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Introduction
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• Applications of Road Segmentation: mapping remote areas, 
updating existing maps, analyzing road geometry

• Popular models for road segmentation rely on graph convolutional 
network, deep neural network etc.

• Research objective: provide a practical comparison of open-access 
and high performing models and post-processing techniques cited 
in the literature
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Selected models
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• LinkNet (Chaurasia & Culurciello, 2017)
Encoder Block Decoder Block

• Hyperparameters:

– 4 encoder-decoder blocks

– Use Batchnorm 
normalization

– Base number of channels: 
[1024, 512]

– ResNet-18 as encoder

– No pre-trained weights



Selected models
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• Unet++ (Zhou et al., 2018)

• Hyperparameters:

– 5 depth layers

– Use Batchnorm 
normalization

– Base number of channels: 
[1024, 512]

– ResNet-18 as encoder

– No pre-trained weights



Selected models
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• GCB-Net (Zhu et al., 2021)

• Hyperparameters:

– Base number of channels: 
[1024, 512]

– Standard kernel size:     
[7, 3]



Selected models
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• DiResSeg (Ding and Bruzzone, 2021)

• Hyperparameters:

– Base number of channels: 
[1024, 512]

– Standard kernel size:     
[7, 3]



Training and metric parameters
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• DeepGlobeChallenge Dataset (Demir et al., 2018)

• Adam optimizer with 0.001 learning rate

• Augmentation: 90° flipping, blurring, brightness contrast

• Jaccard Loss: 1 −
𝑃 ∩ 𝑇

𝑃 ∪ 𝑇
= 1 −

σ(𝑃 ∙𝑇)

σ(𝑃 + 𝑇− 𝑃 ∙𝑇) + 𝜀

• F1-Score, IoU, Accuracy and Precision

• Early stop for 5 consecutive epochs with no improvement on 
IoU, 24 hours or 100 epochs

• Training on GPU NVIDIA GeForce RTX2080

• Dataset pre-processing: None, Resize, Crop
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Results
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Method Pixel Size Model Kernel Size
Training 

Dataset Size
Training 

Time (min)
Total 

epochs
End of training IoU Precision Recall F1 Score

Flexible IoU
(3 pixels)

None 1024 GCB 7 4604 - - 24h Time Out - - - - -

Resize 512 GCB 7 4604 962 26 No improvement 0.3063 0.3372 0.8001 0.4553 0.8194

Crop 512 GCB 7 6506 1313 27 No improvement 0.3984 0.4163 0.9100 0.5551 0.9154

None 1024 GCB 3 4604 709 36 No improvement 0.4474 0.4631 0.9332 0.6045 0.9395

Resize 512 GCB 3 4604 140 23 No improvement 0.3401 0.3912 0.7484 0.4883 0.7640

Crop 512 GCB 3 15048 1599 10 24h Time Out 0.4175 0.4402 0.9020 0.5734 0.9104

None 1024 DiResSeg 3 4604 206 21 No improvement 0.4585 0.6419 0.6335 0.6129 0.6558

Resize 512 DiResSeg 3 4604 62 11 No improvement 0.2613 0.5346 0.3487 0.3913 0.3769

Crop 512 DiResSeg 3 15093 288 34 No improvement 0.4798 0.6600 0.6519 0.6341 0.6628

None 1024 DiResSeg 7 4604 1114 48 No improvement 0.5736 0.7404 0.7529 0.7160 0.7406

Resize 512 DiResSeg 7 4604 1560 10 24h Time Out 0.3124 0.6541 0.3813 0.4511 0.4087

Crop 512 DiResSeg 7 15085 1626 8 24h Time Out 0.4751 0.5627 0.7709 0.6297 0.7809

None 1024 LinkNet 4 4604 216 14 No improvement 0.4084 0.4557 0.8342 0.5654 0.8323

Resize 512 LinkNet 4 4604 126 23 No improvement 0.4514 0.6667 0.6039 0.6010 0.6149

Crop 512 LinkNet 4 15119 258 28 No improvement 0.5895 0.7563 0.7417 0.7285 0.7792

None 1024 U-Net++ 3 4604 - 1 24h Time Out 0.1514 0.7003 0.1727 0.2300 0.5271

Resize 512 U-Net++ 3 4604 455 28 No improvement 0.3598 0.7100 0.4297 0.4955 0.4637

Crop 512 U-Net++ 3 15057 1917 2 24h Time Out 0.4167 0.5061 0.7369 0.5716 0.7437



Post-processing techniques

Region growth

• Gaussian smoothening σ = 2

• 2 random road pixels per quadrant, if 
any

• Threshold = 0.3

• Flood fill from Scikit-image library
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Post-processing techniques

Graph-based segmentation

• Guided by Canny edge detection

• Using NetworkX and Scikit-image

• Build a graph from the binary image based on 
4-connected neighbor pixels

• Component size threshold

• Intersection with Canny-edge pixels threshold

• Morphological closing with a 5x5 kernel
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Post-processing techniques
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Energy-based segmentation

• Conditional Random Fields (Krähenbühl 
and Koltun, 2011)

• Markers: < 0.1 or > 0.9

• Walker guide: 80% of most prominent 
edges from original input and predicted 
probability map (Farid and Simoncelli, 
2004)

• Random walker from Scikit-image



Results
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Segmentation 
Model

Post-Processing 
Technique

Main 
Library

IoU Precision Recall F1

LinkNet - - 0.5895 0.7563 0.7417 0.7285

LinkNet Region growth Skimage 0.5622 0.8086 0.6882 0.6530

LinkNet
Graph-Based 

Segmentation
Networkx 0.6027 0.8366 0.7108 0.6933

LinkNet
Graph-Based 
Segmentation

Skimage 0.4049 0.7127 0.5471 0.5071

LinkNet Energy based Skimage 0.5895 0.8401 0.6926 0.6811

DiResSeg - - 0.5736 0.7404 0.7524 0.7160

DiResSeg Region growth Skimage 0.5607 0.7330 0.7524 0.6484

DiResSeg
Graph-Based 

Segmentation
NetworkX 0.6355 0.8074 0.7706 0.7266

DiResSeg
Graph-Based 
Segmentation

Skimage 0.4159 0.6804 0.5770 0.5199

DiResSeg Energy based Skimage 0.6115 0.8155 0.7316 0.7056

GCB - - 0.4474 0.4631 0.9332 0.6045

GCB Region growth Skimage 0.4535 0.4917 0.9054 0.5626

GCB Graph-Based 
Segmentation

Networkx 0.4479 0.4714 0.9358 0.5605

GCB Graph-Based 
Segmentation

Skimage 0.2102 0.2988 0.4841 0.2852

GCB Conditional 
Random Fields

Skimage 0.4295 0.4509 0.9374 0.5425

U-Net++ - - 0.4167 0.5061 0.7369 0.5716

U-Net++ Region growth Skimage 0.4235 0.5752 0.7208 0.5228

U-Net++
Graph-Based 
Segmentation

NetworkX 0.4169 0.5106 0.7927 0.5241

U-Net++
Graph-Based 
Segmentation

Skimage 0.2556 0.4034 0.5480 0.3471

U-Net++ Energy based Skimage 0.3937 0.4779 0.7982 0.5023



Results
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• Reduction of noise horizontally between post-processing techniques

• Unpaved roads captured by the model while not present in the training labels 
were not excluded by post-processing



Discussion and Conclusion
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• Region Growth reduces noise, at the expense of removing 
some True Positive disconnected from the main road

• Graph-based segmentation can be very helpful for road 
segmentation given the graph-like structure of a road, as 
suggested by the growing use of Graph Neural Networks for 
road segmentation (Lian et al., 2022)

• Limitations: only one dataset, no pre-trained weights, strict 
early termination criteria, few ablation tests for models 
architecture
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