Mapping Risk: Leveraging Telematics and Machine Learning to Analyze Crash Risks at Urban Intersections

Paraskevi Koliou

Transportation Engineer, Research Associate

Together with: Stelios Peithis, George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

12th International Congress on Transportation Research

Introduction

Why does it matter?

- ➤ Road crashes are a significant public health issue, with over 1.19 million annual fatalities worldwide.
- Crash risk is shaped by driver behaviour (speeding, braking, acceleration), environmental conditions, and road infrastructure deficiencies.
- Urban areas concentrate a large share of crashes due to high traffic density, complex intersections, and mixed roaduser behaviour.
- ➤ Intersections represent only 10–20% of the total road network yet contribute up to 50% of all urban crashes.
- Traditional safety analysis methods rely on historical crash counts, which are reactive and fail to capture real-time risk factors.

State-of-the-art

- ➤ The emergence of vehicular telematics, smartphonebased sensors, and the Internet of Things (IoT) allows for continuous monitoring of driver behaviour and traffic dynamics.
- ➤ Telematics data, such as harsh braking, rapid acceleration, and speeding events, offer fine-grained proxies for unsafe driving patterns.
- When combined with machine learning, these behavioural datasets enable predictive safety modelling, helping identify hazardous intersections before severe crashes occur.

Objectives

- Quantify the association between aggressive driving indicators, such as harsh braking, rapid acceleration, and speeding ratios, and the frequency of crashes at intersections.
- Develop a predictive modelling framework that leverages machine learning algorithms (including XGBoost, Random Forest, Gradient Boosting, and Logistic Regression) to estimate the likelihood of crash occurrence based on telematics-derived metrics.
- Evaluate the performance of these models using rigorous statistical measures (accuracy, precision, recall, and F1-score) to determine their reliability and predictive strength, particularly for identifying high-risk (unsafe) intersections.
- Apply geospatial analytics to map and visualise spatial clusters of hazardous locations, thereby providing actionable insights for urban traffic safety management.
- Support data-driven policy-making by demonstrating how real-time behavioural data can be used as an early-warning tool for proactive crash prevention and targeted safety interventions.

Methodology (1/2)

1. Study Area & Data Sources

- Location: Central Athens, Greece.
- The analysis includes **439 urban intersections** across the central municipalities of Athens, where traffic flow and driver behaviour are most heterogeneous.
- Data inputs:
 - Crash data from Greek authorities for 2019, covering all intersection-related incidents. Includes date, time, and street names, geocoded to precise coordinates.
 - Telematics data: 2,614 trips, 257 drivers, 8 municipalities.
 - Road networks: OpenStreetMap (OSM).

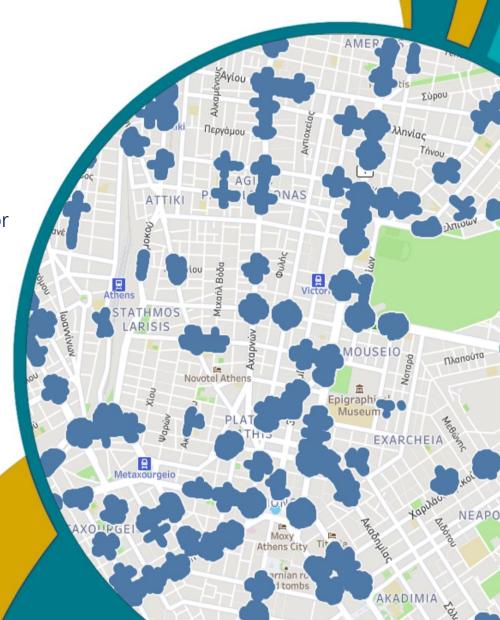
2. Data Processing

- Crash data were **geocoded** using **OpenStreetMap and the Overpass API** to match textual street names with **geographical coordinates**. Both datasets were **standardised under a unified coordinate system (EPSG: 2100**) for spatial compatibility.
- A 35-meter buffer zone was created around each intersection to capture nearby telematics events.
- •Through **spatial joining**, each te<mark>lematics rec</mark>ord was linked to its nearest intersection, enabling aggregation of key behavioural indicators:
 - Harsh Braking Ratio (per trip)
 - Harsh Acceleration Ratio (per trip)
 - Speeding Ratio (per trip)
- •Intersections were then classified based on crash history:
 - •Safe (Class 0): ≤1 crash in 2019
 - •Unsafe (Class 1): >1 crash in 2019

Methodology (1/2)

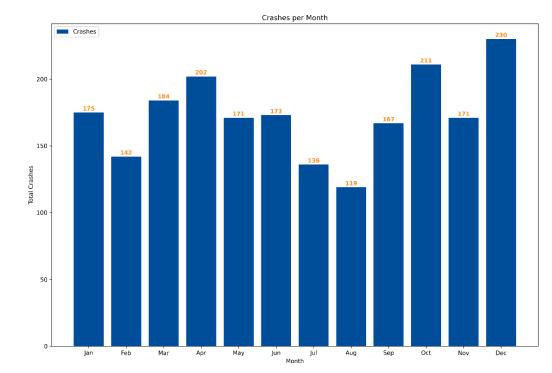
3. Modelling Approach

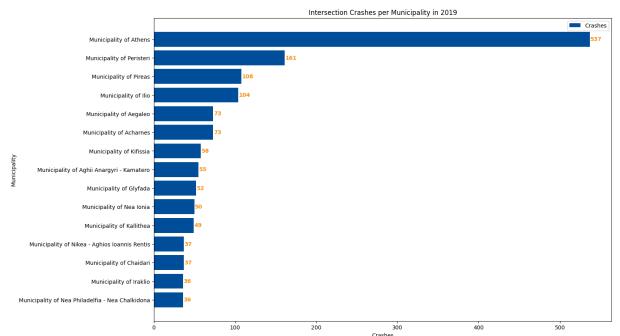
- •The dataset was divided into training (80%) and testing (20%) subsets using stratified sampling to preserve class balance.
- •To counter class imbalance (few unsafe intersections), the Synthetic Minority Oversampling Technique (SMOTE) was applied.
- •The primary model deployed was **XGBoost (Extreme Gradient Boosting)**, chosen for its ability to:
 - Handle non-linear relationships,
 - Manage imbalanced data, and
 - Deliver high predictive accuracy.
- Model evaluation was based on:
 - •Accuracy, Precision, Recall, and F1-score, with special emphasis on Recall for high-risk intersections.
- •Feature importance analysis identified Speeding Ratio, Harsh Acceleration, and Harsh Braking as the dominant predictors of intersection crash risk.



Results (1/2)

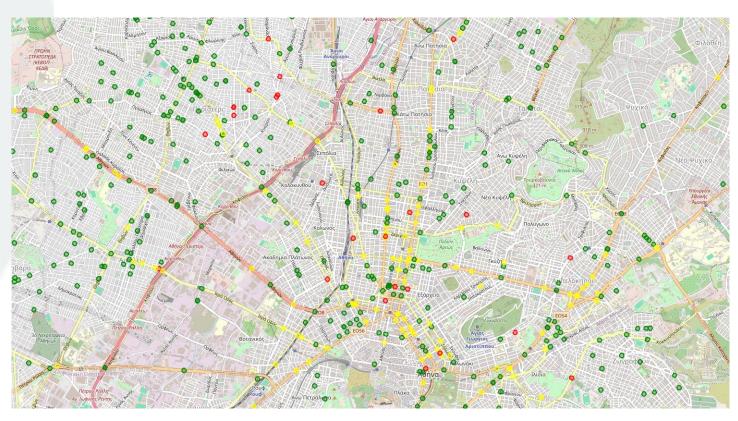
- •The XGBoost classifier achieved an overall accuracy of 74%, confirming a strong predictive capacity given the data imbalance.
- Detailed performance metrics:
- Precision: 0.83 (safe class) | 0.39 (unsafe class)
- •Recall: 0.84 (safe class) | 0.37 (unsafe class)
- Weighted Average F1-score: 0.74
- •The model performed very well in identifying safe intersections but had lower recall for the unsafe class, a common challenge in rare-event crash modelling.
- •Despite this, the framework demonstrates robust generalisation and potential for proactive risk identification when more balanced data become available.





Results (2/2)

- •Mapping results revealed spatial clustering of high-risk intersections within the dense urban core of Athens, where traffic complexity and mixed land uses are most intense.
- •Municipality of Athens alone accounted for over half of all recorded crashes (537 incidents), illustrating the influence of urban density and intersection geometry.
- •Areas exhibiting high ratios of harsh braking and speeding often coincided with intersections showing repeated crash occurrences, validating the model's capacity to identify latent risk zones.
- •Some intersections with few recorded crashes but high telematics event ratios were flagged as potential "hidden danger points", demonstrating the predictive and preventive value of the approach.



Conclusions

- Unsafe driving patterns are not randomly distributed but are spatially concentrated at intersections with complex geometry, high traffic volumes, and mixed land use.
- ➤ Telematics-derived indicators provide early-warning signals of potential safety issues, even where historical crash data are limited.
- The study illustrates how machine learning can operationalise real-world behavioural data into a risk classification framework for urban safety management.
- The proposed framework enables traffic authorities and urban planners to:
- Identify "danger zones" before severe crashes occur.
- Prioritise safety audits and targeted interventions at high-risk intersections.
- Incorporate behavioural analytics into smart city systems for continuous monitoring of traffic safety.

Mapping Risk: Leveraging Telematics and Machine Learning to Analyze Crash Risks at Urban Intersections

Paraskevi Koliou

Transportation Engineer, Research Associate

Together with: Stelios Peithis, George Yannis

E CONTROL OF THE CONT

Department of Transportation Planning and Engineering National Technical University of Athens

12th International Congress on Transportation Research

