Data-Driven Urban Road Safety Classification Integrating Telematics, Machine Learning, and Spatial Analysis

Paraskevi Koliou

Dr., Transport Engineer

Together with:

Stelios Peithis, George Yannis, Simone Paradiso

Department of Transportation Planning and Engineering National Technical University of Athens

Road Safety on Five Continents 20th international RS5C conference Leeds, UK from 3–5 September 2025

Outline

1. Introduction

2. Objectives

3. Methodology

4. Results

5. Conclusion

The team

Paraskevi Koliou

Stelios Peithis

George Yannis

Simone Paradiso

Introduction

Why does it matter?

- ➤ Road crashes are a significant public health issue, with over 1.19 million annual fatalities worldwide
- Crash risk is shaped by driver behaviour (speeding, braking, acceleration), environmental conditions, and road infrastructure deficiencies.
- > Traditional crash analysis relies heavily on police reports and retrospective data, limiting proactive safety planning.
- This study introduces a data-driven approach, integrating telematics, machine learning, and spatial analysis, to classify urban road segments into safe vs unsafe categories and guide proactive interventions.

Objectives

1. Classify urban road segments by safety level

Develop a machine learning model to distinguish Safe vs.
 Unsafe segments for proactive risk assessment.

2. Integrate diverse data sources

• Combine telematics (driver behaviours), crash records, and road network data for a holistic view of urban road safety.

3. Assess behavioural risk factors

 Quantify the impact of speeding, harsh braking, and sudden acceleration on crash likelihood.

4. Address data imbalance in crash prediction

 Apply resampling techniques (SMOTE) to ensure reliable detection of unsafe road segments.

5. Support evidence-based safety interventions

 Translate predictive outputs into practical recommendations such as speed enforcement, better signage, and safer junction design.

Methodology

1. Study Area & Data Sources

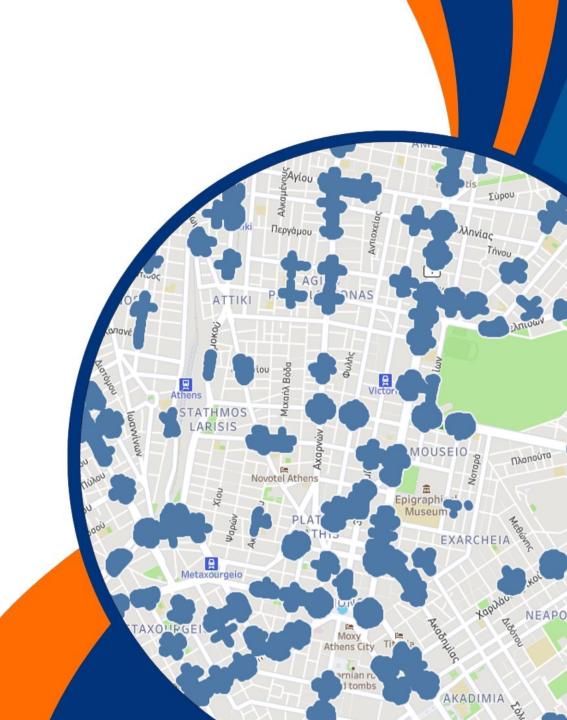
- Location: Athens, Greece.
- Data inputs:
 - Crash data from Greek authorities (geocoded via OSMnx).
 - Telematics data: 2,614 trips, 257 drivers, 8 municipalities.
 - Road networks: OpenStreetMap (OSM).

2. Data Processing

- Crash records aligned with road segments.
- Driving behaviour features (speed variability, braking frequency, acceleration).
- Normalisation to account for traffic volume/exposure variations.

3. Modelling Approach

- XGBoost classifier for risk classification.
- SMOTE to balance Safe vs Unsafe classes.
- Performance measured with precision, recall, F1-score, k-fold cross-validation.
- Comparative models: Logistic Regression, SVM (for benchmarking).



Results

1. Classification Outcomes:

- •Safe F1-score = 0.86, Unsafe F1-score = 0.80.
- •Strong performance across both classes.

Table 1: Summary of Dataset Characteristics

Category	Counts
Count of Drivers	257
Count of Trips	2614
Count of Attica Municipalities	8

Table 2: Classification Report for XGBoost Model Performance

	Precision	Recall	F1-Score	Support
Safe	0.88	0.83	0.86	18
Unsafe	0.77	0.83	0.8	12

2. Feature Importance:

•Top predictors → Speed variability, braking frequency, acceleration patterns.

3. Behavioral Correlations:

- •High crash counts in areas with frequent harsh braking and sudden accelerations.
- •Roads with high congestion → fewer acceleration spikes, but low-density roads → more aggressive driving.

4. Spatial Insights:

- •Scatter plots confirm **strong correlation** between crash counts and risky driving metrics.
- •Spatial heatmaps identified arterial roads and intersections as the **riskiest segments**.

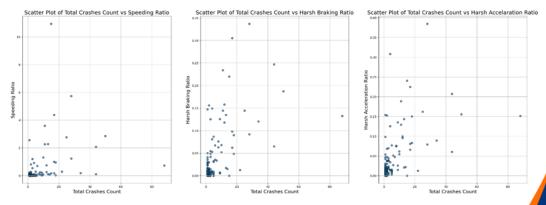


Figure 1: Scatter Plots of Total Crash Counts vs. Key Driving Behavior Metrics

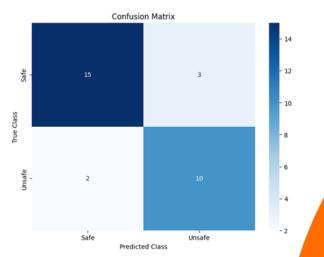


Figure 2: Confusion Matrix for XGBoost Model Performance

Conclusions

- ➤ Telematics, ML, and Spatial Analysis enable proactive crash risk classification.
- Aggressive driving behaviours are strongly linked to unsafe road segments.
- Predictive modelling supports targeted interventions: speed enforcement, signage, lane redesigns.
- Practical applications: real-time monitoring, driver feedback systems, smarter infrastructure investments.
- Future work: Incorporate environmental data (weather, lighting) and test across different cities for broader scalability.

Data-Driven Urban Road Safety Classification Integrating Telematics, Machine Learning, and Spatial Analysis

Paraskevi Koliou

Dr., Transport Engineer

Together with:

Stelios Peithis, George Yannis, Simone Paradiso

Department of Transportation Planning and Engineering National Technical University of Athens

Contact Information:

Dr. Paraskevi Koliou, Research Associate, NTUA
Department of Transportation Planning and Engineering
Email: evi_koliou@mail.ntua.gr
Website: https://www.nrso.ntua.gr/p/evikoliou/

