Analyzing Hard Braking Events of Automated Shuttles from Naturalistic Urban Pilot Sites

George Yannis

NTUA Professor

Together with:
Marios Sekadakis and Apostolos Ziakopoulos

Department of Transportation Planning and Engineering National Technical University of Athens

2025 IRCOBI Europe conference

The SHOW project

- ➤ 66 project partners from 13 EU-countries:
 - National Technical University of Athens
- Duration of the project:
 - 48 months (January 2020 September 2024)
- > Framework program:
 - Horizon 2020 The EU Union Framework Programme for Research and Innovation - Mobility for Growth (Grant agreement No 875530).
- Project website:
 - Full information at: <u>show-project.eu</u>

Project Objectives

S AUTOMATED URBAN MOBILITY

- The SHOW project aimed at developing shared automation operating models for worldwide adoption.
- The project vision was to investigate the integration of AVs into various transport schemes.
- > SHOW conducted large-scale trials across 21 cities, transporting over 150,000 passengers and completing more than 5,000 cargo deliveries.

Introduction

- Cooperative, Connected, and Automated Mobility (CCAM) is rapidly expanding, yet its safety impacts are not fully understood.
- ➤ Hard Braking (HB) events are a key indicator of safety performance for automated shuttles in real traffic.
- This study analyses real-world data from 10 European pilot sites within the SHOW project to understand the safety performance of automated shuttles in daily operation.

Objectives & Data

- Main objective: to identify the factors that influence HB events and to capture their variations across different European cities.
- ➤ The dataset includes 1,796 daily shuttle observations and a total of 4,820 HB events: one of the largest analyses of automated shuttle operations in naturalistic conditions.
- Thresholds were kept constant across all sites, and unique HB events were extracted from high-frequency data, ensuring consistency and comparability in event detection.

Methodology

- A Negative Binomial regression model was chosen because the data showed strong overdispersion, with variance far exceeding the mean.
- The explanatory variables in the model included average shuttle speed, acceleration variance, and the pilot site as a categorical factor.
- ➤ To ensure that site-specific traffic conditions and operational strategies were not overlooked, a random intercept structure was included, making the results more robust and comparable across locations.

Key Results

- ➤ Higher average speeds significantly increased the likelihood of HB events: risks of faster shuttle operation in complex traffic environments.
- > Acceleration variance showed a strong positive association with HB frequency: less smooth driving patterns directly translate into harsh brakings.
- Substantial differences were observed across the 10 pilot sites: local operational and infrastructural contexts strongly affect safety outcomes.

Variable	Estimate	Std. Error	z-value	p-value			
Intercept	-4.938	0.232	-21.267	<0.0001	***		
Average Speed	0.292	0.024	12.256	<0.0001	***		
Average Acceleration Variance	0.052	0.010	5.133	<0.0001	***		
Site: Brno [Ref. Cat. Linköping]	1.579	0.302	5.225	<0.0001	***		
Site: Carabanchel [Ref. Cat. Linköping]	3.262	0.210	15.500	<0.0001	***		
Site: Graz [Ref. Cat. Linköping]	5.962	0.287	20.790	<0.0001	***		
Site: Karlsruhe [Ref. Cat. Linköping]	4.098	0.289	14.164	<0.0001	***		
Site: Klagenfurt [Ref. Cat. Linköping]	6.179	0.269	22.963	<0.0001	***		
Site: Les Mureaux [Ref. Cat. Linköping]	2.738	0.183	14.933	<0.0001	***		
Site: Pörtschach [Ref. Cat. Linköping]	6.057	0.210	28.894	<0.0001	***		
Site: Tampere [Ref. Cat. Linköping]	1.455	0.330	4.407	<0.0001	***		
Site: Trikala [Ref. Cat. Linköping]	5.127	0.268	19.101	<0.0001	***		
Dependent variable: Hard Braking Counts per day							

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

George Yannis, Analyzing Hard Braking events of Automated Shuttles from Naturalistic Urban Pilot Sites

Null deviance: 3109.5 on 1795 df. Residual deviance: 1218.4 on 1784 df. AIC: 4843.4

Site Variations & Effects

- ➤ Linköping recorded the lowest HB counts, reflecting smoother operations.

 Klagenfurt, Pörtschach, Graz, and Trikala had the highest rates: more challenging conditions.
- ➤ Just 1 km/h increase in average speed led to additional 0.155 HB events per day: High sensitivity of safety performance to speed.
- A unit (m/s²)² increase in acceleration variance resulted in nearly one extra HB event per day (0.863): Vehicle control smoothness directly influences passenger comfort and safety.

Marginal Effects to the Mean (MEM)

					'	
Marginal Effects	Estim ate	SE	z	р	lower	upper
Average Speed	0.155	0.036	4.304	0.000	0.084	0.225
Average Acceleration Variance	0.863	0.121	7.133	0.000	0.626	1.101
Site: Brno [Ref. Cat. Linköping]	0.646	0.204	3.170	0.002	0.246	1.045
Site: Carabanchel [Ref. Cat. Linköping]	4.205	0.884	4.755	0.000	2.472	5.938
Site: Graz [Ref. Cat. Linköping]	64.933	22.191	2.926	0.003	21.440	108.426
Site: Karlsruhe [Ref. Cat. Linköping]	9.920	2.931	3.385	0.001	4.176	15.664
Site: Klagenfurt [Ref. Cat. Linköping]	80.705	27.912	2.891	0.004	25.999	135.412
Site: Les Mureaux [Ref. Cat. Linköping]	2.422	0.377	6.419	0.000	1.682	3.161
Site: Pörtschach [Ref. Cat. Linköping]	71.382	20.510	3.480	0.001	31.183	111.581
Site: Tampere [Ref. Cat. Linköping]	0.551	0.137	4.021	0.000	0.282	0.819
Site: Trikala [Ref. Cat. Linköping]	28.065	8.656	3.242	0.001	11.100	45.030

Discussion

- The results highlight that both speed and smoothness of operation are crucial for ensuring the safety of automated shuttles.
- ➤ Observed differences between sites can be explained by local traffic conditions, pedestrian volumes, and urban design.
- Findings point to the need for adaptive, contextaware automation strategies that can adjust to different urban conditions rather than applying uniform operational rules.

Implications & Conclusion

- ➤ Automated vehicle algorithms should be improved to anticipate and manage traffic interactions reducing harsh braking occurrence.
- The importance of site-specific deployment strategies that account for local infrastructure, traffic flows, and vulnerable road users is highlighted.
- ➤ Analyzing Hard Braking events offers valuable insights for advancing CCAM safety protocols
- > This supports the safe integration of automated shuttles into urban mobility systems across Europe.

Analyzing Hard Braking Events of Automated Shuttles from Naturalistic Urban Pilot Sites

George Yannis

NTUA Professor

Together with:
Marios Sekadakis and Apostolos Ziakopoulos

Department of Transportation Planning and Engineering National Technical University of Athens

2025 IRCOBI Europe conference

