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Abstract 
 
Segmentation models are pixel-wise classifications of an image, dividing it into pre-defined classes. 
Road segmentation, i.e., a binary segmentation of road and background pixels, is a powerful technique, 
especially useful for mapping areas with scarce data sources or as a backbone for road safety modelling, 
providing road data for further analysis. The unique road network characteristics, such as format, color 
and infrastructure constraints, allow for tailored model development. This study evaluates four state-of-
the-art models: LinkNet, U-Net++, GCB-Net, and DiResSeg, alongside post-processing techniques 
including clustering, thinning, smoothing, and grouping. As expected, LinkNet delivers high accuracy with 
relatively fast training, even on large datasets. In contrast, the complex architecture of U-Net++ results 
in significantly longer training times. Among models specifically designed for road segmentation, the 
convolutional kernel size appears to impact computational demand more than it does predictive 
performance. As for the post-process techniques, even the simplest ones are valuable to reduce noise, 
although the high level of confidence from the original models makes it difficult to differentiate noise from 
actual disconnected road segments. This work offers a practical comparison of accessible techniques 
to aid researchers in building efficient segmentation pipelines for road safety applications. 
Keywords: Road segmentation, Post-processing, Aerial imagery, LinkNet, U-Net, GCB-Net, DiResSeg, Graph 
models. 
 

1. Introduction 

Automated road extraction has been a topic of research for many years. What first started as a complex 
segmentation process based on universal properties of road sections, such as very gradual changes of 
width and direction, long extensions and almost constant gray level (Barzohar & Cooper, 1996), has 
reached advanced levels with the proliferation of deep learning techniques and the publication of large 
publicly available labeled datasets (Chen et al., 2022; Lian et al., 2020). 
 
Road extraction can be subdivided as a two-step process: road area and road centerline extraction. 
Segmentation of a road area has been successfully applied using different deep learning techniques 
architectures, such as graph convolutional network (Cui et al., 2021), deep neural network (Li et al., 
2021), residual network (Mattyus et al., 2017) and convolutional neural networks (Costea & Leordeanu, 
2016; Manandhar et al., 2019). After locating potential road areas, the centerline can be extracted using 
thinning algorithms. Thinning can be done both by traditional machine learning or by deep learning-
based methods (Chen et al., 2022). 
 
Among the datasets used for model training, the most popular ones, likely due to open access 
availability, are the Massachusetts roads dataset (Mnih, 2013), the DeepGlobe Extraction Challenge 
(Demir et al., 2018) and the SpaceNet road dataset (Etten et al., 2018). All three datasets provide aerial 
images with high resolution and their corresponding labeled road segments in a binary mask format: road 
pixels are classified as 1 and background pixels, as 0. 
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In this research, we compare the performance of four state-of-the-art segmentation models on the Deep 
Globe Extraction Challenge dataset (Demir et al., 2018): (1) LinkNet (Chaurasia and Culurciello, 2017.), 
(2) U-Net++  (Z. Zhou et al., 2018), (3) GCB-Net (Zhu et al., 2021) and (4) DiResSeg (Ding & Bruzzone, 
2021). The dataset was selected due to its open availability on the Kaggle platform, eliminating the need 
for further registration. As a pre-processing step, we explore using different image sizes as training 
inputs. We also compare the models performance in terms of speed of training and convergence, 
completeness and correctness metrics using different input image and kernel sizes. 
 
After training the segmentation models, different post-processing techniques were applied to the output 
for performance improvement. The techniques used were chosen based on previous literature findings: 
(Laptev et al., 2000) cite the use of edge detection followed by edge grouping as a common post-
processing approach; (Mokhtarzade et al., 2008) use a fuzzy shell clustering to vectorize a road raster 
map identified through neural networks; (Mattyus et al., 2017) use graph vectorization to improve road 
mapping results. The specific methods used during this research are described in the Methods section. 
 
Results indicate that LinkNet is a strong model, achieving high evaluation metrics with fast convergence 
before performance plateaus. DiResSeg produced comparable results but required more training 
epochs and longer processing time. In contrast, the remaining two architectures fell short within our 
training set. Generally, the post-processing techniques tested were effective in reducing noise; however, 
they occasionally misclassified truly disconnected road segments as noise, leading to a reduction in 
recall. 
 
Following this Introduction, the remainder of this paper is organized as follows: Section 2 covers the 
Materials and Methods, highlighting the data and models used; Section 3 covers the Results and 
Discussion; Section 4, Conclusion, covers the final thoughts and suggestions for future work 
development. 

2. Materials and Methods 

2.1 Data Preparation 

Road extraction models were trained using the DeepGlobe Extraction Challenge database (Demir et al., 
2018). The dataset contains 6226 aerial images with their respective labeled masks, and 2.344 aerial 
images without masks. Each image has a resolution of 0.5 meters per pixel and pixel-size of 1024 x 1024. 
The labeled part of the dataset was subdivided into three datasets: train, validation and test datasets; 
each with respectively 4604, 872 and 750 (approximately 74:14:12) non-overlapping images, randomly 
selected using a defined seed number. 
 
The dataset was pre-processed using a modified version of the Notebook uploaded on Kaggle by 
Ashwath (2021). Instead of using the one-hot-encode format, both images and masks were normalized 
to [0, 1] intervals. Also, two resizing options were added: using built-in OpenCV functions for the direct 
resize of the images, with the corresponding loss of resolution; and cropping the images for the desired 
size, thus increasing the number of images in the dataset. Augmentation was also increased relative to 
the referenced notebook to include: the possibility of 90 degrees flips, blurring from 3 to 7-pixel kernels, 
and adjustments on the brightness contrast. 
 
All steps of the code-based analyses were conducted in Python, and the main libraries used were 
OpenCV, PyTorch and Segmentation Models PyTorch (Iakubovskii, 2019). The models were trained on 
GPU NVIDIA GeForce RTX 2080. 
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2.2  Model training 

LinkNet is based on a residual connection encoder-decoder architecture, where the results of each 
encoder block is added to the corresponding layer on the decoder-block, allowing to maintain spatial 
information that otherwise would have been lost in the downsizing initial part (Chaurasia & Culurciello, 
2017). Also, they use residual blocks inside their encoder blocks.  
 
U-Net was initially built for biomedical image segmentation (Ronneberger et al., 2015). It is based on 
symmetrical encoder-decoder paths that allow for precise localization of the learned features. U-Net++ 
is a nested U-Net architecture that uses convolutional and residual blocks when connecting the outputs 
of each encoder layer to the corresponding decoder layer, in order to bridge the semantic gap between 
the feature maps (Z. Zhou et al., 2018). 
 
GCB-Net (Zhu et al., 2021) has a similar structure to LinkNet, using encoder-decoder architecture with 
residual blocks. The authors added a step at the end of each residual block which is a global context 
information incorporating block (GCA block). They also used a bottleneck between the encoder and 
decoder with multi-parallel dilated convolutional layers. 
 
DiResSeg is a segmentation model that combines the U-Net and FCN (Long et al., 2015) architectures, 
with the goal of increasing completeness of the road topology regardless of losing information about 
road boundaries (Ding & Bruzzone, 2021). They use a layer-rearranged version of Resnet to compose the 
encoder and a simple decoder with three serial deconvolutional layers, using an asymmetrical 
arrangement for their model. 
 
Figure 1 shows a simplified representation of each model’s architecture, where the blue layers represent 
each encoder block; the orange layers represent the decoder blocks; the green later represents the 
bottleneck block and the light blue represents the nested layers. Readers are invited to refer to the 
original papers for the full description of the encoder and decoder blocks used for each layer. 
 

 
Figure 1: Simplified representation of each model architecture: a) LinkNet; b) U-Net; c) GCA; and d) 

DiResSeg. 
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The model used as a backbone for the U-Net++ and LinkNet models, ResNet34 (He et al., 2015), consists 
on a residual network with 34 parameter layers, where a residual (shortcut) connection is made every 
two layers, increasing the output dimensions when needed. 
 
Finally, optimizer and loss functions were not part of the comparison task pursued during this research. 
The optimizer used was the PyTorch Adam optimizer with 0.001 learning rate, and the loss function used 
was the Jaccard Loss, defined by Equation 1, and available through the Segmentation Models PyTorch 
open-source code (Iakubovskii, 2019). Training and validation logs were stored per epoch. Training was 
limited to either 24 hours; 100 epochs or 5 consecutive epochs with no IoU improvement on the 
validation dataset, whatever happens first. 
 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐿𝑜𝑠𝑠 =  1 −  
|𝑃 ∩ 𝑇|

|𝑃 ∪ 𝑇|
= 1 −  

∑(𝑃 ∙𝑇)

∑(𝑃 + 𝑇− 𝑃 ∙𝑇) + 𝜀
 (1) 

 
Where P corresponds to the predicted pixels, T to the target pixels and ε is a small constant to avoid 
division by zero. 

2.3  Post-processing 

The first method employed was region growing using the flood fill algorithm from the Scikit-image library. 
This technique identifies contiguous regions with similar intensity values starting from seed points, either 
strictly equal or within a defined similarity threshold. For this study, the algorithm was applied to a 
Gaussian-smoothed version of the segmentation output (σ = 2). The output image was divided into four 
quadrants, and up to 2 random pixels classified as road per quadrant, if any were identified within 1000 
trials, were selected to be used as seed points. The threshold for region growth was defined as 0.3 
considering pixels within the range [0, 1]. These values were selected by trial and error. 
 
The second approach applied graph-based segmentation guided by Canny edge detection. Two 
implementations were tested: one using NetworkX for explicit graph construction and another using 
Scikit-image's region-labeling utilities. The method consists of four main steps: (i) a graph is built from 
the binary segmentation mask, where each predicted road pixel is kept as a node if connected to other 
road pixels from its 4-connected neighbors (up, down, left, right); (ii) the graph is segmented by 
identifying connected components, and only components larger than a defined threshold are retained, 
forming a refined mask that removes small, isolated predictions; (iii) the Canny edge map is used to 
sharpen boundaries, but only edge pixels that intersect with the retained components are preserved, 
avoiding noise from background edges; and (iv) morphological closing is applied using a n x n square 
kernel to fill small gaps and reconnect discontinuities in the segmented road network. 
 
After empirically testing various thresholds, considering output performance and computational time, 
the Canny edge thresholds were defined as 100 and 200, the component size threshold for NetworkX 
library was defined at 500 pixels and the kernel-size for morphological closing was defined set to 5x5. 
 
We also implemented an energy-based post-processed technique, inspired by the Conditional Random 
Fields (CRF) work from Krähenbühl and Koltun (2011). In this case, we used the probability map outcome 
from the last layer of each model as the prediction input. High-confidence pixels—those with predicted 
probabilities above 0.9 for the road class or below 0.1 for the background—were selected as markers for 
segmentation. To guide the propagation of these markers, we constructed a gradient map combining 
edge information from both the original input image and the model’s probability map. Edge detection 
was performed using the Farid and Simoncelli (2004) derivative filters. From the resulting edge maps, we 
retained the top 80% of the most prominent edge pixels (by gradient magnitude) to emphasize strong 
structural boundaries. These components were then passed to the Scikit-image’s random walker 
function, which treats segmentation as a diffusion process: the algorithm assigns labels to ambiguous 
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pixels by simulating a random walker that is more likely to remain within regions of similar intensity or 
gradient strength. 
 
Figures 2 and 3 show visual examples of simplified applications for each of the methods described 
earlier. 
 

 
Figure 2: Visual representation of region growth (top) 

and energy-based segmentation (bottom). Source: 
Scikit-image documentation 

Figure 3: Visual representation of graph-
based segmentation. Source: Baeldung 

2.4 Metrics 

The metrics used for comparison were Intersection of Union (IoU), precision (or correctness), recall (or 
completeness) and F1-Score, which are the most used metrics for road extraction segmentation models 
(Lian et al., 2020) and defined respectively by Equations 2 to 5: 
 
𝐼𝑜𝑈 =  

𝑃 ∩ 𝑇

𝑃 ∪ 𝑇
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 
𝐹1 =  2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 
Where P corresponds to the predicted pixels and T to the target pixels. Accordingly, TP stands for True 
Positive, that is, the predicted pixels that correspond to target pixels, FP stands for False Positive and FN 
stands for False Negative. We also calculated the IoU considering a flexible threshold of a 3x3 matrix, 
considering that, for the target road mapping, small variabilities on the thresholds of the predicted roads 
don’t compromise the results. 
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3. Results and Discussion 

3.1 Model Training results 

Table 1 summarizes the results for each model architecture across the tested combinations of input 
resolutions and kernel sizes. 
 
A key observation is that combining large models with high-resolution inputs proved impractical, as 
these configurations demanded significant computational resources without yielding proportional 
performance gains. This was particularly evident in the case of U-Net++, whose complex architecture 
led to high memory consumption and extended training times. While U-Net++ showed promising results 
in preliminary tests, it became impractical to train within the imposed 24-hour limit. In contrast, LinkNet 
demonstrated exceptional efficiency, achieving high performance while converging quickly. DiResSeg 
also delivered strong results, though it required longer training periods to reach similar performance 
levels. 
 
Interestingly, the impact of kernel size varied between models. For GCB-Net, smaller kernel sizes 
outperformed the larger ones originally proposed by Ding & Bruzzone (2021), despite our overall results 
not fully matching those reported in their study. DiResSeg, however, benefited from larger kernels, 
suggesting that optimal kernel configuration is architecture dependent. 
 
Secondly, even though the same early stopping was applied across all models, some architectures 
plateaued faster than others. This suggests that the early stopping criteria may have been too 
conservative for this dataset, potentially limiting the full learning capacity of slower-converging models. 
Due to time constraints, alternative thresholds could not be tested. Models performed consistently 
better when they ran over more epochs. 
 
Third, the idea of testing a flexible IoU threshold was to provide a more flexible penalization, but it seems 
to have overcompensated for noisy results. Traditional metrics such as IoU and F1-score proved more 
reliable for evaluating segmentation accuracy, even if they impose stricter penalties on slight errors, and 
recall and precision can be used to understand if the model is lacking connectivity or outputting noisy 
results. Overall, results were considered satisfactory. The original winner of the Deep Globe Challenge 
was (L. Zhou et al., 2018), who performed a 0.6342 IoU on their benchmark test dataset. 

3.2 Post-processing results 

To avoid redundancy and focus on maximizing performance, post-processing techniques were applied 
only to the best-performing model from each architecture, as shown in Table 2. These selected 
configurations were: 

• LinkNet trained with the 512 x 512 cropped images; 
• DiResSeg trained with 1024 x 1024 original images and 7 x 7 kernel size; 
• GCB-Net trained with 1024 x 1024 original images and a 3 x 3 kernel size; and 
• U-Net++ trained with the 512 x 512 cropped images. 

Typically, the post-processing techniques identified in the literature are targeted at diminishing noise, 
but they have the downside of mis-identifying correct predictions as noise and, therefore, decrease 
overall IoU metrics. 
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Table 1: Pre-processing results for each model 

Method Pixel Size Model 
Kernel 

Size 
Training 

Dataset Size 
Training 

Time (min) 
Total 

epochs End of training IoU Precision Recall F1 Score 
Flexible IoU 

(3 pixels) 
None 1024 GCB 7 4604 - - 24h Time Out - - - - - 

Resize 512 GCB 7 4604 962 26 No improvement 0.3063 0.3372 0.8001 0.4553 0.8194 
Crop 512 GCB 7 6506 1313 27 No improvement 0.3984 0.4163 0.9100 0.5551 0.9154 
None 1024 GCB 3 4604 709 36 No improvement 0.4474 0.4631 0.9332 0.6045 0.9395 

Resize 512 GCB 3 4604 140 23 No improvement 0.3401 0.3912 0.7484 0.4883 0.7640 
Crop 512 GCB 3 15048 1599 10 24h Time Out 0.4175 0.4402 0.9020 0.5734 0.9104 
None 1024 DiResSeg 3 4604 206 21 No improvement 0.4585 0.6419 0.6335 0.6129 0.6558 

Resize 512 DiResSeg 3 4604 62 11 No improvement 0.2613 0.5346 0.3487 0.3913 0.3769 
Crop 512 DiResSeg 3 15093 288 34 No improvement 0.4798 0.6600 0.6519 0.6341 0.6628 
None 1024 DiResSeg 7 4604 1114 48 No improvement 0.5736 0.7404 0.7529 0.7160 0.7406 

Resize 512 DiResSeg 7 4604 1560 10 24h Time Out 0.3124 0.6541 0.3813 0.4511 0.4087 
Crop 512 DiResSeg 7 15085 1626 8 24h Time Out 0.4751 0.5627 0.7709 0.6297 0.7809 
None 1024 LinkNet 4 4604 216 14 No improvement 0.4084 0.4557 0.8342 0.5654 0.8323 

Resize 512 LinkNet 4 4604 126 23 No improvement 0.4514 0.6667 0.6039 0.6010 0.6149 
Crop 512 LinkNet 4 15119 258 28 No improvement 0.5895 0.7563 0.7417 0.7285 0.7792 
None 1024 U-Net++ 3 4604 - 1 24h Time Out 0.1514 0.7003 0.1727 0.2300 0.5271 

Resize 512 U-Net++ 3 4604 455 28 No improvement 0.3598 0.7100 0.4297 0.4955 0.4637 
Crop 512 U-Net++ 3 15057 1917 2 24h Time Out 0.4167 0.5061 0.7369 0.5716 0.7437 
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Table 2: Post-processing results for best performing models 

Segmentation Model Post-Processing Technique Main Library IoU Precision Recall F1 
LinkNet - - 0.5895 0.7563 0.7417 0.7285 
LinkNet Region growth Skimage 0.5622 0.8086 0.6882 0.6530 
LinkNet Graph-Based Segmentation Networkx 0.6027 0.8366 0.7108 0.6933 
LinkNet Graph-Based Segmentation Skimage 0.4049 0.7127 0.5471 0.5071 
LinkNet Energy based Skimage 0.5895 0.8401 0.6926 0.6811 

DiResSeg - - 0.5736 0.7404 0.7524 0.7160 
DiResSeg Region growth Skimage 0.5607 0.7330 0.7524 0.6484 
DiResSeg Graph-Based Segmentation NetworkX 0.6355 0.8074 0.7706 0.7266 
DiResSeg Graph-Based Segmentation Skimage 0.4159 0.6804 0.5770 0.5199 
DiResSeg Energy based Skimage  0.6115 0.8155 0.7316 0.7056 

GCB - - 0.4474 0.4631 0.9332 0.6045 
GCB Region growth Skimage 0.4535 0.4917 0.9054 0.5626 
GCB Graph-Based Segmentation Networkx 0.4479 0.4714 0.9358 0.5605 
GCB Graph-Based Segmentation Skimage 0.2102 0.2988 0.4841 0.2852 
GCB Conditional Random Fields Skimage 0.4295 0.4509 0.9374 0.5425 

U-Net++ - - 0.4167 0.5061 0.7369 0.5716 
U-Net++ Region growth Skimage 0.4235 0.5752 0.7208 0.5228 
U-Net++ Graph-Based Segmentation NetworkX 0.4169 0.5106 0.7927 0.5241 
U-Net++ Graph-Based Segmentation Skimage 0.2556 0.4034 0.5480 0.3471 
U-Net++ Energy based Skimage  0.3937 0.4779 0.7982 0.5023 

 
Although region growing shows clear potential for noise reduction, a simple seed-based flood approach 
is limited in its ability to distinguish between genuine road segments and noise or short disconnected 
elements, often leading to reduced overall performance. However, the technique holds potential for 
future algorithm improvement when combining region growth with intelligent seed selection or adaptive 
growth strategies, potentially guided by artificial intelligence or learning-based heuristics. These 
specificities in image segmentation are particularly researched within the medical and biology fields 
(Chen et al., 2024; Rasi & Deepa, 2022). 
 
Graph-based segmentation, as implemented in this study, produced mixed results: one method 
surpassed the original model outputs in terms of connectivity and precision, while the other 
underperformed significantly. In our implementation, the NetworkX-based method built a pixel-wise 
graph using direct connectivity to identify consistent road segments. In contrast, the Scikit-Image 
approach approximated connectivity using region adjacency graphs based on similarity, which proved 
less effective in this context. The strong topological structure of road networks supports the use of graph-
based techniques, which aligns with indications that Graph Neural Networks have great potential for 
road extraction, rather than relying on image information by itself (Lian et al., 2022). 
 
The energy-based technique applied in this study presented contradictory results. The imbalance 
between the confident markers delivered from the output probability maps and the noisy input images 
used to guide the energy labeling led to a consistent increase in precision, as the algorithm effectively 
suppressed false positives, but at the cost of a corresponding decrease in recall. As a result, overall 
segmentation quality measured by IoU and F1-score remained largely unchanged. While this approach 
conceptually resembles graph-based segmentation — both modeling label propagation across 
connected structures — the reliance on noisy input gradients limits its standalone effectiveness, 
although, as with all the other techniques mentioned, it gives ground for further algorithm improvement. 
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Figure 4 brings a visualization of results for each model and post-processing technique, in the following 
order: from top to bottom, representing respectively the LinkNet, DiResSeg, GCB and U-Net++; from left 
to right, there is the original input image, the labeled ground truth mask, the predicted mask without any 
post-processing step, the results for the region growth technique, the results for the NetworkX graph-
based technique, the results for the Scikit-Image graph-based technique and the results for the energy-
based technique. On the predicted mask, the regions filtered out by the post-processing techniques are 
highlighted by the red circles. 
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Figure 4: Full framework model outputs visualization. 

 
Despite performance differences, all the algorithms tested are capable of extracting meaningful 
information about road presence and its network. These outputs can be used for different applications, 
such as detecting unmapped roads, analyzing road network density and complexity, or even converting 
outputs into vector data for geometric analysis and safety assessment. Automatic quantification of 
horizontal curvature, for example, an attribute that has been considered as a proxy variable for crash or 
conflict occurrence in many studies (Ziakopoulos et al., 2021; Saleem & Persaud, 2017; Gooch et al., 
2016), could enable faster and more scalable safety assessments. Monitoring pavement condition 
through aerial footage is also a common approach (Outay et al., 2020), with road segmentation serving 
as a valuable pre-processing step for targeting specific analysis sites (Ranjbar et al., 2023). Another 
possible application for the field of road safety is post-disaster analysis based on aerial image (Sebasco 
& Sevil, 2022). 
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4. Conclusions 

This research conducted a comprehensive comparison of state-of-the-art segmentation models, 
including those specifically designed for road segmentation and others developed for general-purpose 
semantic segmentation. All models achieved satisfactory results on a highly challenging dataset, with 
Intersection over Union (IoU) scores approaching those of the original winner (L. Zhou et al., 2018) of the 
DeepGlobe Road Extraction Challenge—the benchmark used in this study. 
 
A series of post-processing techniques inspired by approaches in the literature were applied to the 
segmentation outputs. These techniques tended to improve either completeness (recall) or correctness 
(precision), but not both simultaneously, although graph-based segmentation was successfully able to 
increase overall IoU and F1-Score metrics. 
Before applying post-processing, various kernel sizes and input image resolutions were evaluated, along 
with the integration of a frozen pre-trained backbone to encourage earlier convergence. Among these 
factors, the number of training epochs had the most pronounced effect on model performance. This 
finding suggests that lightweight models, which enable faster training and hence more epochs within a 
fixed time budget, are preferable—particularly in practical scenarios where faster iteration and 
deployment are desired. 
 
The best Intersection of Union score achieved in our experiments was DiResSeg (Ding & Bruzzone, 2021), 
trained with a kernel size of 7 and using the original image dimensions, with its output improved by the 
graph-based segmentation post-processing step. The model reached convergence, during the training 
phase, in 48 epochs over 1114 minutes, and reached an IoU of 0.6355 and F1-Score of 0.7266 after the 
post-processing step. However, the best F1-Score was achieved by the LinkNet model (Chaurasia & 
Culurciello, 2017) trained with the cropped – therefore, larger – dataset, without passing through any 
post-processing. The model reached convergence in 28 epochs over 258 minutes and achieved an IoU 
of 0.5895 and F1-Score of 0.7285. 
 
As for the limitations of the research, it should be noted that only one dataset was used for both training 
and testing of the models. So, even though it is a very complete and challenging dataset, results might 
present some bias. Also, the models were fully trained – both encoder and decoder weights, for all model 
architectures. The use of pre-trained weights is well advertised throughout the literature, especially in 
the pursuit of faster convergence and smaller training periods. Lastly, in real world applications, fine-
tuning with the actual targeted data should be done, since groups of images might have peculiar 
characteristics, and therefore, although the consistency of some specific post-processing techniques is 
well noticeable, the actual metric values shouldn’t be taken as a final value for other studies. In future 
research, we would also like to experiment with a more lenient early termination criterion. Future 
research should focus on improving the models even further, by either focusing on Graph Neural 
Network for road segmentation development or fusing the best performing models into a combined 
output. 
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