegal pedestrian crossings and enhance urban 32 
traffic safety. Lastly, the Conclusion summarizes the key findings, discusses their practical implications 33 
for improving pedestrian safety, and suggests avenues for future research in the field of urban traffic 34 
monitoring and deep learning applications. 35 

METHODS 36 

Data Description 37 
The dataset for this study was collected by strategically setting up smartphone cameras at the 38 

key point of Panepistimiou Street in the Omonoia area, a central and heavily trafficked location in 39 
Athens, Greece, connecting the two central-most squares of the capital city: Syntagma Square (with 40 
parliament and governmental functions) and Omonoia Square (with historic location and business 41 
functions). This location of this urban arterial was chosen as part of the EU PHOEBE project to provide 42 
a representative sample of urban traffic scenarios, including various types of vehicles, pedestrians, and 43 
cyclists (15). The absence of integrated traffic cameras and comprehensive street view data in the area 44 
necessitated manual video capture. This was attained by using field researchers who shot video footage 45 
using commercially available smartphones and tripods and compiling them in external databases at the 46 
end of each workday data collection.  47 
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The entire data collection period for a number of key point locations had a duration of 4 days, 1 
spread across 2 weeks in order to record two typical days per week (Tuesdays and Thursdays) for each 2 
location. The intent was to collect video footage encompassing a peak traffic hour of each workday 3 
when the city center is at its busiest (thus presenting the highest challenge to the algorithms), specifically 4 
on a weekday from 9 am till 10 am and a non-peak traffic hour later in the same day at 8 pm till 9 pm. 5 
Ultimately, more than 8 hours of video were collected for each location. Indicative images depicting one 6 
of the recorded locations can be found in Figure 1 below, taken by the authors.  7 

 8 
Figure 1 Panepistimiou Urban Arterial in Athens near Omonoia Square 9 
 10 

Object Detection and Feature Extraction 11 
The first stage of processing involves detecting objects within the video frames. For this task, 12 

the YOLOv8 model is used, which formulates object detection as a single regression problem. Given an 13 
input image extracted as a frame from the video, YOLOv8 (24) outputs a set of bounding boxes 14 
B=(𝐵1, 𝐵2, … , 𝐵𝑛), where each bounding box 𝐵𝑖 is defined by: 15 

𝐵𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖 , ℎ𝑖,𝑐𝑖 ) 16 

Where  (𝑥𝑖 , 𝑦𝑖) are the coordinates of the center of the box, 𝑤𝑖 , 𝑎𝑛𝑑 ℎ𝑖 are the width and height 17 
of the bounding box, and 𝑐𝑖  is the class probability score indicating whether the object in the box is a 18 
pedestrian or vehicle. 19 

Once the objects are detected, ResNet-50 is employed for feature extraction. The feature vector 20 
𝐹𝑖 corresponding to each detected object 𝐵𝑖 is extracted from the output of ResNet-50, represented as: 21 

𝐹𝑖 = 𝑅𝑒𝑠𝑁𝑒𝑡 − 50(𝐵𝑖) 22 

These features are then used for tracking and re-identification. 23 

To track pedestrians over time, the system utilizes Kalman filters (12). The Kalman filter 24 
operates in two phases: Prediction and Update. Firstly, this phase predicts the state estimate at time 𝑡 ∈25 
𝑇 based on the estimate from time (𝑡 − ∆𝑡) ∈ 𝑇: 26 

�̂�𝑚(𝑡|𝑡 − ∆𝑡) = 𝐴 ∙ 𝑠𝑚(𝑡 − ∆𝑡);   ∀𝑡 ∈ 𝑇;  ∀𝑚 ∈ 𝑀(𝑡);                            (1) 27 

Secondly, the phase predicts the error covariance matrix: 28 

𝑃𝑚(𝑡|𝑡 − ∆𝑡) = 𝐴 ∙ 𝑃𝑚(𝑡 − ∆𝑡) ∙ 𝐴𝑇 + 𝑄𝑚(𝑡);    ∀𝑡 ∈ 𝑇;  ∀𝑚 ∈ 𝑀(𝑡);  (2) 29 
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Then, for the updating phase the Kalman Gain 𝐾𝑚(𝑡), is computed, which determines how much the 1 
predictions are adjusted based on the new measurements: 2 

𝐾𝑚(𝑡) = 𝑃𝑚(𝑡|𝑡 − ∆𝑡) ∙ 𝑂𝑇 ∙ (𝑂 ∙ 𝑃𝑚(𝑡|𝑡 − ∆𝑡) ∙= 𝑂𝑇 + 𝑅𝑚(𝑡))
−1

;    ∀𝑡 ∈ 𝑇;  ∀𝑚 ∈ 𝑀(𝑡); (3) 3 

The Kalman Gain balances the uncertainties in the prediction and the measurement. Additionally, the 4 
Hungarian algorithm is applied for data association. This algorithm optimizes the association between the 5 
predicted object locations and new detections, minimizing the cost function for object-to-track association.  6 

A cost matrix 𝐶 is generated where each element 𝐶𝑛,𝑚 represents the cost of assigning the detected 7 

object 𝑛 ∈ 𝑁(𝑡) to the tracked object 𝑚 ∈ 𝑀(𝑡). The total cost 𝐶𝑛,𝑚 is computed as a weighted sum of the 8 

factors as indicated in Eqn. (4). Negative signs are applied to 𝐼𝑜𝑈𝑛,𝑚, 𝐶𝑜𝑠𝑆𝑖𝑚𝑓𝑒𝑎𝑡,𝑛,𝑚 and 𝐶𝑜𝑠𝑆𝑖𝑚𝑒𝑚𝑏,𝑛,𝑚 9 

because higher values of these factors indicate a better match, and, thus, a lower cost. Additionally, cosine 10 
similarity returns values between -1 and +1, and 𝑑𝑛,𝑚 represents a distance that can exceed 1. Since the 11 
cost matrix involves different metrics, it's common to normalize all metrics to the same range, typically 12 
between 0 and 1, to ensure consistency when combining them. Therefore, normalizations are introduced in 13 
Eqn. (4) for these factors. 14 

𝐶𝑛,𝑚  = −𝑤𝐼𝑜𝑈 ∙  𝐼𝑜𝑈𝑛,𝑚 − 𝑤𝑓𝑒𝑎𝑡 ∙
𝐶𝑜𝑠𝑆𝑖𝑚𝑓𝑒𝑎𝑡,𝑛,𝑚+1

2
− 𝑤𝑒𝑚𝑏 ∙

𝐶𝑜𝑠𝑆𝑖𝑚𝑒𝑚𝑏,𝑛,𝑚+1

2
+ 𝑤𝑐𝑒𝑛𝑡 ∙15 

𝑑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑,𝑛,𝑚

𝐷𝑚𝑎𝑥
;    ∀𝑡 ∈ 𝑇; ∀(𝑛, 𝑚) ∈ 𝑁(𝑡)  × 𝑀(𝑡);        (4) 16 

Where: 17 

● 𝐼𝑜𝑈𝑛,𝑚 be the Intersection over Union between the bounding boxes 𝑏𝑛 and �̂�𝑚, defined as follows 18 

(higher values indicates a better spatial match): 19 

𝐼𝑜𝑈𝑛,𝑚 =
area(𝑏𝑛 ∩ �̂�𝑚)

area(𝑏𝑛 ∪ �̂�𝑚)
;    ∀𝑡 ∈ 𝑇; ∀(𝑛, 𝑚) ∈ 𝑁(𝑡)  × 𝑀(𝑡);               (5) 20 

● 𝐶𝑜𝑠𝑆𝑖𝑚𝑓𝑒𝑎𝑡,𝑛,𝑚 be the Cosine Similarity of feature vectors 𝑟𝑛(𝑡) and �̅�𝑚(𝑡), defined as follows 21 

(values close to 1 indicate high visual similarity): 22 

𝐶𝑜𝑠𝑆𝑖𝑚𝑓𝑒𝑎𝑡,𝑛,𝑚  =
 𝑟𝑛(𝑡)∙ �̅�𝑚(𝑡)

‖𝑟𝑛(𝑡)‖ ‖�̂�𝑚(𝑡)‖
;    ∀𝑡 ∈ 𝑇; ∀(𝑛, 𝑚) ∈ 𝑁(𝑡)  × 𝑀(𝑡);   (6) 23 

● 𝐶𝑜𝑠𝑆𝑖𝑚𝑒𝑚𝑏,𝑛,𝑚 be the Cosine Similarity of embedding vectors 𝑒𝑛(𝑡) and �̅�𝑚(𝑡),  defined as 24 

follows (values close to 1 indicate high visual similarity): 25 

𝐶𝑜𝑠𝑆𝑖𝑚𝑒𝑚𝑏,𝑛,𝑚  =
 𝑒𝑛(𝑡)∙ �̅�𝑚(𝑡) 

‖𝑒𝑛(𝑡)‖ ‖�̅�𝑚(𝑡)‖
;    ∀𝑡 ∈ 𝑇; ∀(𝑛, 𝑚) ∈ 𝑁(𝑡)  × 𝑀(𝑡);   (7) 26 

● 𝑑𝑛,𝑚 be the Euclidean distance between projected ground positions 𝑝𝑤𝑜𝑟𝑙𝑑,𝑛 and �̂�𝑤𝑜𝑟𝑙𝑑,𝑚, defined 27 

as follows (smaller distances indicate better alignment): 28 

𝑑𝑛,𝑚 = ‖𝑝𝑤𝑜𝑟𝑙𝑑,𝑛 − �̂�𝑤𝑜𝑟𝑙𝑑,𝑚‖;   ∀𝑡 ∈ 𝑇; ∀(𝑛, 𝑚) ∈ 𝑁(𝑡)  × 𝑀(𝑡);   (8) 29 

● 𝐷𝑚𝑎𝑥 be the maximum expected Euclidean distance 𝑑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑,𝑛,𝑚 for normalization. 30 

● 𝛿𝑛,𝑚 be a binary variable, defined as follows: 31 

𝛿𝑛,𝑚 = {
1   if detected object 𝑛 is assigned to tracked object 𝑚
0   otherwise                                                                              

          (9) 32 

Once objects are detected and tracked, the system analyzes pedestrian behavior in relation to traffic signal 33 
phases. The pedestrian behavior is classified as either legal or illegal depending on whether they cross the 34 
pedestrian line during a red pedestrian light. The behavior status of tracked pedestrian is 𝑆𝑝𝑒𝑑(𝑡), where: 35 
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𝑆𝑝𝑒𝑑(𝑡) = {

𝑖𝑙𝑙𝑒𝑔𝑎𝑙                         if 𝑆𝑙𝑖𝑔ℎ𝑡(𝑡) = 𝑟𝑒𝑑

𝑙𝑒𝑔𝑎𝑙                       if 𝑆𝑙𝑖𝑔ℎ𝑡(𝑡) = 𝑔𝑟𝑒𝑒𝑛 

𝑢𝑛𝑘𝑛𝑜𝑤𝑛         if 𝑆𝑙𝑖𝑔ℎ𝑡(𝑡) = 𝑖𝑛𝑡𝑒𝑟𝑔𝑟𝑒𝑒𝑛

;     (10) 1 

Each illegal crossing event is logged, and the number of violations is counted. 2 

After detecting illegal pedestrian crossings, the system generates annotated outputs in the form of 3 
video annotations and data files. The video output includes the marked illegal crossings, with timestamps, 4 
bounding boxes, and corresponding traffic signal phases for each detected event. The data files contain 5 
the count of illegal crossings, along with information about the specific times and locations of the 6 
violations. 7 

LSTM Methodology 8 

Long Short-Term Memory (LSTM) networks are a specialized form of Recurrent Neural 9 
Networks (RNNs) that are particularly suited for sequential data due to their ability to capture long-term 10 
dependencies without suffering from the vanishing gradient problem typical of traditional RNNs (3). In 11 
this study, LSTM was employed to predict pedestrian behavior, focusing on their illegal crossings during 12 
different traffic light phases. The LSTM model is composed of multiple layers, with the primary 13 
advantage being its architecture that processes sequential data efficiently. The network includes a series 14 
of repeating cells, each containing three gates: 15 

 Forget Gate: Determines which information from the previous state should be discarded. 16 

 Input Gate: Decides which new information should be added to the memory state. 17 

 Output Gate: Filters the memory and decides which parts of the state will be used as output for 18 
the current time step. 19 

These gates allow the LSTM to "remember" important information over long sequences, making it ideal 20 
for predicting future behavior based on historical data. 21 

The LSTM model used in this study was designed with a two-layer architecture, with 64 and 32 22 
units in each layer. The Bidirectional LSTM layers enable the model to process the input sequences in 23 
both forward and backward directions, capturing both past and future context in the data. ReLU activation 24 
is used in the hidden layers to capture complex relationships between input variables, such as the traffic 25 
light phases, historical violations, and other environmental factors. A dropout rate of 0.6 is applied after 26 
the first LSTM layer to reduce overfitting, and recurrent dropout of 0.5 is applied after the second LSTM 27 
layer. These parameters help regularize the model by randomly deactivating some neurons during 28 
training, preventing the model from overly relying on specific features and improving its ability to 29 
generalize to unseen data. The Adam optimizer is used for model optimization, with a learning rate of 30 
0.0002. The model is trained over 50 epochs with a batch size of 32, and 10% of the training data is 31 
reserved for validation. The output layer uses a tanh activation function to constrain the output values 32 
between -1 and 1, which correspond to the predicted pedestrian violations (illegal crossings) during 33 
different traffic light phases (red, green, and intergreen). 34 

The performance of the LSTM model was evaluated using common classification metrics, 35 
including accuracy, precision, recall, and F1-score, as outlined in the following equations: 36 

Accuracy, which measures the proportion of correctly classified observations, is defined as: 37 
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Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (11) 

Precision, which quantifies the number of positive class predictions that actually belong to the positive 1 
class, is defined as follows: 2 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (12) 

Recall, also known as True Positive Rate, which measures the proportion of actual positive cases 3 
correctly identified by the model, is defined as follows: 4 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (13) 

F1-score, which combines precision and recall into a single measure, is defined as follows: 5 

f1-score = 
2𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)𝑥 (𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+(𝑅𝑒𝑐𝑎𝑙𝑙)
 (14) 

False alarm rate, which measures the proportion of negative cases incorrectly classified as positive is 6 
defined as follows: 7 

False Alarm Rate = 
𝐹𝑃 

𝐹𝑃+𝑇𝑁
 (15) 

Where, True Positive (TP) denotes instances belonging to class i that were accurately classified as such. 8 
True Negative (TN) refers to instances not belonging to class i and correctly not classified as such. False 9 
Positive (FP) indicates instances that do not belong to class i but were erroneously classified as part of it. 10 
Lastly, False Negative (FN) signifies instances that belong to class i but were mistakenly not classified as 11 
such. 12 

GRU Methodology 13 

The Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network (RNN) designed for 14 
sequential data, and it is particularly effective in capturing dependencies over time. GRUs have been 15 
widely used for time series prediction tasks, where future behavior is inferred based on prior sequences. 16 
Unlike traditional RNNs, GRUs overcome the vanishing gradient problem, which allows them to retain 17 
long-term dependencies and memory of past states (16, 2). In this study, the GRU model is employed to 18 
predict pedestrian illegal crossings during various traffic light phases, based on historical data and other 19 
dynamic features. 20 

The GRU architecture consists of two main components: 21 

 Update Gate: Controls how much of the past information should be carried over to the current 22 
state. 23 

 Reset Gate: Determines the amount of previous information that should be discarded. 24 

These gates allow the GRU to capture relevant patterns in sequential data by controlling the flow of 25 
information across time steps, enabling the model to make more accurate predictions over longer 26 
sequences. 27 

For this study, the GRU model was designed with two Bidirectional GRU layers. The Bidirectional 28 
nature allows the model to process data in both forward and backward directions, which captures both 29 
past and future context for better prediction accuracy. The GRU layers were followed by a Dense layer 30 
with ReLU activation to capture complex relationships between variables, such as traffic light phases, 31 
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pedestrian behavior, and other environmental factors. A Dropout layer was added to prevent overfitting, 1 
and a tanh activation function in the output layer ensured that the predicted pedestrian violations were 2 
constrained within a specified range. 3 

The GRU model was trained using the Adam optimizer, with a learning rate of 0.0002. The training 4 
process lasted for 50 epochs with a batch size of 32. EarlyStopping was employed to prevent overfitting, 5 
with a patience of 10 epochs for monitoring validation loss. This model was evaluated using the same 6 
metrics with the LSTM model. 7 

Compared with Long Short-Term Memory (LSTM) (9), the unit of the GRU is simpler to compute 8 
and implement (2). The training efficiency of GRU gets improved with the number of weights reduced. 9 
However, LSTM can remember longer sequences than GRU, as LSTM has a more sophisticated memory 10 
cell. 11 

RESULTS  12 

 13 

Algorithmic outputs   14 
 15 
The dataset used in this study was produced through an advanced video analysis algorithm, 16 

designed to track pedestrian behavior and violations, particularly illegal crossings, in an urban 17 
environment. The video footage was captured at a busy pedestrian crossing in central Athens, where the 18 
algorithm was employed to process and analyze the data. Key to this process was the use of YOLOv8 19 
(You Only Look Once) for object detection, ResNet-50 for feature extraction, and Kalman filtering for 20 
tracking the movement of pedestrians and vehicles. 21 

A crucial component of the algorithm involved traffic light detection. The system identified the 22 
traffic light status (red, green, or intergreen) at the intersection, which was integral to the detection of 23 
illegal pedestrian crossings. This was done by leveraging pre-trained models and combining them with 24 
the region-based classification of the image frames. The Region of Interest (ROI) for this analysis was 25 
defined to focus specifically on the pedestrian crossing zones, which were marked in the video footage. 26 
The ROI was crucial for limiting the area under analysis to the relevant pedestrian zones, filtering out 27 
irrelevant information, and improving the accuracy of violation detection. 28 

 29 

 30 
Figure 2: Pedestrian crosswalk ROI, with the pedestrian and vehicle gates defined for the Omonoia spot. 31 

 32 
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Pedestrian illegal crossings were detected when pedestrians entered the defined ROI during red or 1 
intergreen phases. The algorithm tracked the position and movement of pedestrians across the intersection 2 
and compared these movements with the current traffic light status to determine whether a violation had 3 
occurred.  4 

 5 

Figure 3: Pedestrian traffic light ROIs defined for the Omonoia Square spot 6 

Once violations were detected, the model recorded the time, location, and traffic light phase in a 7 
CSV file, which was used for further analysis. This data was then stored in a CSV file that contains the 8 
following columns: 9 

 Time (seconds): The timestamp of when a violation occurred. 10 

 Pedestrian_IllegalMiddleGate: A binary variable indicating whether a pedestrian violated the 11 
traffic signal by crossing illegally. 12 

 Predominant Traffic Light Status: The state of the traffic light at the time of the violation (Red, 13 
Green, Unknown). 14 

 Vehicle_IllegalMiddlestreamGate: Indicates whether a vehicle also violated traffic rules at the 15 
same time. 16 

 17 
TABLE 1 Dataset sample with the illegal detection 18 

Time 

(seconds) 

Pedestrian_Illegal

MiddleGate 

Predominant traffic 

light status 

Vehicle_Illegal

Middlestream

Gate 

428 1 red 0 

429 0 green 0 

430 0 red 0 

431 1 red 0 

432 0 red 0 

433 2 red 0 

434 0 red 0 

 19 
This dataset was produced using smartphone cameras mounted on tripods at key pedestrian 20 

crossing points in Athens, allowing for a flexible and cost-effective solution for data collection. The data 21 
collection process ensured a representative sample of pedestrian behavior under varying traffic conditions 22 
and light phases, and it avoided the need for fixed infrastructure, making it applicable to urban 23 
environments with limited monitoring systems. 24 
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By focusing on the ROI and employing traffic light detection, the algorithm was able to provide 1 
precise and actionable insights into pedestrian behavior, specifically illegal crossings during different 2 
traffic phases. The processed data was used to train and evaluate the performance of the predictive 3 
models, providing a comprehensive dataset for assessing pedestrian behavior and violations across urban 4 
intersections. 5 

 6 

LSTM results 7 
The Long Short-Term Memory (LSTM) model was employed to predict pedestrian behavior and 8 

illegal crossings during different traffic light phases. The architecture of the LSTM model consists of two 9 
Bidirectional LSTM layers, each with 64 and 32 units respectively. Bidirectional LSTM layers enable the 10 
model to capture both past and future context from the input sequences, which is crucial for 11 
understanding the temporal dependencies in pedestrian behavior. The network uses ReLU activation in 12 
the hidden layers to model complex relationships between input variables such as traffic light phases, 13 
historical violations, and environmental factors. Additionally, dropout layers were added to regularize the 14 
model and prevent overfitting, with a dropout rate of 0.6 after the first LSTM layer and 0.5 after the 15 
second. The LSTM model achieved strong performance in terms of both classification and regression 16 
metrics (Tables 2 and 3).   17 

 18 
TABLE 2 Confusion Matrix and Classification metrics for the LSTM model 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

These results indicate that the LSTM model performs well in detecting pedestrian violations, with a 27 
high recall of 0.887. This suggests the model's effectiveness in identifying true violations, although its 28 
precision of 0.736 indicates that the model also predicts some false positives. The F1-Score of 0.805 29 
highlights the model’s balanced performance between precision and recall, which is essential for 30 
applications where minimizing false alarms is a priority. 31 

Below, Figure 4 shows a comparison of true pedestrian violations (represented by the solid line) 32 
and the LSTM model’s predicted violations (represented by the dashed line). The LSTM model 33 
demonstrates a strong ability to predict illegal pedestrian crossings, particularly highlighting the model's 34 
higher recall rate. The LSTM's bidirectional architecture captures both past and future pedestrian 35 
behavior, which helps it better generalize over long sequences of data. This is evident in the graph, where 36 
the predicted violations closely follow the true violations over time. 37 

It is important to note that, while the LSTM model shows a good alignment with the true violations, 38 
there are occasional peaks in the predictions that do not match the actual data, indicating false positives. 39 
This behavior emphasizes the trade-off between high recall (detecting more true positives) and precision 40 
(minimizing false positives). The higher recall of the LSTM model is beneficial for applications focused 41 
on capturing as many violations as possible, even if it results in slightly more false alarms. 42 

Confusion Matrix  
 Positive Negative 

Positive 449 161 

Negative 502 57 

Classification Metrics 

Accuracy 0.812 

Precision 0.736 

Recall 0.887 

F1-Score 0.805 
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 1 

 2 
Figure 4: True vs. Predicted Pedestrian Violations Plot for the LSTM model 3 

Figure 5 displays the residuals (errors) of the LSTM model’s predictions. A narrow distribution of 4 
residuals indicates good model performance, while a wider distribution signals more variability between 5 
predicted and true values. The LSTM model’s residuals indicate that it is relatively accurate, with some 6 
instances showing greater deviation from the true violations. 7 

The LSTM model's residuals show a wider distribution compared to the GRU model as showcased 8 
below in figure 8, reflecting a higher occurrence of prediction errors, especially for more complex 9 
pedestrian behaviors. This variance can be attributed to the LSTM's sensitivity to different sequences and 10 
its trade-off between recall and precision.  11 

 12 

 13 
Figure 5: Residuals/Error Distribution Plot for the LSTM model 14 

Regarding Figure 6 the training and validation loss, as well as the training and validation accuracy, 15 
over the course of training for the LSTM model are being depicted. The graph indicates that both the 16 
training loss and validation loss decrease over time, while accuracy improves. This is a sign that the 17 
model is learning effectively from the data and is not overfitting, as there is little divergence between the 18 
training and validation curves. The steady decrease in both loss curves and the increase in accuracy 19 
indicate that the LSTM model is fitting the data well and generalizing effectively. The slight fluctuations 20 
in the validation loss indicate occasional overfitting, but overall, the model is improving with each epoch. 21 
The model's learning behavior is typical of LSTM networks, where a longer training process often helps 22 
improve generalization for sequential data. 23 
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 1 

Figure 6: Model Loss and Accuracy Over Epochs  2 

 3 

GRU Model Results 4 

The Gated Recurrent Unit (GRU) model was also designed to predict pedestrian behavior, utilizing 5 
two Bidirectional GRU layers, similar to the LSTM model, but with 64 and 32 units respectively. The 6 
Bidirectional architecture allows the model to process input sequences in both forward and backward 7 
directions, capturing long-term dependencies from both the past and the future. The GRU model was 8 
optimized using the Adam optimizer with a learning rate of 0.0002, and the model was regularized with 9 
dropout layers to prevent overfitting. A ReLU activation was used in the intermediate layers, while the 10 
final output layer utilized tanh activation to constrain the predictions within a range suitable for 11 
classification. The GRU model exhibited strong recall performance (Tables 4 and 5) but slightly lower 12 
precision compared to the LSTM model.  13 

 14 
TABLE 3 Confusion Matrix and Classification metrics for the GRU model  15 

 16 

 17 

 18 
 19 
 20 
 21 
 22 
 23 
 24 
The GRU model performed excellently in terms of recall (0.929), indicating its ability to detect a 25 

large proportion of true pedestrian violations. However, the precision (0.629) was lower than the LSTM 26 
model, indicating a higher rate of false positives. Despite the lower precision, the F1-Score of 0.749 27 
reflects a solid balance between precision and recall. 28 

Figure 7 below presents the comparison between true pedestrian violations (solid line) and 29 
predicted pedestrian violations (dashed line) from the GRU model. The GRU model closely tracks the 30 

Confusion Matrix  
 Positive Negative 

Positive 471 278 

Negative 384 36 

Classification Metrics 

Accuracy 0.731 

Precision 0.629 

Recall 0.929 

F1-Score 0.749 
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true violations but with fewer deviations, indicating its higher precision compared to the LSTM model. 1 
The GRU model performs well in minimizing false positives, as seen in this plot. The predicted values 2 
align more closely with the true violations, demonstrating that the GRU model is more precise, with fewer 3 
false alarms. The balance between precision and recall is evident here, where the GRU model captures a 4 
significant number of true positives while limiting false positives. 5 

 6 
Figure 7: True vs. Predicted Pedestrian Violations Plot for the GRU model 7 

Figure 8 shows the residuals (errors) for the GRU model’s predictions. A narrow, centered 8 
distribution suggests the GRU model’s predictions are accurate, with fewer large deviations from the true 9 
violations. The GRU model shows a tighter distribution of residuals compared to the LSTM model, 10 
indicating that its predictions are more precise. The fewer large errors imply that the GRU model is more 11 
consistent in its predictions, especially in time-series data, where maintaining accuracy is crucial. This 12 
makes the GRU model well-suited for applications where reducing false positives is a priority. 13 

 14 

Figure 8: Residuals/Error Distribution Plot for the GRU model 15 

Figure 9 displays the training and validation loss, as well as the training and validation accuracy, 16 
over epochs for the GRU model. Like the LSTM model, the GRU model shows a steady decrease in loss 17 
and an increase in accuracy over time, suggesting effective learning. The validation loss follows a similar 18 
trend to the training loss, indicating that the GRU model is generalizing well without significant 19 
overfitting. 20 

The GRU model shows faster convergence compared to the LSTM model, with both training and 21 
validation loss decreasing rapidly within the first few epochs. This is indicative of the GRU's ability to 22 



Roussou, Ziakopoulos, Ventura, Yannis 

15 
 

learn more efficiently from sequential data, especially in tasks like pedestrian behavior prediction. The 1 
smooth convergence and consistent performance suggest that the GRU model is stable and less prone to 2 
overfitting compared to the LSTM. 3 

 4 

Figure 9: Model Loss and Accuracy Over Epochs for the GRU Model 5 

 6 

Comparative Analysis of LSTM and GRU Models 7 
 8 
The LSTM and GRU models were evaluated and compared based on their ability to predict 9 

pedestrian behavior, specifically illegal crossings during different traffic light phases. Both models were 10 
assessed using classification metrics, including precision, recall, and F1-score, which were used to 11 
determine their effectiveness in detecting pedestrian violations. 12 

In terms of precision, the LSTM model outperformed the GRU model with a value of 0.736 13 
compared to 0.629 for the GRU model. Precision measures the proportion of true positive predictions 14 
among all positive predictions, meaning the LSTM model was more reliable in correctly predicting 15 
pedestrian violations. This characteristic is particularly important when false positives are costly or 16 
disruptive in real-world applications, where minimizing unnecessary alarms is essential. 17 

On the other hand, the GRU model showed superior recall, achieving a value of 0.929, compared to 18 
0.887 for the LSTM model. Recall measures the proportion of true positives that are correctly identified 19 
by the model. The GRU model’s higher recall indicates that it is more sensitive in detecting pedestrian 20 
violations, capturing a larger proportion of actual violations. However, this comes at the cost of more 21 
false positives, as reflected in its lower precision. 22 

When considering the F1-score, which combines precision and recall into a single metric, the 23 
LSTM model had a higher score of 0.805, compared to 0.749 for the GRU model. The F1-score reflects 24 
the trade-off between precision and recall, and the LSTM model’s higher F1-score suggests a better 25 
overall balance between minimizing false positives and maximizing true positive detections. 26 

The GRU model excels in recall, making it more effective at detecting pedestrian violations, which 27 
is advantageous in applications where detecting as many violations as possible is the primary goal. 28 
However, this comes with a drawback of a lower precision, meaning the GRU model generates more false 29 
positives. 30 

The LSTM model, with its higher precision and more balanced F1-score, is more reliable for 31 
scenarios where minimizing false alarms is critical. Although the LSTM model detects fewer violations 32 
compared to the GRU model, it provides more accurate predictions in terms of distinguishing between 33 
violations and non-violations. 34 
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DISCUSSION 1 
 2 
The results from the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models 3 

provide valuable insights into the ability to predict pedestrian illegal crossings in complex urban traffic 4 
environments. Both models demonstrate strong performance, with notable differences in their capabilities, 5 
particularly in terms of recall and precision. 6 

The LSTM model, with its bidirectional architecture, demonstrated higher recall, capturing more 7 
true positive instances of illegal pedestrian crossings. This result underscores the model's ability to 8 
generalize over longer sequences and leverage both past and future states of pedestrian behavior. The 9 
LSTM model’s architecture, which included two bidirectional LSTM layers with dropout regularization, 10 
effectively mitigated overfitting, a common issue in deep learning models dealing with sequential data. 11 
While the LSTM model excelled at detecting more violations, its precision was slightly lower than that of 12 
the GRU model, indicating a trade-off between sensitivity and false positives. 13 

On the other hand, the GRU model showed a slightly higher precision and a more balanced 14 
performance with respect to precision and recall. This model, utilizing bidirectional GRU layers and 15 
regularization techniques, is well-suited for scenarios where minimizing false positives is crucial, while 16 
still maintaining a high detection rate. In particular, the GRU model's ability to manage the complexities 17 
of sequential data proved effective, especially in time-series prediction tasks, aligning with findings from 18 
previous studies (20), who demonstrated the strength of GRU in handling sequential dependencies for 19 
traffic predictions. The performance of GRU, especially in the context of its predictive capabilities for 20 
illegal crossings, aligns with the expectations of modern urban traffic safety applications. 21 

Both models were trained on a dataset with features such as traffic light phases, pedestrian behavior 22 
patterns, combined with temporal sequences. The feature engineering process included encoding traffic 23 
light states and introducing lag features to account for previous violations. Additionally, spike detection 24 
techniques were employed to handle imbalanced data, addressing the class imbalance often seen in 25 
violation detection tasks, as highlighted in a number of studies (13; 4). This allowed the models to adapt 26 
to the complexities of real-world traffic scenarios. The combination of GRU, CNN, and LSTM has shown 27 
excellent performance in traffic congestion predictions as well, especially in the context of urban road 28 
environments (1), where the model integrates these three components for traffic prediction, handling both 29 
temporal and spatial complexities in traffic flow data.  30 

In comparison to previous studies (22; 13), this research offers a novel contribution by applying 31 
both LSTM and GRU models specifically for pedestrian behavior prediction in urban environments. Zhou 32 
et al. (22) emphasized the importance of incorporating posture features and local context, which was also 33 
reflected in the feature engineering of this study. Similarly, the use of spatio-temporal information in 34 
pedestrian crossing prediction, a method employed by Dofitas et al. (4), further reinforces the relevance of 35 
these models in advancing traffic monitoring systems. 36 

Furthermore, studies like Yao and Ye (11), who used LSTM to predict traffic flow, highlight the 37 
broad applicability of LSTM models in traffic prediction. Wang et al. (20) explored LSTM model 38 
improvements by integrating attention mechanisms to capture high-impact traffic flow values, supporting 39 
our findings that enhanced learning techniques can improve the accuracy of pedestrian behavior 40 
predictions, especially with complex data inputs. 41 

Additionally, the work of Ullah et al. (19) introduced an attention residual LSTM for anomaly 42 
recognition in surveillance videos, which shares conceptual similarities with our approach. Their 43 
framework, which incorporates a residual LSTM to handle anomalies efficiently, presents a relevant 44 
comparison to the current study’s methods of capturing abnormal pedestrian behavior in urban 45 
environments. This highlights the potential for combining spatiotemporal learning with attention 46 
mechanisms to further improve prediction accuracy in real-time surveillance systems. 47 
 48 
CONCLUSIONS 49 

 50 
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This research contributes to the development of advanced traffic management systems, where deep 1 
learning models like LSTM and GRU can play a crucial role in predicting pedestrian behavior and 2 
improving urban road safety. The present work demonstrates the efficacy of LSTM and GRU models in 3 
predicting pedestrian behavior in urban traffic environments. The LSTM model showed higher recall, 4 
making it a more reliable model for capturing illegal pedestrian crossings, while the GRU model excelled 5 
in precision, reducing false positives. Both models exhibited strong performance, showing that they can 6 
be applied to real-time traffic monitoring systems. 7 

Our results are consistent with previous research that applied deep learning techniques to pedestrian 8 
behavior prediction. Pawar et al. (13) applied LSTM to anomaly detection in traffic surveillance, which 9 
aligns with our findings regarding LSTM’s ability to capture anomalous pedestrian behavior. The 10 
integration of YOLOv8 for real-time object detection in our study further enhances the predictive power 11 
of the models, similar to the way Dofitas et al. (4) combined CNNs with LSTMs to improve recognition 12 
tasks in traffic environments. 13 

This study suggests that while LSTM is beneficial for capturing a broad range of violations, GRU 14 
provides an effective approach when minimizing false positives is a priority. The choice between the 15 
LSTM and GRU models depends on the specific requirements of the application. If the goal is to detect as 16 
many pedestrian violations as possible, even at the cost of more false positives, the GRU model would be 17 
preferred. However, if minimizing false alarms and achieving a better balance between precision and 18 
recall is essential, the LSTM model is the more suitable choice. In terms of future work, expanding the 19 
models to include additional environmental features, such as road conditions or pedestrian density, could 20 
further improve prediction capabilities. Integrating multi-modal data from different sensors or video 21 
sources would also help create a more robust system that is adaptable to various urban traffic conditions. 22 

Looking ahead, further research could explore incorporating additional environmental factors, such 23 
as weather conditions and road types, to refine predictions. Moreover, integrating multi-modal data from 24 
different sensors or video feeds could lead to even more robust systems capable of handling various real-25 
world traffic scenarios. As shown by Yao & Ye (11), enhancing feature sets and integrating new learning 26 
techniques will contribute to improving traffic monitoring systems’ performance. 27 
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