Leveraging Smartphone Telematics for Urban Traffic Safety: A Data-Driven Analysis of Unsafe Driving

Paraskevi Koliou

Dr., Transport Engineer

Together with:

George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

12th European Conference on Injury, Prevention and Safety Promotion EU SAFETY 2025 1-2 October 2025 | Heraklion, Crete, Greece

EU | Safety 2025

Introduction

Research Significance

- > Road crashes are a significant public health issue, with over 1.19 million annual fatalities worldwide.
- Current road safety measures show slow progress, necessitating new approaches for crash prediction and prevention.
- ➤ Unsafe traffic events, such as harsh accelerations and braking, occur more frequently and are easily obtainable using smartphone app data.
- Leveraging real-time data from smartphone sensors offers a proactive approach to traffic safety analysis and intervention.

Objectives

 Explore the link between unsafe driving events (harsh braking/acceleration) and crashes

2. Identify high-risk junctions and driver behaviour

3. Develop predictive models to support targeted interventions

Data Sources

- 1. Driving Behavior Data: Collected from ~300 drivers in Athens using the OSeven smartphone app (https://oseven.io), recording instances of harsh acceleration and braking, 12,500+ events.
- 2. Traffic Metrics: Obtained from the Attica Traffic Management Center, including traffic volume, average speeds, and occupancy rates.
- 3. Road Characteristics: Extracted from Google Maps, detailing lane configurations and intersection characteristics.



Vouliagmenis Avenue

Methodology

1. Exploring the relationship between Unsafe Driving Events and Crash Occurrences: Investigate how unsafe traffic events relate to crash rates.

2. Leveraging Smartphone Data for Traffic Safety Analysis: Utilise smartphone app data to gather detailed insights on driving behaviour, including GPS, speed, acceleration, and braking patterns.

3. Identifying High-Risk Areas and Patterns: Use clustering and spatial analysis methods to detect hotspots and patterns of unsafe driving behaviour.

4. Developing Predictive Models for Crashes: Employ advanced machine learning techniques, such as Gradient Boosting, to identify key predictors of crashes and create robust predictive models.

5. Improving Road Safety Through Targeted Interventions:

Provide actionable insights for designing better road safety policies, improving infrastructure, and educating drivers on safer practices.

6. Enhancing Analytical Frameworks: Integrate advanced clustering, spatial, & feature importance analyses for a comprehensive, data-driven understanding of traffic safety challenges.

Summary of Key Techniques

Method	Techniques	Equations Used
Clustering	K-Means	$ ext{WCSS} = \sum_{i=1}^k \sum_{x \in C_i} \ x - \mu_i\ ^2$, where C_i is the i-th cluster, x is a data point, and μ_i is the cluster centroid.
	DBSCAN	$N(p) \geq ext{min_samples}$, where $N(p)$ is the number of points in the $arepsilon$ -neighborhood of p .
	Hierarchical Clustering	Distance: $d_A(x_i,x_j)=\sqrt{\sum_{k=1}^p(x_{ik}-x_{jk})^2}$, Linkage: $d_A(x_i,x_j)=\min\{d(x_i,x_j):x_i\in A,x_j\in B\}.$
Spatial Analysis	Local Moran's I	$I_i=rac{z_i}{m^2}\sum_{j=1}^n w_{ij}z_j$, where z_i and z_j are deviations from the mean, and w_{ij} is the spatial weight.
	Local Geary's C	$C_i=rac{1}{2m^2}\sum_{j=1}^n w_{ij}(x_i-x_j)^2$, where x_i and x_j are feature values, and w_{ij} is the spatial weight.
Machine Learning	Random Forest	Feature Importance: $\operatorname{Importance}(X_j) = \frac{1}{T} \sum_{t=1}^T I_t(X_j)$, where T is the number of trees, and $I_t(X_j)$ is the importance of feature X_j in tree t .
	Gradient Boosting	Boosting minimizes: $L(y,f(x))=\sum_{i=1}^n l(y_i,f(x_i))$, where l is the loss function and $f(x)$ is the prediction function.
Dimensionality Reduction	PCA	Projection: $X_{ m normalized}=rac{X-\mu_x}{\sigma_x}$, Eigenvector Decomposition: Data projected on components with largest eigenvalues.

Research Results

- Clustering: 3 junction profiles;
 Cluster 1 = high braking + high crash incidence.
- Predictors: Speed variability + braking metrics (Prob_Brk, Mod_Freq_Brk) = strongest crash predictors (>80% importance).
- Hotspots: Specific junctions (JM1, JM14, JM17, JV9) identified.
- Insights: Driver behaviour outweighs road design/traffic volume in crash risk.

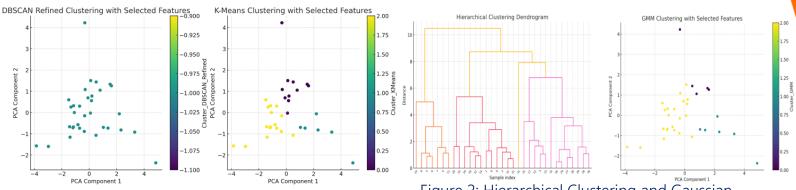


Figure 1: DBSCAN and K-Means Clustering Results

Figure 2: Hierarchical Clustering and Gaussian Mixture Models (GMM)

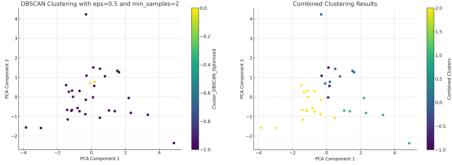
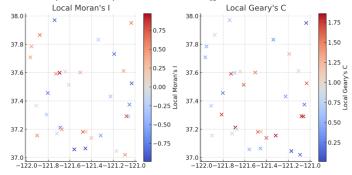


Figure 3: DBSCAN with expanded parameter range and Combined clustering analysis results



Junctions	Latitude	Longitude	UnsafeEvents	Local_Moran_I	Local_Geary_C
JM1	37.374540	-121.051114	7.618182	-0.718152	0.215783
JM14	37.212339	-121.688289	4.584000	-0.768262	1.859395
JM17	37.304242	-121.815146	3.770667	-0.338204	1.742921
JM21	37.611853	-121.105173	3.719540	0.459212	1.078684
JV9	37.065052	-121.457304	5.548628	-0.949162	0.444216

Figure 4: Significant Clusters and Outliers based on Local Moran's I and Local Geary's C values.

Conclusions

- 1. Driving Behaviour: Speed variability and aggressive braking behaviour (e.g., harsh braking) are strong predictors of crashes.
- 2. **Braking Metrics**: Probability of braking and frequency of harsh braking are among the **most critical factors** influencing unsafe driving events.
- 3. High-Risk Areas: Using spatial analysis tools specific junctions were identified as high-risk areas.
- 4. Cluster Analysis: Advanced clustering methods revealed distinct patterns of unsafe driving events, highlighting hotspots and spatial outliers.

Leveraging Smartphone Telematics for Urban Traffic Safety: A Data-Driven Analysis of Unsafe Driving

Paraskevi Koliou

Dr., Transport Engineer

Together with:

George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

Dr. Paraskevi Koliou, Research Associate, NTUA
Department of Transportation Planning and Engineering
Email: evi_koliou@mail.ntua.gr
Website: https://www.nrso.ntua.gr/p/evikoliou/

