Exploring Safe and Eco Driving Behavior through Large-scale Data using Unsupervised Learning

Virginia Petraki

Transportation Engineer, Research Associate

Together with: Dimitris Nikolaou and George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

12th International Congress on Transportation Research

16-18 October 2025, Thessaloniki, Greece

Introduction

- Road crashes remain a major and growing global challenge, contributing to approximately 1.19 million fatalities annually
- ➤ Simultaneously, the transport sector accounts for around 25% of the EU's total CO₂ emissions and 31% of its total energy consumption
- Driving behavior is one of the most critical factors affecting road safety and efficiency
- Research often classifies trips and drivers into profiles (e.g., aggressive, distracted, risky, eco-conscious, safe), but the relationship between eco-driving and safedriving remains underexplored

Objectives

This study aims to explore the intersection of safe and eco-driving behavior using real-world trip data and unsupervised learning techniques

The following research questions guide the analysis:

- Q1. How can trips be meaningfully clustered according to driving context?
- Q2. What are the key behavioral parameters that characterize safe and eco-efficient driving styles?
- Q3. Do safe and eco-driving behaviors consistently align?

Methodology

> Two-Level K-Means Clustering Approach

Level 1: Trips segmented by route characteristics

Level 2: Each cluster was further divided using behavioral indicators

- Each clustering level followed a process:
- (1) determining the optimal number of clusters using the Silhouette method,
- (2) applying dimensionality reduction techniques (PCA), where appropriate,
- (3) performing clustering using K-means,
- (4) evaluating the classification quality.

Data Overview

- > The data was collected:
 - using smartphone sensors
 - provided by the OSeven Telematics Company
 - in an anonymized format
 - from 16,118 trips
 - over a 3-month period (March to May)
 - during the years 2023, and 2024
 - across Athens, Greece
- The 1st level clustering relies on variables such as the percentage of trip duration spent on urban, rural, and highway roads, and average trip speed

Variable Name	Description		Summary Statistics		1 st	2 nd
variable (varie	Min Median Q3		Q3	Level	Level	
Urban_prc	Percentage of trip duration spent on urban roads (Speed Limit<50)	0.00	59.56	81.98	•	
Rural_prc	Percentage of trip duration spent on rural roads (50 <speed Limit<80)</speed 	0.00	35.14	55.18	•	
Highway_prc Percentage of trip duration spent on highways (Speed Limit>80) Speed_Avg Average speed of the trip (km/h)		0.00	4.16	0.00	•	
		4.73	26.24	36.98	•	
Harsh_Brk_per_km	Number of harsh braking events per kilometer	0.00	0.08	0.27		•
MobilePhone_min_ per100km	Minutes of mobile phone usage per 100 kilometers	0.00	0.00	6.410		•
Speed_Q90	90 th percentile of speed during the trip	16.82	53.60	73.20		• /
Acc_QCV	Coefficient of variation of acceleration (QCV= $100 \times \frac{Q_3 - Q_1}{Q_3 + Q_1}$)	0.00	0.60	0.64		
Fuel_lit_per100km Fuel_lit_per100km Fuel_lit_per100km Fuel consumption measured in liters per 100 kilometers		2.39	8.28	10.79		•

The 2nd level clustering includes variables related to safety and fuel efficiency, like harsh braking events per kilometer, phone usage, high-speed tendencies (90th percentile of speed), variability in acceleration, and fuel consumption

1st Level Cluster Analysis

> 1st level clustering groups trips by road-type composition and average speed to represent the exogenous driving context (speed limits, geometry, traffic flow)

Isolating this context upfront contributes to more interpretable Level-2 safety and eco clusters that reflect behavioral differences rather than environmental conditions

> 3 clusters with silhouette widths ranging from 0.35 to 0.52

Cluster 1, is the largest and is characterized by a dominant share of urban road share and the lowest average speed

Cluster 3, is the smallest and features the highest average speed and the highest highway share.

Cluster	ſ	Speed_Avg	Urban_prc	Rural_prc	Highway_prc	Trips	Silhouette width
1	Urban- Oriented	23.48	83.49	16.09	0.52	7,675	0.52
2	Rural- Oriented	31.23	39.32	59.25	1.33	7,145	0.39
3	Highway- Oriented	62.30	28.95	28.70	41.27	1,298	0.35

2nd Level – Urban

- ➤ A 2nd level clustering was performed for urbanoriented trips
- ➤ To enhance interpretability and reduce dimensionality, PCA was applied, retaining the first 2 principal components, which explained 54% of the variance
- ➤ Fuel consumption and speed factor are the most influential variables in PC1, while in PC2, harsh braking events and phone use are the dominant contributors
- ➤ Model choice: Silhouette curve favors k = 3
- ➤ Inefficient—Safe: Low surrogate crash risk (limited harsh braking and distraction) but high fuel intensity
- ➤ Inefficient—Risky: Elevated surrogate crash risk combined with inefficient fuel use
- Eco-Safe: Favorable safety and efficiency metrics despite higher Q90 speeds, potentially reflecting higher motorway or rural trip share or decreased congestion

Loadings	PC1 (33.4 %)	PC2 (20.5 %)
Harsh_Brk_per_km	0.09	0.65
MobilePhone_min_per100km	0.21	0.58
Speed_Q90	-0.67	0.09
Acc_QCV	-0.23	0.48
Fuel lit per100km	0.67	-0.02

Cluster		Harsh_Brk_ per_km	MobilePhone_ min_per100km	Speed_ Q90	Acc _QCV	Fuel_lit _per100km	Trips	Silhouette width
1	1_1 Inefficient- Safe	0.116	7.023	37.482	0.570	12.025	3,418	0.31
2	1_2 Inefficient- Risky	0.630	73.235	40.746	0.612	11.712	1,065	0.15
3	1_3 Eco-Safe	0.178	6.497	60.786	0.616	7.285	3,192	0.25

2nd Level - Rural

- ➤ A 2nd level clustering was performed for ruraloriented trips
- ➤ To enhance interpretability, PCA was applied; the first two PCs explain 55% of variance
- PC1 reflects an efficiency—speed axis (↑ fuel intensity, ↓ Q90 speed), while PC2 captures kinematic aggressiveness (↑ acceleration variability, ↑ harsh braking)
- Model choice: Silhouette curve favors k = 2
- Risky-Inefficient: Elevated surrogate crash risk (more harsh events and distraction), moderate Q90 speeds, and higher fuel use—characteristic of volatile, mixed-traffic rural segments
- Eco-Safe: Low distraction and harsh events with best fuel economy and higher Q90 speeds consistent with steady, free-flow rural/motorway conditions

		Brk_per_km		0.28		0.60	
		Phone_min_per10	00km	0.33		-0.04	7
	Speed_			-0.62		0.11	
	Acc_Q			-0.12		0.79	
	Fuel_lit	z_per100km		0.64		0.01	
	Silhouette Method for Opti						
Average illhouts widh	0.3 - 0.1 - 0.1 - 0.0 - 1 - 2 - 0.1	3 4 5 6 Number of clusters k Groups 1	Harah, Brit, Per, Jan	MobilePhone_man_per1004	Speed_000	Acc, OCV	Fuel_M_per100em
Cluster	Harsh_Brk_ per_km	MobilePhone_ min_per100km	Speed_ Q90	Acc _QCV	Fuel_lit _per100km	Trips	Silhouette width
1 2_1 Risky- Inefficient	0.268	21.504	45.504	0.589	10.764	2,709	0.25

73.393

4.511

0.600

6.523

4,436

0.40

PC1 (33.8 %)

PC2 (21.0 %)

Loadings

0.127

2 2 Eco-Safe

Harsh Brk ner km

2nd Level - Highway

- ➤ A 2nd level clustering was performed for highway-oriented trips
- \rightarrow Model choice: The silhouette curve favors k = 3
- Aggressive-Inefficient: Highest speeds, more harsh events and volatility, with the worst fuel economy
- Eco-Safe: Smooth, attentive cruising—lowest harsh braking, low phone use, and best fuel economy at high but steady speeds
- Distracted-Efficient: Very high phone use and moderate fuel use

Clu	ıster	Harsh_Brk_ per_km	MobilePhone_ min_per100km		Acc _QCV	Fuel_lit _per100km	Trips	Silhouette width
1	3_1 Aggressive- Inefficient	0.170	1.959	111.866	0.645	7.229	375	0.20
2	3_2 Eco-Safe	0.043	1.649	100.989	0.605	5.442	876	0.30
3	3_3 Distracted- Efficient	0.089	44.881	105.287	0.602	6.433	47	0.22

Discussion

- ➤ The two-stage clustering framework identified eight distinct driver-behavior profiles
- Eco-safety is context-dependent. In steady-flow environments (rural/motorway), safety surrogates (low harsh events, low distraction) tend to align with fuel efficiency; in stop-and-go urban regimes, low-risk behavior can still be energy-inefficient due to congestion and idling
- ➤ Efficiency improves when moving from low—moderate speeds in urban/rural settings, but deteriorates at very high highway speeds

Conclusions

This study leveraged a two-level K-means clustering framework to analyze over 16,000 real-world trips and identify sustainable driving behaviors across different road contexts

- The findings reveal that the alignment between safe and ecodriving styles is not uniform but varies significantly depending on the driving environment
- Shifting trips toward smooth, attentive, steady-state operation can deliver dual benefits—lower crash risk and reduced fuel/emissions—especially outside dense urban conditions
- Cluster separation is moderate but actionable. Silhouette values are mid-range, suggesting adequate for targeted interventions rather than hard classification
- Future analysis can quantify the safety—eco performance trade—off using supervised models or/and a segment-level analysis.

Exploring Safe and Eco Driving Behavior through Large-scale Data using Unsupervised Learning

Virginia Petraki

Transportation Engineer, Research Associate

Together with: Dimitris Nikolaou and George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

12th International Congress on Transportation Research

16-18 October 2025, Thessaloniki, Greece

