Effects of Fatigue on Driver Behavior in Urban and Highway Environments Using a Driving Simulator

Maria Oikonomou

Transportation Engineer, Research Associate

Together with:

Ioannis Paschalidis, Marios Sekadakis, Thodoris Garefalakis, George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

12th International Congress on Transportation Research

Introduction

- ➤ Road traffic crashes cause about 1.2 million deaths every year worldwide.
- ➤ Driver fatigue is a major cause, with effects similar to alcohol.
- Fatigue slows reactions, affects decisions and reduces hazard awareness.
 - This study investigates how sleep-deprivation fatigue affects driving behavior by comparing performance in urban and highway environments under both low and high traffic conditions.

Experimental Design

- ➤ A FOERST Driving Simulator was used for the experiment recorded 60 data points per second.
- ➤ Thirty-five young licensed drivers aged 18 to 30 participated in the study.
- The experiment was conducted in two phases: one when participants were well-rested and one after a night of sleep deprivation.
- Driving scenarios included urban roads with low traffic and highways with both low and high traffic.

Data collection & Analysis

- ➤ Participants completed questionnaires to provide demographic information, driving experience, and fatigue-related behaviors.
- ➤ Data collected from the simulator included speed, reaction time, headway distance and acceleration.
- Linear regression models were applied to examine the effects of fatigue on performance indicators.

Results: Speed & Reaction Time

Driving Speed:

- Fatigue significantly increased average driving speed by about 20%.
- Drivers who made more daily trips also tended to drive faster.
- The number of hours awake had a measurable impact on speed regulation.

Reaction Time:

- Fatigue increased reaction time by approximately 0.23 seconds.
- Drivers who had engaged in more physical activity during the day also reacted more slowly.
- Reaction times were also longer on highways and among drivers who took frequent daily trips.

Average Speed Model Prediction

3 ,						
Independent Variables	βi		t		Sig.	(
		Error	Value	Value		
(Constant)	11.962	5.406	2.213	0.028	*	
Driver fatigue	7.074	2.881	2.456	0.015	* 0	.208
(1: driving with fatigue, 0: driving without fatigue)						
Driving environment	49.526	2.896	17.103	0.000	*** 1	.456
(0: urban, 1: highway)						
Daily trips in urban areas and highways	2.896	0.813	3.562	0.000	*** 0	.08
Hours awake	0.763	0.296	2.582	0.011	* 0	0.00
Self-reported behavioral adaptations under	3.107	0.754	4.119	0.000	*** (0.00
fatique						
(1: vehicle immobilization, 2: speed reduction, 3: speed						
increase, 4: driving near the road edge, 5: phone use or						
passenger interaction, 6: energy drink consumption, 7:						
window opening, 8: no behavioral change)						
$R^2 = 0.693$						
Adjusted $R^2 = 0.683$						

Reaction Time Model Prediction

Independent Variables	βi	Std.	t	p-	Sig.	е
		Error	Value	Value	3	
(Constant)	0.939	0.143	6.586	0.000	***	-
Driver fatigue	0.226	0.101	2.237	0.032	*	0.168
(1: driving with fatigue, 0: driving without fatigue)						
Driving environment	0.361	0.122	2.960	0.006	**	0.268
(0: urban, 1: highway)						
Gender	0.406	0.107	3.801	0.001	***	0.302
Daily trips in urban areas and highways	0.116	0.038	3.040	0.005	**	0.086
Intensity level of exercise performed by the driver	0.136	0.065	2.077	0.045	*	0.101
during the day						
(1: none, 2: low, 3: moderate, 4: high, 5: very high)						
$D^2 = 0.510$						

 $_{1}$ sted $R^{2} = 0.448$

Results: Headway Distance & Acceleration

Headway Distance:

- Fatigued drivers maintained following 15% shorter distances.
- Older drivers kept longer and safer following distances.
- Self-reported fatigue symptoms were associated with shorter headway distances.

Acceleration:

- Fatigue reduced acceleration by about 34%, reflecting weaker vehicle control.
- Greater driving experience slightly reduced acceleration.
- Drivers who reported more fatigue symptoms displayed riskier adjustments in acceleration behavior.

Headway Distance Model Prediction

Independent Variables	βi	Std.	t Value	p-	Sig.	е
		Error		Value		
(Constant)	91.470	25.889	3.533	0.001	***	-
Driver fatigue	-19.785	5.148	-3.843	0.000	***	-0.155
(1: driving with fatigue, 0: driving without fatigue)						
Driving environment	57.973	6.219	9.322	0.000	***	0.455
(0: urban, 1: highway)						
Traffic volume	-127.456	6.832	-18.657	0.000	***	-1.000
(0: low traffic, 1: high traffic)						
Driver age	2.395	1.078	2.222	0.028	*	0.000
Self-reported fatigue symptoms	-7.756	3.220	-2.409	0.017	*	-0.001
(1: tendency to fall asleep, 2: lack of concentration, 3:						
yawning, 4: eye blinking, 5: no symptoms, 6: other)						
$R^2 = 0.705$						
Adjusted $R^2 = 0.695$						

Acceleration Model Prediction

Independent Variables	βi	Std.	t	p-	Sig.	е
		Error	Value	Value		
(Constant)	-0.359	0.056	-6.384	0.000	***	-
Driver fatigue	-0.102	0.028	-3.633	0.000	***	-0.338
(1: driving with fatigue, 0: driving without fatigue)						
Driving environment	0.233	0.029	8.158	0.000	***	0.769
(0: urban, 1: highway)						
Driving experience	-0.019	0.006	-3.292	0.001	**	-0.001
Self-reported fatigue symptoms	0.047	0.017	2.757	0.007	**	0.002
(1: tendency to fall asleep, 2: lack of concentration, 3:						
yawning, 4: eye blinking, 5: no symptoms, 6: other)						
$R^2 = 0.367$						
Adjusted $R^2 = 0.354$						

Discussion

The study confirms that fatigue impairs key aspects of driving behavior.

Fatigued drivers often adopt risky strategies such as speeding and reducing headway.

Fatigue effects were stronger in high-traffic conditions, where drivers showed a greater tendency for unsafe behavior.

Common strategies such as opening windows, or energy drink consumption were ineffective.

Conclusions

- Fatigue poses a serious risk to road safety and significantly alters driver performance.
- ➤ Key findings include higher speeds, slower reaction times, shorter following distances and altered acceleration control under fatigue.
- These results highlight the importance of fatigue monitoring systems and stricter regulations.
- Future research should involve real-world studies to expand on these findings.

Effects of Fatigue on Driver Behavior in Urban and Highway Environments Using a Driving Simulator

Maria Oikonomou

Transportation Engineer, Research Associate

Together with:

Ioannis Paschalidis, Marios Sekadakis, Thodoris Garefalakis, George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

12th International Congress on Transportation Research

