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ABSTRACT 1 
Accurately assessing and predicting traffic crashes is essential for improving urban traffic safety 2 

and implementing targeted interventions. Traditional crash analysis relies heavily on historical crash 3 
records, which, while valuable, often face limitations such as underreporting, delays in data collection, 4 
and insufficient granularity. These challenges highlight the pressing need for innovative approaches to 5 
traffic safety analysis that are more dynamic, granular, and predictive. 6 

This study explores the relationship between unsafe traffic events—specifically harsh braking and 7 
acceleration—and crash occurrences at 478 intersections in central Athens. Using telematics data from 8 
2019 obtained through smartphone applications and crash records sourced from traffic police reports, the 9 
analysis integrates these datasets to examine the spatial dimensions of unsafe traffic events and their 10 
potential to classify intersections based on crash risk. The research utilises patterns and observations 11 
derived from telematics data to identify “dangerous” hotspots and evaluate the predictive capabilities of 12 
unsafe traffic event data. 13 

Advanced statistical methods, geospatial tools, and machine learning models were employed to 14 
uncover factors influencing crash occurrences. Machine learning techniques were particularly valuable in 15 
extracting complex patterns and relationships, improving the understanding of crash risk factors at both 16 
primary and secondary road intersections. By leveraging unsafe traffic events as a supplementary resource 17 
to traditional crash records, this study highlights the value of telematics-based data for proactive safety 18 
analysis. 19 

The findings demonstrate how telematics and smartphone applications can complement 20 
traditional crash data, enabling data-driven traffic safety management with actionable urban planning and 21 
policymaking insights to enhance road safety. 22 
 23 
Keywords: Traffic safety, Crash prediction, Telematics data, Machine learning, Urban intersections  24 
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INTRODUCTION 1 
Road safety is a critical global challenge, representing a significant public health and socio-2 

economic burden. Traffic crashes continue to cause substantial mortality and morbidity annually, with 3 
over 1.19 million fatalities and millions of serious injuries reported worldwide in 2021 [1]. In Europe, 4 
road safety trends reveal substantial disparities among member states, with countries like Sweden and 5 
Denmark achieving the lowest fatality rates while others like Romania and Bulgaria report significantly 6 
higher rates [2], [3]. Despite efforts to reduce road fatalities, including the European Union’s Vision Zero 7 
strategy aiming to halve road deaths by 2030, progress remains slow. 8 

Traditional traffic safety studies, till recent years, rely on historical crash data to assess risks and 9 
identify hazardous locations. While crash records provide valuable insights, their retrospective nature and 10 
limitations, such as underreporting, spatial inaccuracies, and insufficient granularity, hinder timely and 11 
effective safety interventions. Crashes are rare and inherently random events, making it challenging to 12 
collect sufficient data over short periods for robust statistical analysis [4]. Furthermore, the reliance on 13 
crash data necessitates a reactive approach to traffic safety, requiring crashes to occur before safety 14 
measures can be implemented. This underscores the pressing need for innovative, proactive approaches to 15 
traffic safety analysis.  16 

Advancements in telematics and smartphone technologies offer a transformative opportunity to 17 
address these challenges. By capturing high-resolution data on unsafe traffic events—such as harsh 18 
braking, rapid acceleration, and near misses—smartphone applications provide a dynamic and granular 19 
perspective on driving behaviour and traffic conditions. These events occur far more frequently than 20 
crashes, serving as valuable proxies for predicting crash risk and enabling a shift from reactive to 21 
proactive safety management [5], [6].  Moreover, this real-time data can inform targeted interventions, 22 
enhance road safety planning, and support data-driven policymaking. 23 

A unique contribution of this research lies in its integration of diverse unsafe traffic events, such 24 
as near misses and harsh acceleration/deceleration events, within a unified analytical framework. The 25 
study further explores how varying spatiotemporal resolutions impact the predictive accuracy of crash 26 
models, addressing critical gaps in the literature regarding the optimal granularity and minimum data 27 
requirements for effective traffic safety analysis. Machine learning techniques, combined with traditional 28 
statistical methods, enhance the predictive capabilities of the analysis by uncovering complex, non-linear 29 
relationships and enabling more accurate classification of high-risk intersections. 30 

Additionally, the insights derived from unsafe traffic events extend beyond traffic safety research, 31 
with implications for industries such as car insurance. For example, programs like Pay-As-You-Drive 32 
(PAYD) promote responsible driving by linking insurance premiums to driving behaviours, such as harsh 33 
braking or acceleration, which are known precursors to crashes [7] . These advancements demonstrate the 34 
potential of telematics data to influence both public safety and commercial applications. 35 

The study of the relationship between unsafe traffic events and crash occurrences has emerged as 36 
a critical area of research in the pursuit of improved road safety [8]. Advances in technology, particularly 37 
the widespread adoption of smartphones, have created unparalleled opportunities to collect and analyse 38 
traffic-related data in real-time [9], [10]. Smartphone applications now capture a wealth of information, 39 
including GPS locations, speed, acceleration, braking patterns, and even driver behavior metrics, such as 40 
phone usage while driving. This extensive dataset provides a granular perspective on driving habits and 41 
traffic conditions, offering valuable insights that traditional traffic studies—reliant on police reports and 42 
crash statistics—often overlook. 43 

Leveraging smartphone data to understand unsafe traffic events is essential for identifying risky 44 
driving behaviors before they result in crashes. Indicators such as sudden braking, rapid acceleration, and 45 
sharp turns are strongly associated with aggressive driving, a known precursor to accidents [11], [12]. 46 
Analyzing these events enables the development of predictive models that can identify high-risk locations 47 
and times, facilitating proactive interventions [13]. Furthermore, real-time data can be used to educate 48 
drivers on safer driving practices, support targeted enforcement campaigns, and inform the design of more 49 
effective road safety strategies. 50 
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Road safety remains a global challenge, with traffic accidents contributing significantly to 1 
mortality and morbidity rates each year. Understanding the underlying factors behind crashes and unsafe 2 
driving behaviors is crucial for devising effective policies and interventions aimed at reducing traffic-3 
related injuries and fatalities. Traditional approaches to traffic safety research have relied mainly on post-4 
accident analyses based on police reports, crash statistics, and infrastructure assessments [14]. While 5 
these methods provide valuable insights, they are inherently retrospective and often constrained by data 6 
availability. 7 

Recent advancements in big data analytics and telematics have significantly improved the ability 8 
to predict crashes by identifying patterns in risky driving behaviours. Employing methodologies such as 9 
machine learning and spatial analysis, researchers can develop predictive models to pinpoint danger zones 10 
and times, enabling proactive and timely interventions [15]. Geographic Information Systems (GIS) and 11 
temporal trend analysis further enhance this approach by visualising crash hotspots and revealing 12 
underlying patterns, providing a more comprehensive understanding of crash causation. 13 

The integration of smartphone data into traffic safety research signifies a shift from traditional, 14 
reactive methods to a more proactive strategy [9]. Real-time monitoring of driving behaviours through 15 
smartphone applications facilitates the detection of risky activities, such as sudden braking, rapid 16 
acceleration, and distracted driving, which are common precursors to accidents. Addressing these 17 
behaviours early allows for the implementation of targeted interventions, the creation of safer traffic 18 
environments, and the development of more effective road safety measures. Additionally, this proactive 19 
approach supports driver education on safe practices, ultimately reducing the likelihood of accidents and 20 
contributing to long-term road safety improvements. 21 

This study focuses on central Athens, an urban environment with dense road networks and 22 
complex traffic dynamics. It integrates telematics data from smartphone applications with police-reported 23 
crash records to investigate the spatial and temporal dimensions of unsafe traffic events and their 24 
relationship with crash occurrences at 478 intersections. The research uses advanced statistical techniques 25 
and machine learning models to classify intersections based on crash risk, identify critical hotspots, and 26 
explore the factors influencing crash likelihood. 27 

Finally, the research contributes to a deeper understanding of the factors influencing crash risk by 28 
leveraging smartphone-based telematics data and advanced analytical methods [16], [17]. The findings 29 
are expected to inform urban planning, traffic management, and road safety strategies, ultimately 30 
improving road safety outcomes and reducing the socio-economic burden of traffic crashes. This 31 
proactive approach, grounded in real-time monitoring and predictive analytics, aligns with global goals to 32 
enhance road safety and mitigate the impact of traffic incidents on public health and well-being. 33 
 34 
METHODS 35 

This study adopts a comprehensive and multi-faceted methodological framework to investigate 36 
the relationship between unsafe driving events and crash occurrences. By leveraging telematics data 37 
collected from a smartphone application and integrating it with crash data, the analysis focuses on 478 38 
intersections across central Athens. The methodologies employed include clustering analysis, local spatial 39 
analysis, feature importance evaluation using machine learning techniques, multicollinearity assessment, 40 
and dimensionality reduction. These approaches enable a detailed examination of the spatial and temporal 41 
dynamics of unsafe traffic events and their correlation with crash risk. The integration of telematics and 42 
crash datasets provides a robust foundation for uncovering complex patterns, enhancing the understanding 43 
of crash risk factors, and identifying critical intersections within a dense urban network. 44 

 45 
Study Area and Data Sources 46 

The study area encompasses the broader region of Athens, Greece, characterised by a dense urban 47 
road network. Road intersections, defined as points where two or more roads meet, cross, or diverge, 48 
serve as the focal points of the analysis. Data processing was conducted using OpenStreetMap (OSM) 49 
graph networks (see Figure 1), where nodes represent points (e.g., intersections or other significant 50 
features), and edges represent connections between nodes (e.g., roads).  51 
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 1 

 2 
Figure 1: Study network of Athens, used for OSM data. 3 

 4 
To obtain spatial data for this study, the bounding box of the Athens region was defined using 5 

latitude and longitude coordinates. This bounding box served as the area of interest for retrieving road 6 
network data through the OverPass API in conjunction with the OSMnx library. The graph_from_bbox 7 
function, configured with the network_type parameter set to “all,” was used to retrieve a comprehensive 8 
graph network of the area. 9 

 10 
Intersection Identification 11 

The retrieved graph network was processed to isolate road intersections. Initially, the dataset 12 
included all nodes and edges in the specified area, including nodes representing road characteristics 13 
changes rather than actual intersections. To refine this dataset, intersections were identified using filtering 14 
methods, explaination of which can be seen in Figure 2 to extract the exact locations of intersections: 15 
1. Crash Database Integration: The Greek Traffic Police Crash Database was used to identify 16 

intersections with recorded crashes. This database includes detailed information about crash 17 
occurrences, such as the names of the two streets involved. To ensure focus on unique intersections, 18 
duplicate entries based on street names were removed, resulting in 739 unique intersections. 19 

2. Filtering for Intersection Points: Using the two street names associated with each recorded crash, the 20 
edge dataset derived from OSMnx was filtered to identify the corresponding geometries for each 21 
street (e.g., Streetname_1 and Streetname_2). GeoDataFrames were created for both streets, 22 
containing their respective geometries. 23 

3. Spatial Overlay for Intersection Extraction: Spatial overlays were performed to determine the 24 
intersection points between the geometries of Streetname_1 and Streetname_2. The overlay function 25 
from the GeoPandas library was used for this purpose, generating a new GeoDataFrame containing 26 
the geometries of intersection points. 27 

4. Clustering and Intersection Point Refinement: In cases where multiple geometries were identified for 28 
a single intersection, the clustering algorithm DBSCAN was applied to group the points and compute 29 
centroids representing the precise intersection locations. This ensured that a single point described 30 
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each intersection. This ensured an accurate representation of intersection locations, ultimately 1 
yielding 530 intersections. 2 

 3 
The identified intersections were visualised on a Folium map to verify their accuracy and alignment with 4 
the crash records; see Figure 2  . 5 
 6 

 7 
Figure 2: Plot of Crashes that occurred in intersections on a Folium Map. 8 

 9 
Telematics Data 10 
 Telematics data were collected from a smartphone application that monitors driver’s behaviour. 11 
This dataset included: 12 
• Metrics Recorded: Harsh braking, harsh acceleration, and speeding events were recorded for each 13 

driver's trip. 14 
• Dataset Overview: The data comprised 257 unique drivers completing 2,615 trips over two months, 15 

resulting in over 3.5 million data points. Most recorded events were non-harsh braking or non-16 
speeding, reflecting the traffic conditions of central Athens. 17 

The telematics data provided high-resolution spatial insights into driving behaviours, offering a granular 18 
view of unsafe driving events (Figure 3).  19 
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 1 
Assignment of Telematics Data to Intersections 2 

The dataset was further enhanced by integrating crash records with telematics data derived from 3 
smartphone applications. This telematics data included unsafe traffic events, such as harsh braking and 4 
acceleration, recorded with high spatial resolution. By associating unsafe traffic event data with identified 5 
intersections, the study enabled spatial analyses of crash occurrences and their correlation with unsafe 6 
driving behaviours. 7 

To correlate unsafe driving events with crash occurrences, telematics data were assigned to 8 
intersections (see Figure 4): 9 
• Intersection Influence Area: Each intersection was represented by its centroid, with a 50-meter radius 10 

defined as its influence area. This radius was chosen based on best practices in the literature. 11 
• Data Aggregation: Telematics events falling within the defined radius of each intersection were 12 

aggregated and linked to the corresponding intersection. This facilitated evaluating how unsafe 13 
driving behaviours correspond to crash counts at specific locations. 14 

 15 

Figure 3: Telematics data collected in Athens urban roads. 
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 1 
Statistical and Machine Learning Analysis 2 
 A combination of statistical and machine learning methods was employed to analyse the data: 3 
• Statistical Analysis: Descriptive statistics were computed to summarise the spatial distributions of 4 

crashes and unsafe driving events. Correlations between telematics metrics and crash occurrences 5 
were also examined. 6 

• Geospatial Analysis: Spatial patterns of crashes and unsafe driving events were analysed using local 7 
spatial statistics to identify high-risk areas and "dangerous" hotspots. 8 

• Machine Learning Techniques: 9 
o Feature Importance: Algorithms such as Random Forests and Gradient Boosting were used to 10 

evaluate the importance of telematics features (e.g., harsh braking, acceleration) in predicting 11 
crash risk. 12 

o Dimensionality Reduction: Principal Component Analysis (PCA) was applied to reduce 13 
multicollinearity among features and streamline the dataset for predictive modelling. 14 

o Clustering: DBSCAN and other clustering techniques were used to group high-risk intersections 15 
based on similar patterns of unsafe driving behaviours and crash occurrences. 16 

The combination of statistical and machine learning approaches allowed for identifying complex 17 
relationships and developing predictive models for crash risk at intersections. 18 
 19 
Model Evaluation 20 

The predictive models were evaluated using standard metrics such as accuracy, precision, recall, 21 
and F1-score. These metrics ensured the reliability of the models in classifying intersections based on 22 
crash risk. Insights from the models were used to identify key factors influencing crash occurrences and 23 
to validate the role of unsafe driving events as predictors. 24 

This multi-layered methodology ensured a robust analysis of the relationship between unsafe 25 
driving events and crash occurrences, leveraging cutting-edge tools and techniques to provide actionable 26 
insights for traffic safety management. 27 

 28 

Figure 4: Telematics data assigned to intersection with centroids. 
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RESULTS  1 
 2 
Data Processing and Summary Statistics 3 

After integrating telematics data with crash records, a comprehensive dataset comprising 929,543 4 
data points was created. These data points were spatially joined to intersections using a 50-meter buffer 5 
radius around each intersection's centroid. This spatial association ensured that the telematics events were 6 
accurately linked to their corresponding intersections, enabling more precise analysis of unsafe driving 7 
behaviours in proximity to crash-prone areas. 8 

The telematics data included detailed driver behaviour metrics such as harsh braking, harsh 9 
acceleration, and speeding events. To facilitate analysis, the dataset was aggregated at the intersection 10 
level. Key aggregated metrics were computed for each intersection, including the total number of trips, 11 
the frequency of harsh events, speeding flags, and the number of lanes. 12 

Three key ratios were derived to quantify unsafe driving behaviours at intersections: 13 
• Harsh Braking Ratio: This metric was calculated as the ratio of harsh braking events to the total 14 

number of trips recorded at an intersection, reflecting the prevalence of this behaviour in the area. 15 
• Harsh Acceleration Ratio: Similarly, this ratio represented the proportion of trips with harsh 16 

acceleration events, providing insights into aggressive driving patterns. 17 
• Speeding Ratio: This metric was computed as the ratio of speeding flags to total trips, highlighting 18 

intersections where drivers frequently exceeded speed limits. 19 
To enrich the dataset, crash data from the Greek Traffic Police database were integrated. This 20 

data included the count of crashes for each intersection, which was subsequently categorised into three 21 
risk levels: Low, Medium, and High. This categorisation provided a clear framework for analysing crash 22 
risk and its relationship with unsafe driving behaviours at intersections. 23 

The resulting dataset was the foundation for further analysis, enabling a comprehensive 24 
understanding of how telematics-based driving behaviours correlate with crash occurrences across urban 25 
intersections. 26 

 27 
Feature Distributions 28 

The distributions of key features provided valuable insights into driving behaviour and 29 
intersection characteristics. The Harsh Braking Ratio, which represents the proportion of trips involving 30 
harsh braking events, showed that most intersections exhibited low ratios. This indicates that harsh 31 
braking was not a widespread behaviour across the majority of intersections. However, a small subset of 32 
intersections displayed higher harsh braking ratios, suggesting localised issues potentially linked to road 33 
design, traffic flow, or driver habits. 34 

The Speeding Ratio, calculated as the proportion of trips involving speeding events, revealed a 35 
similar pattern. Speeding events were generally uncommon across intersections, with the majority of 36 
intersections showing low speeding ratios. However, some intersections showed higher concentrations of 37 
speeding, possibly indicating areas where road characteristics or speed limits were less effective at 38 
curbing speeding behaviours. 39 

Finally, the Number of Lanes distribution highlighted that intersections with one or two lanes 40 
were the most prevalent. Intersections with three or more lanes were less common, reflecting the urban 41 
structure of central Athens, where narrow roads and intersections exist in the majority. These insights into 42 
the number of lanes help contextualise driving behaviour metrics, as wider intersections might 43 
accommodate higher speeds or more complex traffic patterns, influencing unsafe driving behaviours. 44 

Overall, these feature distributions provide a foundational understanding of the variability in 45 
driving behaviours and infrastructure characteristics across intersections, setting the stage for further 46 
analysis of their relationship with crash occurrences. The descriptive results of which can be seen in the 47 
Figure 5 below. 48 
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1 

 2 
Crash Risk Classification 3 

The crash risk classification process categorized intersections into three distinct levels based on 4 
the number of recorded crashes: Low Risk, Medium Risk, and High Risk. Intersections with only one 5 
recorded crash were classified as Low Risk, making up the majority of the dataset with 398 intersections. 6 
Medium Risk intersections, defined as those with 2–3 crashes, accounted for 70 intersections. Lastly, 7 
High Risk intersections, with 4 or more crashes, were the least frequent, comprising only 10 8 
intersections. This classification reflects the natural imbalance in crash data, with most intersections 9 
experiencing few crashes and a small subset identified as critical hotspots. 10 

The initial class distribution revealed significant imbalances across the three risk categories, as 11 
shown in the left panel of Figure 6. Low-risk intersections were outnumbered the dataset, while high-risk 12 
intersections were underrepresented. This imbalance created a challenge for predictive modelling, as 13 
machine learning algorithms typically perform poorly with skewed class distributions. 14 

To address this issue, the Synthetic Minority Oversampling Technique (SMOTE) was applied to 15 
balance the dataset. SMOTE oversamples the minority classes (Medium and High Risk) by generating 16 
synthetic examples based on their feature space, resulting in an even distribution across all categories. 17 
The right panel of Figure 6 illustrates the balanced class distribution after applying SMOTE, where the 18 
number of intersections in each risk category is equalised. This step ensured that the predictive models 19 
were trained on a balanced dataset, improving their ability to classify intersections accurately across all 20 

Figure 5: Features Distribution without oversampling 
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risk levels. This balanced dataset was subsequently used in the modelling phase, enabling the 1 
development of robust models capable of identifying intersections at higher risk of crashes. 2 

 3 

 4 
Figure 6: Class of Risk Distribution before and after SMOTE. 5 

Predictive Modelling 6 
 7 
Random Forest Classifier 8 

The Random Forest classifier was employed to predict crash risk categories for intersections 9 
using key features such as the harsh braking ratio, speeding ratio, and the number of lanes. This model 10 
demonstrated a robust overall performance with an accuracy of 76%. However, the performance varied 11 
across the three crash risk categories due to the inherent imbalance in the dataset, which persisted despite 12 
applying SMOTE. 13 

For Low-Risk intersections, the model achieved a high precision of 93% and a recall of 80%, 14 
reflecting its ability to correctly classify most intersections with minimal crash risk. In contrast, the 15 
performance for Medium Risk intersections was moderate, with a precision of 40% and a recall of 57%, 16 
indicating challenges in accurately identifying intersections with 2–3 crashes. The model struggled the 17 
most with High-Risk intersections, achieving a precision of only 14% and a recall of 50%. This limitation 18 
highlights the difficulty of accurately predicting intersections with 4 or more crashes, even with 19 
oversampling techniques. 20 
 21 
Table 1: Random Forest Classifier Performance Summary 22 

Crash Risk Category Precision Recall F1-Score 

Low Risk 93% 80% High 

Medium Risk 40% 57% Moderate 

High Risk 14% 50% Low 

 23 
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The confusion matrix, see Figure 7, revealed that the model performed exceptionally well in 1 
correctly classifying low-risk intersections but frequently misclassified medium and high-risk 2 
intersections, potentially due to overlapping feature distributions and the relatively small size of the high-3 
risk class 4 

 5 

This analysis underscores the importance of further refining the feature set and exploring 6 
additional modelling techniques to improve the classification of medium- and high-risk intersections. 7 
Despite these challenges, the Random Forest classifier provided valuable insights into the key factors 8 
influencing crash risk at intersections. 9 

 10 
XGBoost Classifier 11 

The XGBoost classifier was implemented to enhance the predictive performance of crash risk 12 
classification. This advanced model improved overall accuracy by 80%, outperforming the Random 13 
Forest classifier. The enhanced performance highlights the strength of XGBoost in handling complex 14 
patterns and relationships within the dataset, particularly for the high-risk category. 15 

For Low-Risk intersections, the XGBoost classifier achieved a precision of 94% and a recall of 16 
84%, demonstrating its reliability in accurately classifying intersections with minimal crash risk. The 17 
performance for Medium Risk intersections remained moderate, with a precision of 44% and a recall of 18 
57%, similar to the Random Forest classifier. However, the most significant improvement was observed 19 
for High-Risk intersections. The XGBoost model achieved a precision of 29% and a recall of 100%, 20 
successfully identifying all high-risk intersections in the test dataset. 21 

 22 
Table 2: XGBoost Classifier Performance Summary 23 

Crash Risk Category Precision Recall F1-Score 

Low Risk 94% 84% High 

Medium Risk 44% 57% Moderate 

High Risk 29% 100% Moderate 

Figure 7: Confusion matrix for the model performance, with Random Forest Classifier 
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 1 
The confusion matrix revealed that the XGBoost classifier made significant strides in correctly 2 

identifying high-risk intersections, addressing a critical limitation observed in the Random Forest model. 3 
However, the classification of medium-risk intersections continued to present challenges, likely due to 4 
feature overlaps and class complexity. 5 
 6 

 7 
Figure 8: Confusion matrix for the model performance, with XGBoost classifier. 8 

The XGBoost classifier improved overall accuracy and class-specific performance, particularly 9 
for high-risk intersections. These results underline its suitability for crash risk prediction and potential to 10 
identify critical hotspots for proactive safety interventions. 11 
 12 
 Feature Importance 13 
 The feature-important analysis provided valuable insights into the contribution of various 14 
predictors to crash risk classification. Among the features examined, the Harsh Braking Ratio emerged as 15 
the most significant predictor of crash risk. This highlights the strong correlation between frequent harsh 16 
braking events and crash-prone intersections, reinforcing the importance of this unsafe driving behaviour 17 
in identifying high-risk locations. 18 

The Speeding Ratio was identified as the second most important feature in the analysis. While 19 
less critical than harsh braking, speeding was particularly relevant for high-speed intersections, where 20 
drivers are likelier to exceed speed limits. This behaviour increases the likelihood of severe crashes, 21 
making speeding an essential factor for targeted safety interventions. 22 

The Number of Lanes was found to be less predictive overall but still played a meaningful role in 23 
distinguishing low-risk intersections. Wider intersections with more lanes might experience greater traffic 24 
complexity. Still, they do not necessarily correlate directly with crash risk in the same way that driver 25 
behaviours like harsh braking and speeding do. 26 
 27 
Model Evaluation 28 
The evaluation of the classification models highlighted the potential of telematics-based data in enhancing 29 
the understanding of crash risk factors at urban intersections. Integrating telematics data, such as harsh 30 
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braking and speeding events, provided a more dynamic and granular approach to analysing crash risks 1 
compared to traditional crash data alone. 2 

Between the models, the XGBoost classifier demonstrated superior performance, achieving 3 
higher overall accuracy and excelling in classifying high-risk intersections. The model’s ability to 4 
correctly identify all high-risk intersections reflects its effectiveness in capturing complex patterns and 5 
relationships within the dataset. By comparison, the Random Forest model showed strong performance 6 
for low-risk intersections but struggled with medium- and high-risk categories. 7 

Despite these advances, challenges remained with imbalanced class distributions, particularly for 8 
medium-risk intersections. This issue suggests the need for further techniques, such as advanced 9 
oversampling methods, enhanced feature engineering, or ensemble modelling, to improve classification 10 
performance for this category. These findings underscore the critical role of telematics data in proactive 11 
crash risk management and highlight areas for future research and methodological improvement. 12 
 13 
DISCUSSION 14 

This study demonstrates the value of integrating telematics data with crash records to advance 15 
urban traffic safety analysis. The results highlight the importance of unsafe driving behaviors, particularly 16 
harsh braking, as critical predictors of crash risk. By leveraging telematics data, this study offers a 17 
proactive approach to understanding and mitigating traffic risks, moving beyond the traditional reliance 18 
on historical crash data. 19 

The findings underscore the capability of telematics data to provide a more granular and dynamic 20 
view of driving behaviours at urban intersections. The spatial assignment of telematics events, such as 21 
harsh braking and speeding, enabled the identification of patterns that correlate strongly with crash 22 
occurrences. The Harsh Braking Ratio was consistently the most significant predictor of crash risk, 23 
emphasising the need for targeted interventions at intersections with frequent braking events. Meanwhile, 24 
speeding, although less prevalent, played an important role in identifying high-risk intersections, 25 
particularly those with higher speed limits. 26 

Applying machine learning techniques, particularly XGBoost, proved effective in uncovering 27 
complex relationships between unsafe driving behaviours and crash risks. The model's ability to correctly 28 
identify all high-risk intersections demonstrates the value of advanced modelling techniques in traffic 29 
safety research. However, the challenges encountered with medium-risk intersections suggest that further 30 
refinement is needed in feature selection and class balancing techniques. 31 

The imbalance in crash risk categories, even after applying SMOTE, presented difficulties in 32 
accurately classifying medium-risk intersections. This reflects a broader challenge in traffic safety 33 
research, where high variability in crash data can obscure patterns for less frequent but significant 34 
categories. Addressing this issue requires further exploration of advanced data augmentation techniques 35 
or ensemble models to improve classification performance. 36 

This research also has implications beyond traffic safety. The insights into unsafe driving 37 
behaviours have potential applications in urban planning, traffic management, and commercial sectors 38 
like car insurance. For instance, programs linking insurance premiums to driving behaviours could benefit 39 
from the granular metrics provided by telematics data. 40 

While this study successfully demonstrates the potential of telematics data for crash risk 41 
prediction, several limitations must be addressed in future research. The reliance on data from a single 42 
urban area (Athens) limits the generalizability of the findings. Expanding the analysis to other cities with 43 
varying road infrastructures and traffic conditions would provide a more comprehensive understanding of 44 
the relationship between telematics events and crash risks. Additionally, incorporating other contextual 45 
factors, such as weather conditions and traffic volume, could enhance the predictive power of the models. 46 

In conclusion, this study highlights the transformative potential of telematics data for proactive 47 
traffic safety management. By integrating high-resolution behavioural data with crash records, this 48 
research offers actionable insights for reducing crash risks and improving urban road safety. Future work 49 
should focus on refining predictive models and exploring broader applications of telematics data in 50 
transportation and safety planning. 51 



Peithis, Koliou and Yannis  

15 
 

 1 
CONCLUSIONS 2 

This study highlights the transformative potential of integrating telematics data with traditional 3 
crash records to enhance urban traffic safety analysis. By focusing on unsafe driving behaviours, such as 4 
harsh braking and speeding, and their spatial association with crash occurrences, the research provides a 5 
proactive framework for identifying high-risk intersections and informing targeted interventions. 6 

The findings underline the significant role of telematics-derived metrics, particularly the Harsh 7 
Braking Ratio, as critical predictors of crash risk. The incorporation of advanced machine learning 8 
models, such as XGBoost, demonstrated strong performance in classifying intersections by crash risk, 9 
particularly for high-risk categories. However, challenges with medium-risk intersections emphasise the 10 
need for further methodological advancements to handle class imbalances and refine feature selection. 11 

This research has important implications for traffic management, urban planning, and road safety 12 
strategies. By leveraging granular behavioural data, policymakers and practitioners can implement more 13 
effective safety interventions, design safer road environments, and enhance traffic monitoring systems. 14 
Moreover, the insights derived from telematics data extend beyond traffic safety, offering potential 15 
applications in fields such as insurance and driver education. 16 

Despite its contributions, this study is not without limitations. The analysis was confined to 17 
intersections in central Athens, which may limit the generalizability of the findings. Future research 18 
should explore the application of this framework in diverse urban and rural settings and incorporate 19 
additional contextual factors, such as weather conditions, traffic density, and road design characteristics. 20 

In conclusion, integrating telematics data and crash records represents a significant advancement 21 
in proactive traffic safety management. This study lays the groundwork for data-driven approaches to 22 
reducing crash risks and improving road safety in urban environments by providing actionable insights 23 
and identifying key risk factors. Future efforts should focus on expanding the scope of analysis and 24 
further refining predictive models to maximise their utility in real-world applications. 25 
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