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Abstract 
 
Existing literature suggests that fatigue impacts driver behavior and road safety negatively. The present study 
aims to investigate the effects of fatigue, particularly due to a lack of sleep, on driver behavior and road safety 
in both urban and highway environments. Α driving simulation experiment was conducted with 35 young 
drivers under controlled conditions. Participants drove in two phases: (i) well-rested and (ii) fatigued after sleep 
deprivation. The collected data were analyzed using linear regression models, to identify the effects of fatigue 
on key driving variables. The findings indicate that when fatigued, drivers exhibited increased speed and 
reaction time, shorter following distances, and reduced longitudinal acceleration. The effects were more 
noticeable in high-traffic conditions, where drivers showed a greater tendency to engage in risky behaviors. 
Drivers experiencing mild fatigue symptoms tended to underestimate them, leading to more aggressive driving 
behavior.  
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1. Introduction 

Traffic crashes remain a major public health concern, contributing significantly to mortality and economic loss 
worldwide. According to the World Health Organization (WHO), road traffic crashes are responsible for 
approximately 1.19 million fatalities annually, making them one of the leading causes of premature death, 
particularly among young adults (World Health Organization, 2023). Beyond the human toll, the financial 
burden of traffic collisions is substantial, with associated costs estimated at around 3% of the global Gross 
Domestic Product (GDP).  
 
Despite improvements in road safety measures and advancements in vehicle technology, driver-related 
factors continue to be a dominant cause of crashes, with fatigue strongly affecting performance (Williamson 
et al., 2011). Addressing driver fatigue has become a priority in road safety research, as it poses a serious 
threat to not only the driver but also passengers, pedestrians, and other road users. Fatigue-related crashes 
often result from prolonged driving hours, sleep deprivation, and circadian rhythm disruptions, all of which 
impair cognitive function, reduce reaction times, and increase the likelihood of critical errors on the road. 
Recent studies emphasize that drowsy driving significantly impairs cognitive and motor performance, affecting 
reaction times, decision-making abilities, and overall hazard perception. Research indicates that prolonged 
wakefulness can result in performance deficits comparable to those seen in individuals with elevated blood 
alcohol concentrations, highlighting the serious risks associated with fatigue-related driving (Lowrie & 
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Brownlow, 2020). Moreover, research highlights that night-time driving, extended work shifts, and long-haul 
trucking significantly increase the likelihood of fatigue-related crashes (G. Zhang et al., 2016). 
 
Furthermore, recent research continues to highlight the significant impact of fatigue on driving performance, 
particularly in relation to reaction time, lane deviation, and overall road safety. Fatigue-related impairments 
have been shown to reduce a driver’s ability to maintain lateral control, increase reaction times, and lead to 
more frequent lane departures, mimicking the effects of alcohol impairment (Costedoat et al., 2023). Studies 
using driving simulators have confirmed that sleep-deprived drivers experience significant performance 
deterioration, particularly in the morning and during long-haul trips (Caponecchia & Williamson, 2018). 
Furthermore, research has demonstrated that sleep deprivation of even two hours can substantially impair 
hazard perception and decision-making, leading to an increased risk of crashes (Lin et al., 2023). 
 
Experimental studies have also indicated that commercial truck drivers and night-shift workers are particularly 
vulnerable to fatigue-related crashes due to prolonged wakefulness and extended duty hours (Liu et al., 2019). 
Physiological monitoring using EEG and ECG data has further validated that fatigue leads to reduced cognitive 
alertness and impaired motor responses, highlighting the need for real-time driver monitoring and 
intervention strategies (Wang et al., 2023). These studies emphasize the importance of fatigue management 
in reducing the incidence of traffic crashes and improving overall road safety. 
 
This study aims to investigate the impact of fatigue due to sleep deprivation on driving behavior in both urban 
and highway environments, under varying traffic conditions. By utilizing a driving simulator, the study collects 
and analyzes data from a representative sample of drivers, integrating personal characteristics through survey 
responses. Through statistical modeling, specifically linear regression, key driving attributes such as average 
speed, reaction time, following distance, and acceleration are examined to quantify the effects of fatigue. The 
experimental approach includes scenarios where participants drive both well-rested and sleep-deprived, 
allowing for a comparative analysis of behavioral changes. The study contributes to road safety by offering 
data-driven insights into the risks associated with fatigued driving, supporting the development of targeted 
interventions to reduce crash risks and enhance driver awareness. 
 
This paper is organized as follows. In the present section, a comprehensive review of the literature on fatigue-
related driving risks and road safety is provided. Next, it outlines the research methodology in detail, including 
the theoretical underpinnings of the models, the experimental setup, and the data collection and processing 
protocols. Subsequently, the results are presented to quantify the influence of fatigue on driving behavior 
across different road environments. Finally, the study concludes with practical recommendations for 
mitigating the impact of fatigue on driving and enhancing road safety policies. 

2. Materials and Methods 

2.1 Driving Simulator Experiment 

To examine the effects of fatigue on driving performance, a driving simulator experiment was conducted at 
the Department of Transportation Planning and Engineering of the National Technical University of Athens 
(NTUA). The study employed a FOERST Driving Simulator FP (Figure 1), which features three Full HD LCD 
screens, a realistic driving seat, and a motion-support base. With dimensions of 230 x 180 cm and a base width 
of 78 cm, the simulator provides a 170-degree field of view, ensuring an immersive driving experience.  
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Figure 1: NTUA FOERST Driving Simulator 

 
The driving simulator functions as a highly advanced data acquisition system, enabling the precise monitoring 
of driver behavior and performance metrics. Throughout the experiment, the simulator captures up to 60 data 
points per second for each driving-related variable, ensuring high temporal resolution in data collection. These 
measurements are automatically processed and exported in text format, generating a distinct dataset for each 
participant, and driving scenario to facilitate systematic analysis.  
The driving simulator experiment was conducted between late October and mid-November 2023, involving a 
total of 35 volunteer drivers (22 males, 13 females) aged 18 - 30 years. All participants held a valid driver’s 
license and were divided into two age groups: 18 - 23 years (46%) and 24 - 30 years (54%), to examine 
differences in driving behavior based on experience.  
 
The experiment involved two distinct driving environments: an urban road scenario (Figure 2), featuring one- 
and two-lane segments with low traffic, and a highway scenario (Figure 3), which included two- and three-
lane road sections with both high- and low-traffic conditions. To introduce real-world unpredictability, 
unexpected events (e.g. a pedestrian crossing road) were fixed into the simulation, with one random event in 
the urban road scenario and two in the highway scenario, strategically placed to prevent participants from 
anticipating them. To prevent learning effects, scenario order was randomized for each participant. The data 
collected from the simulator along with the encoded questionnaire responses resulted in the development of 
a master table. 
 
 

 
Figure 2: Urban Road Scenario - Low traffic flow 

 
Figure 3: Highway Road Scenario - Low traffic flow 
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Additionally, the experiment was conducted in two phases. In the first, participants completed the driving 
scenarios (urban/low traffic and highway/low and high traffic) after adequate sleep, establishing a baseline 
performance. In the second phase, they returned to the simulator completing once more the driving scenarios 
without having slept the previous night, replicating the effects of sleep deprivation on driving ability. 
Furthermore, participants completed two phases of questionnaires and a familiarization drive prior to each 
experimental session to adapt to the simulator’s controls and to collect relevant background data. The first 
questionnaire, administered before the initial (non-sleep-deprived) phase of the experiment, gathered 
information on participants’ driving expertise (e.g., license issuance year, years of driving experience, average 
kilometers driven per day, number of driving days per week, etc.), driving behavior (e.g., frequency of driving 
while fatigued, behavioral changes when fatigued, perceived danger of fatigued driving, typical fatigue 
symptoms, etc.), crash history (e.g., number of accidents and whether fatigue was a factor), and basic 
demographic details (e.g., age, gender, etc.). The second questionnaire was completed before the sleep-
deprived driving phase and focused on sleep-related variables (e.g. the number of hours slept the previous 
night, average sleep over the past week, whether any physically demanding activities were performed the 
previous day, current subjective fatigue level, etc.). 

2.2 Statistical Modeling 

To examine the effects of sleep deprivation on driving performance across different road environments, this 
study applies linear regression models to analyze key behavioral and performance indicators obtained through 
the driving simulator experiment. The aim is to estimate how fatigue, vehicle dynamics, and participant 
characteristics influence critical outcomes such as error rates, lateral control, and response timing. Linear 
regression was selected due to widespread use and proven effectiveness in behavioral modeling, where it 
enables the identification and quantification of variable relationships with high interpretability and statistical 
reliability. Regression-based approaches have also been applied, specifically, to analyze the impact of fatigue 
on driving behavior (Mahajan & Velaga, 2021). The method is particularly suitable for analyzing the continuous 
data captured by the simulator and enables rigorous evaluation of fatigue-related effects in both urban and 
highway driving conditions. 
 
2.2.1 Regressions Model 

The relationship between the dependent variables (e.g., average speed, reaction time) and the independent 
variables (e.g., fatigue condition, age group) was estimated using the standard form of the linear regression 
model (Eq. 1): 
 
yi = β0 + β1X1i + β2X2i + … + βnXni + εi,      (1) 
 
Where: 

 yi: Observed value of the outcome variable for participant i 

 Xni: Independent variables 

 β0: Intercept 

 βn: Regression coefficients 

 εi: Residual error 
 
2.2.2 Evaluation Criteria 

To ensure the validity and interpretability of the regression models, several statistical criteria were applied 
during the evaluation process. First, the statistical significance of each independent variable was assessed 
using the t-statistic, calculated as (Eq.2): 
 

ti = 
𝛽𝑖

𝑠𝛽𝑖
,       (2) 
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where βi represents the estimated regression coefficient and sβi its standard error. Variables were considered 
statistically significant at the 95% confidence level (p < 0.05), with a 90% threshold (p<0.10) applied in marginal 
cases supported by theoretical relevance. 
 
The overall predictive performance of each model was evaluated using the coefficient of determination (R2), 
which quantifies the proportion of variance in the dependent variable explained by the model (Eq.3): 
 

R2 = 
SSR

SST
=

∑ (Yî−Y)̅̅ ̅2n
i=1

∑ (Yi−Y̅)2n
i=1

= 1 −
∑ (Yi−Yî)2n
i=1

∑ (Yi−Y̅)2n
i=1

,      (3) 

 
Where: 

 𝑌𝑖̂ represents the model's predicted independent variable. 

 𝑌̅ represents the mean value of the independent variable Yi. 
 
A higher R2 value indicates stronger explanatory power and better model fit, with values approaching 1 
suggesting a close alignment between observed and predicted outcomes. 
 
2.2.3 Elasticity Analysis 

In addition to interpreting the raw regression coefficients, elasticity analysis was conducted to assess the 
relative sensitivity of the dependent variable to proportional changes in each independent variable. Elasticity 
is calculated using the following expression (Eq. 4): 
 

ei = (
ΔYi

ΔXi
) (

Xi

Yi
),      (4) 

 
This unitless measure provides a standardized index of effect size, making it especially useful for comparing 
the influence of predictors that are measured in different units or scales. In practical terms, elasticity indicates 
the percentage change in the outcome variable resulting from a 1% change in the predictor, offering more 
intuitive insights into variable impact. 

3. Results 

The statistical analysis focused on evaluating the effects of driver fatigue, behavioral adaptations, 
demographic characteristics, and environmental conditions on four key driving performance metrics: average 
speed, reaction time, headway distance, and longitudinal acceleration. The relationships between these 
outcomes and the selected predictors were modeled through multiple linear regression. Detailed regression 
results, including coefficient estimates, standard errors, t-values, p-values, and elasticity measures, are 
presented in order to capture the magnitude, direction, and statistical significance of these relationships, 
offering comprehensive insight into the factors affecting driving behavior and safety-relevant performance. 

3.1 Average Speed Model 

The Average Speed Model, defined by Equation (5), quantifies the influence of fatigue, road type, duration of 
wakefulness, trip frequency, and fatigue-related behavioral changes on average driving speed: 
 
Avg_Speed = 11.962 + 7.074 × fatigue + 49.526 × Ur_Hw + 0.763 × hrs_awake + 2.896 × routes_per_day + 
3.107 × fatigue_driving_behavior_change,      (5) 
 
Where: 

 Avg_Speed: Average speed (km/h). 

 fatigue: Driver fatigue (1: driving with fatigue, 0: driving without fatigue). 

 Ur_Hw: Driving environment (0: urban, 1: highway). 
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 hrs_awake: Number of hours since the driver last slept. 

 routes_per_day: Number of daily trips in urban areas and highways (0: 0 trips, 1: 1 trip, 2: 2 trips, 3: 3 

trips, 4: 4 trips, 5: 5 trips, 6: >5 trips). 

 fatigue_driving_behavior_change: Average self-reported behavioral adaptations under fatigue (1: 

vehicle immobilization, 2: speed reduction, 3: speed increase, 4: driving near the road edge, 5: phone 

use or passenger interaction, 6: energy drink consumption, 7: window opening, 8: no behavioral 

change). 

The regression estimates in Table 2 demonstrate that driving on highways (Ur_Hw = 1) is the dominant 
predictor of higher average speeds, contributing an increase of 145.6% compared to urban roads. Fatigue 
driving is also associated with a statistical significant increase in speed by 20.8% (β = 7.074, p = 0.015), 
suggesting a behavioral tendency among fatigued drivers to adopt faster speeds, potentially as a maladaptive 
compensatory mechanism. 
 
Significant effects were further observed for the number of daily trips (routes_per_day) and fatigue-related 
behavioral adaptations (fatigue_driving_behavior_change). Specifically, average speed increases by 8.5% with 
a higher number of trips per day, while fatigue-related behavior changes are associated with a marginal 0.1% 
increase in speed. Additionally, the number of hours awake (hrs_awake) exerted a measurable effect on speed 
(β = 0.763, p = 0.011), indicating the role of sleep deprivation in speed regulation. 
 
The model explains approximately 69.3% of the variance in average speed (R² = 0.693; adjusted R² = 0.683), 
reflecting a moderate to good level of explanatory power. These results emphasize the combined influence of 
environmental conditions and fatigue-related factors on speed regulation. 
 

Table 2: Average Speed Model Prediction 

Independent Variables βi Std. Error t Value p-Value e e* 

(Constant) 11.962 5.406 2.213 0.028*   

Discrete variables 

fatigue 7.074 2.881 2.456  0.015* 0.208 2.443 

Ur_Hw 49.526 2.896 17.103 0.000*** 1.456 17.104 

routes_per_day 2.896 0.813 3.562 0.000*** 0.085 1.000 

Continuous variables 

hrs_awake 0.763 0.296 2.582 0.011* 0.000 2.111 

fatigue_driving_behavior_change 3.107 0.754 4.119 0.000*** 0.001 1.000 

R2 = 0.693       

Adjusted R2 = 0.683       

* Significance at the 95% confidence level/*** 99.9%. 

3.2 Reaction Time Model 

The relationship between driver reaction time and influencing variables is expressed in Equation (6): 
 
Avg_ReactionTime = 0.939 + 0.226 × fatigue + 0.361 × Ur_Hw + 0.406 × gender + 0.116 × routes_per_day + 
0.136 × intense_level_mle,      (6) 
 
Where: 

 Avg_ReactionTime: Average reaction time (seconds). 
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 fatigue: Driver fatigue (1: driving with fatigue, 0: driving without fatigue). 

 Ur_Hw: Driving environment (0: urban, 1: highway). 

 gender: Gender (1: male, 2: female, 3: other). 

 routes_per_day: Number of daily trips in urban areas and highways (0: 0 trips, 1: 1 trip, 2: 2 trips, 3: 3 

trips, 4: 4 trips, 5: 5 trips, 6: >5 trips). 

 intense_level_mle: Intensity level of exercise or manual labor performed by the driver during the day 

(1: none, 2: low, 3: moderate, 4: high, 5: very high). 

As indicated in Table 3, fatigue significantly increases reaction time by 0.226 seconds (p = 0.032), 16.8% 
compared to non-fatigue driving, confirming the established link between cognitive impairment and fatigued 
driving. The gender variable also emerges as a significant predictor, with female participants displaying longer 
reaction times (β = 0.406, p < 0.001), 30.2% increased compared to males. 
 
Driving on highways (Ur_Hw = 1) and higher daily trip frequency (routes_per_day) are both associated with 
delayed reaction times (p = 0.006 and p = 0.005, respectively). Furthermore, increased physical exertion during 
the day (intense_level_mle) contributes to slower reaction performance (β = 0.136, p = 0.045), reflecting the 
combined burden of physical and mental fatigue. 
 
The model achieves an R² of 0.519 and an adjusted R² of 0.448, indicating moderate explanatory strength. 
 

Table 3: Reaction Time Model Prediction 

Independent Variables βi Std. Error t Value p-Value e e* 

(Constant) 0.939 0.143 6.586 0.000***   

Discrete variables 

fatigue 0.226 0.101 2.237  0.032* 0.168 1.951 

Ur_Hw 0.361 0.122 2.960 0.006** 0.268 3.110 

gender 0.406 0.107 3.801 0.001*** 0.302 3.500 

routes_per_day 0.116 0.038 3.040 0.005** 0.086 1.000 

intense_level_mle 0.136 0.065 2.077 0.045* 0.101 1.172 

R2 = 0.519       

Adjusted R2 = 0.448       

* Significance at the 95% confidence level/**99%/*** 99.9%. 

3.3 Headway Distance Model 

Headway distance is modeled through Equation (7), incorporating driver fatigue, environmental conditions, 
traffic density, age, and reported fatigue symptoms: 
 
Avg_Hway = 91.470 – 19.785 × fatigue + 57.973 × Ur_Hw – 127.456 × Volume + 2.395 × age – 7.756 × 
fatigue_driving_symptoms,      (7) 
 
Where: 

 Avg_Hway: Headway Distance (m). 

 fatigue: 1: Driving with fatigue, or 0: without fatigue. 

 Ur_Hw: Driving environment - 0: urban road, or 1: highway. 

 Volume: Traffic volume - 0: low traffic, or 1: high traffic. 

 age: Driver's age (years). 
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 fatigue_driving_symptoms: Self-reported fatigue symptoms experienced by drivers (mean of 

responses - e.g., 1: tendency to fall asleep, 2: lack of concentration, 3: yawning, 4: eye blinking, 5: no 

symptoms, 6: other). 

Results presented in Table 4 highlight the negative impact of fatigue on headway distance, with fatigued 
drivers maintaining 15.5% shorter following distances compared to non-fatigued drivers (β = -19.785, p < 
0.001). Traffic volume exhibits the strongest influence, with high-volume conditions reducing headway 
distance by 100% (p < 0.001). Driving on highways (Ur_Hw = 1) is associated with a 45.5% increase in headway 
distance compared to urban driving conditions (β = 57.973, p < 0.001), suggesting that drivers allow for more 
space between vehicles in less dense traffic environments. 
 
Additionally, older drivers tend to maintain longer headway distances, with each unit increase in age 
associated with an 8.4% increase in headway (β = 2.395, p = 0.028). In contrast, greater self-reported fatigue 
symptoms are linked to a 0.1% reduction in headway distance (β = -7.756, p = 0.017), further illustrating the 
behavioral impact of perceived fatigue. 
 
The model explains approximately 70.5% of the variance in headway distance (R² = 0.705; adjusted R² = 0.695), 
indicating a good level of explanatory power for the observed relationships. 
 

Table 4: Headway Distance Model Prediction 

Independent Variables βi Std. Error t Value p-Value e e* 

(Constant) 91.470 25.889 3.533 0.001***   

Discrete variables 

fatigue -19.785 5.148 -3.843  0.000*** -0.155 1.000 

Ur_Hw 57.973 6.219 9.322 0.000*** 0.455 -2.930 

Volume -127.456 6.832 -18.657 0.000*** -1.000 6.442 

Continuous variables 

age 2.395 1.078 2.222 0.028* 0.000 8.449 

fatigue_driving_symptoms -7.756 3.220 -2.409 0.017* -0.001 1.000 

R2 = 0.705       

Adjusted R2 = 0.695       

* Significance at the 95% confidence level/*** 99.9%. 

3.4 Longitudinal Acceleration Model 

The Longitudinal Acceleration Model, formulated in Equation (8), assesses the effects of fatigue, driving 
environment, driving experience, and fatigue symptoms on longitudinal acceleration control: 
 
Avg_AccLon = - 0.359 - 0.102 × fatigue + 0.233 × Ur_Hw- 0.019 × years_drive + 0.047 × 
fatigue_driving_symptoms,      (8) 
 
Where: 

 Avg_AccLon: Average Longitudinal Acceleration (m/s²). 

 fatigue: 1: Driving with fatigue, or 0: without fatigue. 

 Ur_Hw: Driving environment - 0: urban road, or 1: highway. 

 years_drive: Driving experience in years. 
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 fatigue_driving_symptoms: Self-reported fatigue symptoms experienced by drivers (mean of 

responses - e.g., 1: tendency to fall asleep, 2: lack of concentration, 3: yawning, 4: eye blinking, 5: no 

symptoms, 6: other). 

As reported in Table 5, fatigue is associated with a 33.8% reduction in longitudinal acceleration (β = -0.102, p 
< 0.001), while highway driving substantially increases it (β = 0.233, p < 0.001), indicating more cautious 
acceleration behavior under fatigued conditions. Conversely, driving on highways (Ur_Hw = 1) leads to a 76.9% 
increase in acceleration (β = 0.233, p < 0.001), reflecting the higher acceleration demands of highway 
environments. 
 
Driving experience exerts a modest protective influence, with each additional year of driving associated with 
a 0.1% decrease in acceleration (β = 0.047, p = 0.007), suggesting an interaction between subjective fatigue 
perception and vehicle control behavior. Furthermore, fatigue symptoms are linked to a 0.2% increase in 
longitudinal acceleration (β = 0.047, p = 0.007), indicating that subjective fatigue perception may lead to subtle 
compensatory driving behavior, possibly reflecting decreased motor control or riskier tendencies under 
fatigue. 
 
Despite these significant findings, the model’s explanatory capacity remains moderate (R² = 0.367), indicating 
the potential role of additional unmeasured variables. 

 
Table 5: Longitudinal Acceleration Model Prediction 

Independent Variables βi Std. Error t Value p-Value e e* 

(Constant) -0.359 0.056 -6.384 0.000***   

Discrete variables 

fatigue -0.102 0.028 -3.633  0.000*** -0.338 1.000 

Ur_Hw 0.233 0.029 8.158 0.000*** 0.769 -2.274 

Continuous variables 

years_drive -0.019 0.006 -3.292 0.001** -0.001 1.494 

fatigue_driving_symptoms 0.047 0.017 2.757 0.007** 0.002 1.000 

R2 = 0.367       

Adjusted R2 = 0.354       

* Significance at the 95% confidence level/*99%/*** 99.9%. 

4. Discussion 

The analysis of the present study provides significant insights into the multifaceted effects of driver fatigue on 
key aspects of driving behavior, including average speed, reaction time, headway distance, and longitudinal 
acceleration. Through the application of linear regression models, the study quantitatively demonstrates that 
fatigue, induced by sleep deprivation, systematically degrades driving performance across these critical 
metrics. 
 
A principal finding of this research is that fatigue is associated with increased driving speed. This outcome may 
reflect a behavioral tendency among fatigued drivers to engage in maladaptive compensatory strategies, such 
as accelerating in an attempt to reduce overall driving time. Such compensatory behaviors under fatigue have 
been previously observed in the literature, where cognitive impairments diminish risk perception and lead to 
inadequate self-regulation during driving tasks (Jirgl et al., 2024). The observed contribution of highway driving 
to higher speed levels is also consistent with prior studies showing that monotonous road environments with 
low geometric variety can exacerbate driver fatigue and reduce vigilance, thereby influencing speed regulation 
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and performance (Farahmand & Boroujerdian, 2018). Equally important is the finding that fatigue significantly 
prolongs reaction time, confirming well-established evidence on the neurocognitive consequences of sleep 
deprivation. Reaction time is a critical component of hazard perception and collision avoidance, and its 
deterioration under fatigue mirrors or even exceeds the performance impairments documented in alcohol-
impaired driving studies, suggesting comparable or greater levels of risk (Lowrie & Brownlow, 2020). The study 
also identifies demographic factors such as gender as significant contributors, with female drivers exhibiting 
longer reaction times on average. While this result aligns with certain strands of previous research, it remains 
an area where the influence of physiological, cognitive, and sociocultural factors requires further investigation. 
 
The reduction in headway distance among fatigued drivers, another key outcome of this study, raises serious 
safety concerns. Maintaining an appropriate following distance is vital for collision prevention, particularly in 
congested environments where reaction time is critical. The finding that high traffic volume further 
exacerbates the reduction of headway distance is consistent with previous field studies on car-following 
behavior under fatigue conditions, which reported similar tendencies toward reduced time headway and 
greater variability in following distance (H. Zhang et al., 2016). The results regarding longitudinal acceleration 
reveal a somewhat more complex relationship. Fatigue was associated with decreased acceleration, possibly 
reflecting either impaired psychomotor control or deliberate defensive adjustments by fatigued drivers. 
However, the explanatory power of the longitudinal acceleration model was notably lower compared to the 
other models, suggesting that this aspect of driving behavior may be influenced by additional situational or 
emotional variables not accounted for in the current analysis. Previous work has similarly highlighted the 
sensitivity of longitudinal control to external factors such as road geometry, real-time traffic conditions, and 
psychological stressors (Xu et al., 2013). 
 
An interesting aspect of the findings is the role of behavioral adaptations reported by participants as strategies 
to counteract fatigue, including speeding, window opening, or energy drink consumption. However, these 
adaptations were insufficient to neutralize the negative effects of fatigue on driving performance, confirming 
that self-regulation under fatigue is largely ineffective when it comes to maintaining safe driving behavior. This 
result reinforces calls from the literature for the integration of objective fatigue monitoring systems into 
vehicles, using physiological signals such as EEG or eye closure rates, to provide timely feedback and prevent 
fatigue-induced performance degradation (Wang et al., 2023). 
 
Despite the strength of the results, several limitations should be acknowledged. The controlled simulator 
environment, while providing high experimental control, may not fully replicate the complexity of real-world 
driving scenarios. Additionally, self-reported fatigue symptoms and behavioral changes, though valuable, are 
inherently subject to bias. The sample was also limited to young adult drivers, which may restrict the 
generalizability of the findings to other age groups or professional driving populations. Despite these 
limitations, the study offers important implications for both road safety policy and fatigue management 
practices. The quantification of fatigue-related impairments across multiple driving metrics supports the 
development of targeted interventions, including maximum driving hour regulations, fatigue awareness 
training, and technological solutions such as in-vehicle alert systems. Furthermore, these results suggest that 
addressing fatigue should remain a central focus in efforts to reduce traffic-related injuries and fatalities, 
particularly in high-risk settings such as long-haul driving or shift work.  

5. Conclusions 

The analysis conducted in this study provides compelling evidence that driver fatigue significantly affects key 
driving performance indicators, including speed, reaction time, headway distance, and longitudinal 
acceleration. Specifically, fatigue leads to increased driving speeds, prolonged reaction times, reduced 
following distances, and alterations in acceleration behavior, all of which may elevate crash risk. 
 
The models developed offer valuable insights into the mechanisms through which fatigue compromises road 
safety, confirming the detrimental influence of both subjective fatigue perception and objective behavioral 
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adaptations. The inclusion of demographic and environmental variables further enhances the understanding 
of these dynamics. 
 
These findings underscore the importance of effective fatigue monitoring and management strategies, such 
as limiting driving duration, implementing in-vehicle alert systems, and educating drivers about the risks 
associated with fatigued driving. Moreover, given that behavioral adaptations like speeding and headway 
reduction are insufficient to mitigate fatigue-related impairments, regulatory approaches focusing on 
maximum driving hours and compulsory rest periods remain critical. 
 
Future research should aim to extend these findings through naturalistic driving studies that incorporate real-
time physiological monitoring and behavioral tracking under diverse driving conditions. Such research could 
further clarify the interplay between fatigue, workload, emotional states, and environmental complexity, 
providing a deeper understanding of the mechanisms through which fatigue compromises road safety. Future 
research should explore additional moderating factors, including sleep quality, stress levels, and real-world 
traffic dynamics, to refine predictive models and enhance the generalizability of these results across different 
populations and driving scenarios. 
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