

Júlia Alves Porto, Apostolos Ziakopoulos and George Yannis

National Technical University of Athens - NTUA

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101119590.

Introduction

- Applications of Road Segmentation: mapping remote areas, updating existing maps, analyzing road geometry
- Popular models for road segmentation rely on graph convolutional network, deep neural network etc.
- Research objective: provide a practical comparison of open-access and high performing models and post-processing techniques cited in the literature

• LinkNet (Chaurasia & Culurciello, 2017)

- Hyperparameters:
 - 4 encoder-decoder blocks
 - Use Batchnorm normalization
 - Base number of channels:[1024, 512]
 - ResNet-18 as encoder
 - No pre-trained weights

• Unet++ (Zhou et al., 2018)

- 5 depth layers
- Use Batchnorm normalization
- Base number of channels:[1024, 512]
- ResNet-18 as encoder
- No pre-trained weights

• GCB-Net (Zhu et al., 2021)

- Hyperparameters:
 - Base number of channels:[1024, 512]
 - Standard kernel size:[7, 3]

• DiResSeg (Ding and Bruzzone, 2021)

- Hyperparameters:
 - Base number of channels:[1024, 512]
 - Standard kernel size:[7, 3]

Training and metric parameters

- DeepGlobeChallenge Dataset (Demir et al., 2018)
- Adam optimizer with 0.001 learning rate
- Augmentation: 90° flipping, blurring, brightness contrast

• Jaccard Loss:
$$1 - \frac{|P \cap T|}{|P \cup T|} = 1 - \frac{\sum (P \cdot T)}{\sum (P + T - P \cdot T) + \varepsilon}$$

- F1-Score, IoU, Accuracy and Precision
- Early stop for 5 consecutive epochs with no improvement on IoU, 24 hours or 100 epochs
- Training on GPU NVIDIA GeForce RTX2080
- Dataset pre-processing: None, Resize, Crop

$$\frac{2 \times TP}{2 \times TP + FP + FN}$$

Precision

$$\frac{TP}{TP + FP}$$

Recall

$$\frac{TP}{TP + FN}$$

F1

$$2 \times \frac{Precision \cdot Recall}{Precision + Recall}$$

Results

Method	Pixel Size	Model	Kernel Size	Training Dataset Size	Training Time (min)	Total epochs	End of training	IoU	Precision	Recall	F1 Score	Flexible IoU (3 pixels)
None	1024	GCB	7	4604	-	-	24h Time Out	-	-	-	-	-
Resize	512	GCB	7	4604	962	26	No improvement	0.3063	0.3372	0.8001	0.4553	0.8194
Crop	512	GCB	7	6506	1313	27	No improvement	0.3984	0.4163	0.9100	0.5551	0.9154
None	1024	GCB	3	4604	709	36	No improvement	0.4474	0.4631	0.9332	0.6045	0.9395
Resize	512	GCB	3	4604	140	23	No improvement	0.3401	0.3912	0.7484	0.4883	0.7640
Crop	512	GCB	3	15048	1599	10	24h Time Out	0.4175	0.4402	0.9020	0.5734	0.9104
None	1024	DiResSeg	3	4604	206	21	No improvement	0.4585	0.6419	0.6335	0.6129	0.6558
Resize	512	DiResSeg	3	4604	62	11	No improvement	0.2613	0.5346	0.3487	0.3913	0.3769
Crop	512	DiResSeg	3	15093	288	34	No improvement	0.4798	0.6600	0.6519	0.6341	0.6628
None	1024	DiResSeg	7	4604	1114	48	No improvement	0.5 7 36	0.7404	0.7529	0.7160	0.7406
Resize	512	DiResSeg	7	4604	1560	10	24h Time Out	0.3124	0.6541	0.3813	0.4511	0.4087
Crop	512	DiResSeg	7	15085	1626	8	24h Time Out	0.4751	0.5627	0.7709	0.6297	0.7809
None	1024	LinkNet	4	4604	216	14	No improvement	0.4084	0.4557	0.8342	0.5654	0.8323
Resize	512	LinkNet	4	4604	126	23	No improvement	0.4514	0.6667	0.6039	0.6010	0.6149
Crop	512	LinkNet	4	15119	258	28	No improvement	0.5895	0.7563	0.7417	0.7285	0.7792
None	1024	U-Net++	3	4604	-	1	24h Time Out	0.1514	0.7003	0.1727	0.2300	0.5271
Resize	512	U-Net++	3	4604	455	28	No improvement	0.3598	0.7100	0.4297	0.4955	0.4637
Crop	512	U-Net++	3	15057	1917	2	24h Time Out	0.416 7	0.5061	0. 73 69	0.5716	0.7437

Post-processing techniques

Region growth

- Gaussian smoothening $\sigma = 2$
- 2 random road pixels per quadrant, if any
- Threshold = 0.3
- Flood fill from Scikit-image library

Post-processing techniques

Graph-based segmentation

- Guided by Canny edge detection
- Using NetworkX and Scikit-image
- Build a graph from the binary image based on 4-connected neighbor pixels
- Component size threshold
- Intersection with Canny-edge pixels threshold
- Morphological closing with a 5x5 kernel

Post-processing techniques

Energy-based segmentation

- Conditional Random Fields (Krähenbühl and Koltun, 2011)
- Markers: < 0.1 or > 0.9
- Walker guide: 80% of most prominent edges from original input and predicted probability map (Farid and Simoncelli, 2004)
- Random walker from Scikit-image

Segmentation Model	Post-Processing Technique	Main Library	IoU	Precision	Recall	F1
LinkNet	-	-	0.5895	0.7563	0.7417	0.7285
LinkNet	Region growth	Skimage	0.5622	0.8086	0.6882	0.6530
LinkNet	Graph-Based Segmentation	Networkx	0.6027	0.8366	0.7108	0.6933
LinkNet	Graph-Based Segmentation	Skimage	0.4049	0.7127	0.5471	0.5071
LinkNet	Energy based	Skimage	0.5895	0.8401	0.6926	0.6811
DiResSeg	-	-	0.5736	0.7404	0.7524	0.7160
DiResSeg	Region growth	Skimage	0.5607	0.7330	0.7524	0.6484
DiResSeg	Graph-Based Segmentation	NetworkX	0.6355	0.8074	o. 77 06	0.7266
DiResSeg	Graph-Based Segmentation	Skimage	0.4159	0.6804	0.5770	0.5199
DiResSeg	Energy based	Skimage	0.6115	0.8155	0.7316	0.7056
GCB	-	-	0.4474	0.4631	0.9332	0.6045
GCB	Region growth	Skimage	0.4535	0.4917	0.9054	0.5626
GCB	Graph-Based Segmentation	Networkx	0.4479	0.4714	0.9358	0.5605
GCB	Graph-Based Segmentation	Skimage	0,2102	0.2988	0.4841	0.2852
GCB	Conditional Random Fields	Skimage	0.4295	0.4509	0.9374	0.5425
U-Net++	-	-	0.4167	0.5061	0.7369	0.5716
U-Net++	Region growth	Skimage	0.4235	0.5752	0.7208	0.5228
U-Net++	Graph-Based Segmentation	NetworkX	0.4169	0.5106	0.7927	0.5241
U-Net++	Graph-Based Segmentation	Skimage	0.2556	0.4034	0.5480	0.3471
U-Net++	Energy based	Skimage	0.3937	0.4779	0.7982	0.5023

- Reduction of noise horizontally between post-processing techniques
- Unpaved roads captured by the model while not present in the training labels were not excluded by post-processing

Discussion and Conclusion

- Region Growth reduces noise, at the expense of removing some True Positive disconnected from the main road
- Graph-based segmentation can be very helpful for road segmentation given the graph-like structure of a road, as suggested by the growing use of Graph Neural Networks for road segmentation (Lian et al., 2022)
- Limitations: only one dataset, no pre-trained weights, strict early termination criteria, few ablation tests for models architecture

Júlia Alves Porto, Apostolos Ziakopoulos and George Yannis

National Technical University of Athens - NTUA

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101119590.

