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Abstract 
 
The increasing challenges of road safety and environmental sustainability necessitate effective driving strategies. 
Eco-driving has emerged as a promising approach to reducing pollutant emissions and mitigating crash risks. This 
study explores the impact of eco-driving in rural and mountainous areas through an experimental methodology 
using a driving simulator. A total of 39 participants were assessed across multiple driving scenarios before and after 
receiving eco-driving training, while their demographic, behavioral, and driving-related characteristics were 
systematically collected and analyzed through a questionnaire survey. Each individual completed two driving 
sessions per scenario: one under regular driving conditions and another following eco-driving training guidelines. 
To evaluate the influence of eco-driving on fuel consumption, crash probability, and pollutant emissions (CO₂, CO, 
and NOₓ), linear and logistic regression models were applied. The results indicate that adopting eco-driving 
practices leads to significant reductions in emissions, fuel consumption, and crash probability.  
 
Keywords: eco-driving, driving simulator, rural environment, pollutant environmental emissions, fuel consumption, road safety, 
statistical modeling 

1. Introduction 

Road transport emissions represent a significant global challenge, contributing to both deteriorating air quality and 
climate change. The combustion of fuels in vehicles generates harmful environmental pollutants, such as nitrogen 
oxides (NOx), carbon dioxide (CO2), and carbon monoxide (CO), all of which contribute to poor air quality and 
climate change. The European Environment Agency (EEA) reported that in 2020 alone, exposure to fine particulate 
matter (PM2.5) led to at least 238,000 premature deaths in the European Union. This demonstrates the urgent need 
for cleaner, more sustainable transportation practices (European Environment Agency, 2022). Recent studies 
underscore the disproportionate impact of transport emissions on vulnerable urban populations, where air 
pollutants such as particulate matter and nitrogen dioxide exacerbate respiratory and cardiovascular diseases, 
contributing to increased morbidity and mortality (Nieuwenhuijsen, 2018). Furthermore, studies indicate that these 
health impacts are particularly severe in densely populated urban centers, necessitating tailored policy responses 
that prioritize low-emission technologies and behavioral interventions (Huang et al., 2021). 
 
Studies show that eco-driving can reduce emissions by 5% to 40%, depending on the driving conditions and the 
driver’s compliance to eco-driving principles. For instance, a study by Morello et al. (2016) found that eco-driving 
could lead to a 15% reduction in CO2 emissions during free-flowing traffic, with diminishing effects during 
congested conditions. Another study by Arroyo-López et al. (2022) reported that eco-driving could reduce CO2 
emissions by an average of 13 kg per trip. Additional evidence suggests that pairing eco-driving training with in-
vehicle technologies, such as adaptive cruise control and eco-assist systems, can further optimize fuel 
consumption and emissions reductions (Ng et al., 2021). Recent studies by Huang et al. (2021) confirm that 
integrating eco-driving with telematics and real-time feedback systems can reduce NOx emissions by up to 65% 
and fuel consumption by 6%, especially among inexperienced drivers. Similarly, Wang & Boggio-Marzet (2018) 
demonstrated that eco-driving programs tailored to specific road types yield sustained fuel savings of up to 6.3%, 
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reinforcing the importance of adaptive training methods. The aforementioned findings are verified by Ayyildiz et al. 
(2017) who further highlight that eco-driving interventions can lower heavy vehicle fuel consumption by 5.5%, 
providing strong evidence for its scalability across transportation sectors. 
 
The benefits of eco-driving are not limited to environmental outcomes. It also enhances road safety by encouraging 
less aggressive driving behaviors, leading to lower crash rates. Research by Jamson et al. (2015) demonstrated that 
eco-driving could reduce abrupt pedal movements, leading to smoother driving behavior and, ultimately, fewer 
road crashes. Moreover, a study by Nævestad (2022) showed that companies implementing eco-driving measures 
reduced their crash risk by up to 52% for heavy vehicles, a significant reduction that highlights the potential of eco-
driving in improving road safety. According to the WHO (World Health Organization, 2023), road traffic crashes are 
a leading cause of death for children and young people aged 5–29 years, claiming approximately 1.19 million lives 
each year and leaving many more people injured. This high toll of fatalities and injuries reflects the need for better 
preventive strategies, including behavioral approaches such as eco-driving, that can complement existing 
technological and infrastructural solutions. Further reinforcing this perspective, Li et al. (2019) demonstrated that 
in-vehicle eco-safe driving systems not only improve driver attentiveness but also enhance visual focus without 
causing distraction, thereby supporting safer driving practices. Moreover, Ma et al. (2021) highlighted the energy 
and safety benefits of eco-driving-based cooperative adaptive cruise control (Eco-CACC), which reduces energy 
consumption by 8.02% and improves safety during vehicle platooning at intersections. Additionally, recent findings 
by Huang et al. (2018) emphasize that such technologies, when integrated with eco-driving principles, can deliver 
sustained benefits even in mixed-traffic environments where driver behavior may vary significantly. 
 
Considering the literature findings, this study is essential for addressing the dual challenge of reducing emissions 
and improving road safety by exploring the impacts of eco-driving. Furthermore, rural environments, which remain 
underexplored in previous studies, will be investigated using a driving simulator. The unique contribution of this 
research lies in its ability to quantify the environmental and safety benefits of eco-driving through a controlled, 
experimental framework by analyzing the effects of eco-driving on pollutant emissions and crash probability. This 
study provides valuable insights that could inform future transportation policies and driver education programs 
globally. 
 
This study is structured as follows: First, after an overview of the field of eco-driving and road safety research, a 
detailed description of the research methodology is provided, including the theoretical basis of the models, as well 
as the experimental framework, data collection and processing procedures. Results are presented to quantify eco-
driving effects on emissions and crash probabilities, concluding in practical recommendations for integrating eco-
driving principles into transportation systems. 

2. Methodology 

2.1 Experiment Overview 

2.1.1 Simulator Experiment 

In order to assess the impact of eco-driving techniques on both pollutant emissions and road safety, data were 
collected using a driving simulator at the Department of Transportation Planning and Engineering of the National 
Technical University of Athens (NTUA). Specifically, the study utilized a FOERST Driving Simulator FP (Fig. 1), which 
includes three wide Full HD LCD screens, a driving seat, and a motion-support base. The simulator measures 230 
x 180 cm, with a base width of 78 cm and provides a total field of view of 170 degrees. 
 

 
Figure 1: NTUA FOERST Driving Simulator 
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The digital environment provides a realistic visualization of the road network from the driver’s perspective, allowing 
full control through the use of mirrors. It offers the flexibility to simulate various driving conditions, including 
different road types (urban, rural, highway), traffic levels (normal, heavy), lighting settings (day, night, fog), and 
weather conditions (clear, rain, snow). Additionally, the simulation incorporates random events such as pedestrian 
crossings, unexpected behavior from other vehicles, and sudden obstacles, enabling the study of driver responses 
under challenging scenarios. The driving simulator captures approximately 60 measurements per second 
throughout the experiments, with the data exported as a text file. Each driving scenario generates its own file, 
containing values for multiple variables that are critical to the analysis. These variables, along with their 
descriptions, are presented in Table 1. 
 

Table 1: Driving Simulator Variables 

Variable Explanation 
Time Current real-time in milliseconds since start of the drive. 
x-pos x-position of vehicle in m. 
y-pos y-position of vehicle in m. 
z-pos z-position of vehicle in m 
Road Road number of the vehicle in [int]. 
Richt Direction of the vehicle on the road in [BOOL] (0/1). 
Rdist Distance of the vehicle from the beginning of the drive-in m. 
rspur Track of the vehicle from the middle of the road in m. 
ralpha Direction of the vehicle compared to the road direction in degrees. 
Dist Driven course in meters since begin of the drive. 
Speed Actual speed in km/h. 
Brk Brake pedal position in percent. 
Acc Gas pedal position in percent. 
Clutch Clutch pedal position in percent. 
Gear Chosen gear (0 = idle, 6 = reverse). 
RPM Motor revolvation in 1/min. 
HWay Headway, distance to the ahead driving vehicle in m. 
DLeft Distance to the left road board in m. 
DRicht Distance to the right road board in m. 
Wheel Steering wheel position in degrees. 
Thead Time to headway, i.e., to collision with the ahead driving vehicle in ms. 
TTL Time to line crossing, time until the road border line is exceeded, in ms. 
TTC Time to collision (all obstacles), in ms. 

 
2.1.2 Experiment Scenarios 

For the purposes of this study, as previously outlined, the experiment was conducted on two network types: rural 
network (Figure 2) and mountainous rural network (Figure 3). The network features a specific track that provides 
one (1) lane per direction for the mountainous rural network and one (1) lane per direction for the rural network. The 
road network also included appropriate traffic signage, such as speed limits, sharp turns, and animal warnings 
about the presence of wildlife. In each scenario, two hazardous events were introduced - either a wild animal (e.g., 
a wild deer) crossing. These events were randomly positioned in each scenario to avoid learning effects. The 
selected traffic volume characteristics for the single lane per direction included a low traffic volume of 300 vehicles 
per hour. Vehicle arrivals followed a Gamma distribution with a mean of m = 12 seconds and a variance of σ² = 6 
seconds². 
 

 
Figure 2: Rural driving simulator environment 
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Figure 3: Mountainous rural driving simulator environment 

2.1.3 Experiment Implementation 

To conduct the within driving experiment, young drivers with valid licenses were voluntarily selected from two age 
groups: 18-23 years and 24-30 years, to examine driving behavior based on driver experience. Gender balance was 
also considered in the selection process. A total of 39 drivers participated, including 23 men and 16 women, with 
an average of 4 years of driving experience. The participants were distributed by age group, with 56% in the 18-23 
range and 44% in the 24-30 range, while gender distribution was 59% male and 41% female. 
 
The experiment began with a familiarization phase of around 5 minutes, allowing drivers to get accustomed to the 
simulator and finalize the settings. The phase was extended where suitable. To introduce randomness into the 
sample, each participant drove the scenarios (i.e., rural and mountainous rural route) twice, but in a different order 
(i.e., each driver completed four driving sessions). Additionally, a questionnaire was created to assess the driver’s 
profile, with a focus on their eco-driving behavior. The experiment was divided into two phases.  

• Phase 1: In the initial stage of this phase, participants completed a test drive to familiarize themselves with 
the simulator. After the practice session, the 39 participants proceeded to drive two main scenarios in the 
simulator. 

• Phase 2: Before beginning this phase, participants answered a questionnaire to determine their driving 
profile. They were then given information on eco-driving techniques. In the second phase, participants 
repeated the exact same driving scenarios as in Phase 1, but this time they applied eco-driving techniques 
based informational leaflet they had received. 

As stated previously, prior to the second phase, each participant received individual instructions on eco-driving. 
An informational leaflet on eco-driving was developed to inform the drivers. This brochure included key instructions 
for practicing eco-driving, which were read by the drivers, such as: 

• Speed limits should be adhered to, with an emphasis on driving at reduced speeds. 
• Efforts should be made to maintain a steady speed whenever feasible. 
• Synchronization with the speed of surrounding vehicles should be prioritized. 
• Engine revolutions should be kept below 2000 RPM. 
• Maximum coasting should be achieved without engaging the accelerator. 
• Abrupt accelerations should be avoided by initiating gradual movement. 
• Sudden braking should be minimized by anticipating and responding to braking needs in advance. 
• Sharp changes in speed should be avoided by maintaining adequate distance from other vehicles. 
• Unnecessary acceleration on downhill slopes should be avoided. 
• Sufficient momentum should be gathered to facilitate uphill ascents. 

The Phase 2 questionnaire comprised 31 items covering four domains - driving experience, vehicle characteristics, 
eco-driving behaviors, and attitudes toward eco-driving. Responses were coded into corresponding variables, 
yielding a 39 × 31 data matrix that underpinned the subsequent analyses of driving behaviour, environmental 
impact, and safety outcomes. 
 
2.1.4 Emission and Fuel Consumption Calculation 

After the data collection, additional indicators related to emissions and fuel consumption were calculated, which 
were not directly provided by the simulator. Indicators such as VSP, CO2, CO, HC, NOx, FC were calculated based 
on certain indications from previous studies (Zhao et al., 2015). 
 
First, the Vehicle Specific Power (VSP) index was calculated, representing a microscopic emissions model based 
on the distribution of vehicle-specific power. It is computed using the vehicle's speed and acceleration per second, 
following the equation (Εq. 1) below: 
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VSP = 
 0,156461 × u+0,00200193 × u2+0,000492646 × u3+1,4788 × u × α

1,4788
,         (1) 

 
Where u: vehicle speed (m/s); a: vehicle acceleration (m/s2) 
 
Subsequently, the other indicators – CO2 (carbon dioxide), CO (carbon monoxide), HC (hydrocarbons), and NOx 
(nitrogen oxides) - were calculated based on Table 2, which correlates the VSP values (in grams per second) with 
these specific pollutants. 
 

Table 2: Base emission rate in VSP bins (g/s) (Zhao et al., 2015) 

VSP bins CO2 CO HC NOx 
<0 1.632545455 0.00217615 0.000438919 0.000073716 
0 0.568829787 0.00110017 0.000135847 0.000007291 
(0,1] 1.255982829 0.003240577 0.000254022 0.00012592 
(1,2] 1.849368682 0.003378486 0.000299352 0.000183509 
(2,3] 2.306617803 0.003476258 0.000352772 0.000181848 
(3,4] 2.384342143 0.003559317 0.000415724 0.000174986 
(4,5] 2.416571296 0.003653089 0.00048991 0.000165734 
(5,6] 3.501662832 0.003782998 0.000577334 0.000188866 
(6,7] 3.491228867 0.00397447 0.000680359 0.000227813 
(7,8] 4.543236125 0.00425293 0.000801769 0.000298345 
(8,9] 4.678231939 0.004643802 0.000944845 0.000476234 
(9,10] 5.053493392 0.005172511 0.001113453 0.000537252 
(10,11] 4.339905443 0.005864483 0.001312148 0.00058717 
(11,12] 4.78196911 0.006745142 0.001421257 0.000686759 
(12,13] 5.8109181 0.007839914 0.001444166 0.000896791 
(13,14] 5.2327381 0.010074223 0.001504755 0.001158038 
(14,15] 5.4149725 0.010773495 0.001561731 0.00120127 
(15,16] 6.2459078 0.013563155 0.001615094 0.001417259 
(16,17] 6.0417608 0.014868627 0.001672916 0.001446777 
(17,18] 6.3793126 0.017415336 0.00177098 0.001620595 
(18,19] 6.2072115 0.020328708 0.001783503 0.001909484 
(19,20] 6.8681762 0.023634167 0.002024126 0.001924216 
(20,21] 7.3175052 0.027357139 0.001870938 0.002265563 
(21,22] 7.6165789 0.031523048 0.00209393 0.002334295 
(22,23] 7.8234731 0.03465732 0.002074634 0.002431184 
(23,24] 8.0016609 0.03828538 0.002211921 0.002857002 
>24 8.3430313 0.040932652 0.002232765 0.00271252 

 
Lastly, the Fuel Consumption (FC) indicator was calculated using the carbon balance method, which applies an 
equation (Eq. 2) that integrates emissions per kilometer with the distance traveled by the vehicle, as reported in 
Zhao et al. (2015). 
 
FC = (0.866×MHC + 0.4286×MCO + 0.2727×MCO2) × 0.156,         (2) 
 
Where: 

• MHC: HC emissions (g/km) 
• MCO: CO emissions (g/km) 
• MCO2: CO2 emissions (g/km) 

Then all three datasets (driving simulator variables, questionnaire, and environmental variables) were aggregated 
by participant and scenario comprised the data collected from the simulator, the participants' questionnaire 
responses, and the calculated environmental indicators. The final dataset had dimensions of 313x112. 

2.2 Model Development 

The key objective of this research is to develop mathematical. These models aimed to measure the impact of eco-
driving on important outcomes such as fuel consumption, pollutant emissions, and crash probability. This 
technique assures that the models are not only statistically accurate, but also practically useful, by combining 
theoretical and empirical consistency. To effectively capture the complex dynamics of eco-driving, the models 
developed utilizing regression methods and statistical requirements. 
2.2.1 Linear Regression 
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Linear regression was employed to quantify the relationships between eco-driving behaviors and continuous 
dependent variables, such as fuel consumption and pollutant emissions. This relationship is mathematically 
represented as (Eq. 3): 
 
Yi = β0 + β1X1i + β2X2i + … + βnXni + εi,         (3) 
 
Where: 

• Yi represents the dependent variable 
• X1, X2, …, Xn representing the independent variables. 
• β0 represents the intercept. 
• εi is the residual error term. 

2.2.2 Binary Logistic Regression Model 

For categorical outcomes, particularly those concerning the probability of a crash occurring, the binary logistic 
regression model was employed. This model is particularly suited for binary outcomes where the dependent 
variable Yi takes on one of two values, typically coded as 1 for success and 0 for failure. The logistic regression 
model predicts the log odds of the dependent variable as a linear function of the independent variables (Eq. 4). This 
relationship is expressed as: 
 
Yi = ln Pi

1− Pi
 = β0 + β1X1i + β2X2i + … + βnXni,        (4) 

 
Where: 

• Yi represents the dependent variable, which is assigned value 1 with probability of success P and value 0 
with probability of failure 1-P. 

• X1, X2, …, Xn representing the independent variables. 
• β0 represents the intercept. 
• Pi is the predicted probability, which is set to values of 0 (failure) and 1 (success). 

2.2.3 Acceptance Criteria and Result Interpretation 

The validation of mathematical models necessitates a consistent evaluation framework to ensure statistical 
robustness, theoretical consistency, and predictive efficacy. Statistical significance is assessed using p values for 
linear models and logistic models.  
 
Model quality is quantified through the coefficient of determination (R²) for linear models, where values 
approaching unity signify superior explanatory power and predictive accuracy. The R² is calculated as (Eq. 5): 
 

R2 = SSR

SST
=

∑ (Yî−Y)̅̅ ̅2n
i=1

∑ (Yi−Y̅)2n
i=1

= 1 −
∑ (Yi−Yî)2n

i=1

∑ (Yi−Y̅)2n
i=1

,        (5) 

 
Where: 

• 𝑌𝑖̂ represents the model's predicted independent variable. 
• 𝑌̅ represents the mean value of the independent variable Yi. 

R2 ranges from 0 to 1, with the closer the value of R2 to 1, the stronger the linear dependence relationship between 
variables Y and X becomes (i.e., more accurate predictions). Logistic models are evaluated based on predictive 
classification accuracy, with thresholds exceeding 65% deemed satisfactory. 
 
The elasticity of the independent variables was also computed to assess the responsiveness and sensitivity of the 
dependent variable to changes in each independent variable (Washington et al., 2011). This calculation enabled a 
comparison of the impacts of the various independent variables on the dependent variable. Additionally, the 
elasticity (ei*) for each variable was determined by dividing the elasticity of each variable by that of the variable with 
the smallest impact on the dependent variable. 
 
Elasticity for continuous predictors is given by (Eq. 6): 
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ei = (ΔYι

ΔXι
) (

Xι

Yι
),       (6) 

 
For discrete (categorical) predictors, pseudo-elasticity offers an analogous metric, capturing shifts resulting from 
categorical transitions. Mathematical equations are distinguished between discrete variables (Eq. 7) and 
continuous variables (Eq. 8): 
 

Εxink

Pi =  eβik
∑ eβixnI

i=1

∑ eΔ(βixn)I
i=1

− 1,      (7) 

 

Εxink

Pi = [1 − ∑ Pn(i)] xinkβik
I
i=1 ,      (8) 

 
Where: 

• i represents the number of possible options. 
• Pi denotes the probability of alternative i. 
• xink indicates the value of variable k for alternative i of individual n. 
• Δ(βixn) defines the value of the function that determines each option after the value of xink has changed from 

0 to 1. 
• βixn represents the corresponding value when xnk is 0. 
• βik specifies the parameter value of variable xnk. 

3. Results 

3.1 CO2 Emissions 

This section further presents the CO2 emissions linear regression model, starting with the regression equation, 
followed by the table with regression exports extracted using R language. This regression model demonstrates that 
carbon dioxide (CO2) emissions exhibit a strong dependence on ecological driving behaviors, underscoring the 
efficacy of eco-driving strategies. The empirical findings indicate a substantial reduction of 5.9% or 19.45 g/km in 
CO2 emissions attributable to eco-driving practices. Rural driving environments, characterized by flatter terrain and 
fewer abrupt changes in elevation, were associated with lower emissions compared to mountainous rural terrains, 
where frequent acceleration and deceleration are necessitated. Conversely, elevated braking intensity and 
increased lateral acceleration emerged as key contributors to heightened emissions, emphasizing the impact of 
abrupt maneuvers. The mathematical equation for the regression model of CO2 emissions is given by (Eq. 9): 
 
y (CO2/km) = 309.057 – 19.45×(Eco) – 40.306×(Environment) - 2.036×(RoutesPerDay) + 6.648×(AvgBrk) – 
19.485×(AvgDLeft) + 8.583×(StdAccLat),      (9) 
 
Where: 

• CO2/km: CO2 emissions per kilometer driven (g/km). 
• Eco: Eco-driving scenario (e.g., 0 = Non-eco driving behavior and 1 = Eco-driving behavior) 
• Environment: Driving environment (e.g., 0 = Mountainous rural network, 1 = Rural network). 
• RoutesPerDay: Average number of trips per day (e.g., 0 = 0 trips, 1 = 1 trip, …, 6 = more than 5 trips). 
• AvgBrk: Average brake-pedal usage (%) during driving. 
• AvgDLeft: Average distance from the left side of the road (m). 
• StdAccLat: Standard deviation of lateral acceleration (m/s²). 

Table 3 displays the regression coefficients and associated statistics for each variable in the model. With regard to 
the model’s statistical significance, it is noted that all t-test values for each variable exceed 1.7, and all p-values 
are below 0.05. This indicates that each variable’s effect is statistically significant at the 95% confidence level. In 
addition, to measure each independent variable impact on CO2 emissions, both elasticity (e) and relative elasticity 
(e⁎) are calculated. The latter (e⁎) for each variable was determined by dividing the elasticity of each variable by that 
of the variable with the smallest impact on the dependent variable. From Table 3, Environment has the strongest 
effect on CO2/km, at 19.80 times the smallest influence (RoutesPerDay). Likewise, eco-driving outweighs the 
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smallest effect by a factor of 9.5. Among continuous variables, AvgDLeft shows the highest influence 2.93 times 
the smallest (AvgBrk). Finally, StdAccLat is 1.3 times greater than the lowest influence. 
 

Table 3: Model of CO2/km Prediction 

Independent Variables βi Std. Error t Value p-Value e e* 
(Constant) 309.057 7.533 41.028 0.000 ***   

Discrete variables 
Eco -19.450 3.274 -5.940 0.000 *** -0.059 9.55 
Environment -40.306 3.309 -12.181 0.000 *** -0.121 19.80 
RoutesPerDay -2.036 0.970 -2.099 0.038 * -0.006 1.00 

Continuous variables 
AvgBrk 6.648 0.471 14.124 0.000 *** 0.0002 1.00 
AvgDLeft -19.485 7.370 -2.644 0.009 ** 0.0006 2.93 
StdAccLat 8.583 2.580 3.326 0.001 ** 0.0003 1.29 
R2 = 0.836       
Adjusted R2 = 0.830       
* Significance at the 90% confidence level/**95%/*** 99.9%. 
 
The regression analysis reveals that eco-driving results in a 5.9% reduction in emissions. This finding highlights the 
effectiveness of smoother accelerations, lower speeds, and reduced engine revolutions (RPM) in cutting 
emissions. Moreover, driving in rural environments further reduces emissions compared to mountainous rural 
terrains, where frequent braking and acceleration are required; this is supported by an elasticity of e=−0.121,  
indicating a 12.1% decrease in emissions when transitioning from mountainous to rural terrain. In addition, the 
average number of trips per day (RoutesPerDay) exhibits the smallest elasticity (e=−0.006), suggesting that 
frequent driving might help drivers develop efficient habits that slightly lower emissions. Furthermore, increased 
brake usage (AvgBrk) leads to higher emissions, as energy losses from braking necessitate additional engine power 
and this is reflected in a positive elasticity of e=0.0002. On the other hand, a greater average distance from the left 
side of the road (AvgDLeft) reduces emissions (e=0.0006). This suggests that drivers who position themselves 
further to the right tend to adopt a more defensive driving style, avoiding aggressive behaviors like overtaking. As a 
result, their cautious approach likely contributes to lower fuel consumption. Lastly, increased variability in lateral 
acceleration (StdAccLat) raises emissions, as unstable driving patterns like sharp turns disrupt steady motion, 
shown by a positive elasticity of e=0.0003. Overall, with an R2 value of 0.836, the model explains 83.6% of the 
variance in emissions, confirming the substantial impact of eco-driving behaviors, terrain, and steady driving 
patterns in mitigating CO₂ emissions. 

3.2 CO Emissions 

The model evaluating carbon monoxide (CO) emissions further validates the impact of ecological driving practices. 
Results revealed a 29.3% or 0.219 g/km reduction in emissions under eco-driving conditions. However, high 
variability in braking patterns was shown to worsen CO emissions, indicating the detrimental effects of erratic 
driving behaviors. The formulated equation describing CO emissions is expressed as (Eq. 10): 
 
y (CO/km) = 0,512 – 0,219×(Eco) – 0,064×(Environment) - 0,031×(MoneyPerMonth) + 0,00005×(AvgTTL) – 
0,012×(StdBrk),      (10) 
 
Where: 

• CO/km: CO emissions per kilometer driven (g/km). 
• Eco: Eco-driving scenario (e.g., 0 = Non-eco driving behavior and 1 = Eco-driving behavior) 
• Environment: Driving environment (e.g., 0 = Mountainous rural network, 1 = Rural network). 
• MoneyPerMonth: Amount spent monthly by the participant on vehicle fuel (e.g., 1 = Less than €50, 2 = €51–

100, 3 = €101–200, 4 = More than €200). 
• AvgTTL: Time required for the vehicle to cross the road boundary line (ms). 
• StdBrk: Standard deviation of brake-pedal usage during driving. 
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Table 4 summarizes the regression coefficients and associated statistics for each predictor in the model evaluating 
carbon monoxide (CO) emissions. Similar to the results in Table 3, all t-test values exceed 1.7 and all p-values 
remain below 0.05, indicating that each variable’s effect is statistically significant at the 95% confidence level. In 
addition, to assess each variable’s contribution to CO emissions, elasticity (e) and relative elasticity (e⁎) are 
estimated. From Table 4, Eco has the most substantial effect, 7 times the smallest (i.e., MoneyPerMonth). Likewise, 
Environment is twice as influential as the smallest. Among the continuous variables, StdBrk emerges as the 
dominant predictor, exerting an impact 25.5 times greater than that of AvgTTL. 
 

Table 4: Model of CO/km Prediction 

Independent Variables βi Std. Error t Value p-Value e e* 
(Constant) 0.512 0.0615 8.331 0.000 ***   

Discrete variables 
Eco -0.219 0.0225 -9.751 0.000 *** -0.293 7.06 
Environment -0.064 0.023 -2.770 0.006 ** -0.086 2.06 
MoneyPerMonth -0.031 0.013 -2.309 0.023 * -0.041 1.00 

Continuous variables 
AvgTTL 0.00005 0.00002 2.689 0.008 ** 0.00001 1.00 
StdBrk 0.012 0.003 4.284 0.000 *** 0.0002 25.5 
R2 = 0.625       
Adjusted R2 = 0.613       
* Significance at the 90% confidence level/**95%/*** 99.9%. 
 
The regression analysis of CO emissions per kilometer validates the effectiveness of eco-driving practices, 
indicating a significant 29.3% reduction in emissions when transitioning from non-eco to eco-driving behavior. This 
reduction reflects the benefits of maintaining lower speeds, avoiding abrupt accelerations and decelerations, and 
reducing engine revolutions (RPM). The driving environment (Environment) also plays a crucial role, with emissions 
decreasing by 8.6% when driving in rural networks compared to mountainous ones. Rural terrains, characterized 
by fewer abrupt inclines and smoother roads, demand less frequent braking and acceleration, contributing to lower 
emissions. The monthly amount spent on vehicle fuel (MoneyPerMonth), with an elasticity of e=−0.041, suggests 
that drivers covering more kilometers and potentially gaining more driving experience tend to emit less CO per 
kilometer. Among the continuous variables, the average time required to cross the road boundary line (AvgTTL) 
exhibits a small positive elasticity (e=0.00001). Drivers who tend to stay closer to the right side of the road likely 
exhibit a more cautious driving profile, compared to those driving near the left lane, which may indicate an 
aggressive profile and a tendency for overtaking. Lastly, the standard deviation of brake usage (StdBrk) emerges as 
a dominant predictor with an elasticity of e=0.0002, showing that erratic braking behaviors and higher variability in 
braking intensity significantly increase CO emissions. With an R2 value of 0.625, the model explains 62.5% of the 
variance in CO emissions, reinforcing the importance of eco-driving practices, stable environments, and smoother 
driving behaviors in reducing environmental impact. 

3.3 NOx Emissions  

The emission model for nitrogen oxides (NOx) identified a 34.7% or 0.02 g/km reduction attributable to eco-driving. 
Similarly to previous pollutant emissions, the analysis underscores that smoother and more controlled vehicular 
maneuvers play a pivotal role in mitigating NOx emissions. The regression model for NOx emissions is specified as 
(Eq. 11): 
 
y (NOx/km) = 0.062 - 0.020×(Eco) - 0.004×(Environment) - 0.001×(RoutesPerDay)  
+ 0.002×(AvgBrk) - 0.009×(Avgrspur),      (11) 
 
Where: 

• NOx/km: NOx emissions per kilometer driven (g/km). 
• Eco: Eco-driving scenario (e.g., 0 = Non-eco driving behavior and 1 = Eco-driving behavior) 
• Environment: Driving environment (e.g., 0 = Mountainous rural network, 1 = Rural network). 
• RoutesPerDay: Average number of trips per day (e.g., 0 = 0 trips, 1 = 1 trip, …, 6 = more than 5 trips). 
• AvgBrk: Average brake-pedal usage (%) during driving. 
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• Avgrspur: Lateral offset of the vehicle from the center of the road (m). 

In Table 5, the regression coefficients and relevant statistical measures for each predictor in the nitrogen oxides 
(NOx) model are presented. As shown in Table 5, Eco driving compared to non-eco-driving exerts the most 
substantial effect 20 times greater than RoutesPerDay, which has the smallest impact. Meanwhile, Environment is 
4 times as influential as the smallest. Among the continuous variables, Avgrspur affects NOx emissions 4.5 times 
more than AvgBrk. 
 

Table 5: Model of NOx/km Prediction 

Independent Variables βi Std. Error t Value p-Value e e* 
(Constant) 0.062 0.007 9.033 0.000 ***   

Discrete variables 
Eco -0.020 0.002 -11.534 0.000 *** -0.347 20.00 
Environment -0.004 0.002 -2.168 0.032 * -0.069 4.00 
RoutesPerDay -0.001 0.001 -2.220 0.028 * -0.017 1.00 

Continuous variables 
AvgBrk 0.002 0.0003 6.002 0.000 *** 0.0003 1.00 
Avgrspur -0.009 0.004 -2.120 0.036 * -0.002 -4.50 
R2 = 0.638       
Adjusted R2 = 0.626       
* Significance at the 90% confidence level/**95%/*** 99.9%. 
 
Based on Table 5, Eco-driving practices are shown to have a significant impact on reducing nitrogen oxides (NOx) 
emissions, with a 34.7% decrease in emissions when transitioning from non-eco to eco-driving. This reduction 
highlights the benefits of smoother driving patterns, lower speeds, and reduced engine revolutions (RPM). Driving 
in rural environments leads to a further 6.9% reduction in NOx emissions compared to mountainous terrains, where 
the frequent use of brakes and accelerators increases emissions. The average number of trips per day 
(RoutesPerDay) contributes a modest reduction (e=−0.017) in emissions per additional trip, likely reflecting 
improved driving efficiency or accumulated experience. Increased brake usage (AvgBrk) is associated with higher 
emissions (e=0.0003), as energy lost through braking demands greater engine power and fuel consumption. 
Conversely, a greater lateral offset from the center of the road (Avgrspur) reduces emissions (e=−0.002), suggesting 
that more conservative driving behavior, such as staying closer to the right side of the lane, is linked to lower NOx 
emissions. With an R2 of 0.638, the model explains 63.8% of the variance in NOx emissions, reinforcing the 
importance of controlled driving habits and environmental conditions in reducing emissions. 

3.4 Fuel Consumption Model 

Fuel consumption exhibited comparable patterns to emissions, reflecting improvements under eco-driving 
scenarios. The results showed a reduction in fuel consumption of 1.050 l/100km or 7%. The statistical analysis 
indicates that rural driving environments and smoother driving styles significantly enhanced fuel efficiency. 
Gender-based differences were detected, with female drivers displaying slightly higher fuel consumption, 
potentially stemming from variations in braking frequency and acceleration patterns. The mathematical model 
governing fuel consumption is presented as (Eq. 12): 
 
y (FC) = 22.125 - 1.050×(Eco) - 1.87×(Environment) - 0.646×(Gender)  
- 0.874×(Avgrspur) - 0.095×(AvgClutch),      (12) 
 
Where: 

• FC: Fuel consumption per 100 kilometers (l/100km). 
• Eco: Eco-driving scenario (e.g., 0 = Non-eco driving behavior and 1 = Eco-driving behavior) 
• Environment: Driving environment (e.g., 0 = Mountainous rural network, 1 = Rural network). 
• Gender: Driver’s gender (e.g., 1 = Male, 2 = Female). 
• Avgrspur: Lateral offset of the vehicle from the center of the road (m). 
• AvgClutch: Average clutch-pedal usage (percentage) during driving. 
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Table 6 presents the regression coefficients and corresponding statistics for each predictor in the fuel 
consumption model. Moreover, the elasticity (e) and relative elasticity (e⁎) reveal that Environment exerts the 
strongest impact - roughly three times greater than the least influential factor, Gender. Similarly, Eco is 1.6 times 
more influential on fuel consumption than the smallest effect, while AvgClutch outweighs Avgrspur by a factor of 
9.20. 
 

Table 6: Model of Fuel Consumption Prediction 

Independent Variables βi Std. Error t Value p-Value e e* 
(Constant) 22.125 0.836 26.458 0.000 ***   

Discrete variables 
Eco -1.050 0.155 -6.791 0.000 *** -0.07 1.63 
Environment -1.870 0.160 -11.678 0.000 *** -0.13 2.89 
Gender -0.646 0.152 4.262 0.000 *** -0.04 1.00 

Continuous variables 
Avgrspur -0.874 0.368 -2.374 0.019 * -0.0006 1.00 
AvgClutch -0.095 0.009 -10.987 0.000 *** -0.00006 9.20 
R2 = 0.784       
Adjusted R2 = 0.777       
* Significance at the 90% confidence level/*** 99.9%. 
 
Fuel consumption significantly decreases under eco-driving scenarios, with an elasticity of e=−0.07, indicating a 
7% improvement in efficiency when drivers adopt smoother accelerations, reduced speeds, and lower engine 
revolutions (RPM). Similarly, rural environments (Environment) result in a 13% reduction in fuel consumption 
compared to mountainous terrains, where frequent braking and acceleration are required due to steep slopes. 
Female drivers (Gender) consume 4% more fuel than their male counterparts, likely due to different driving 
patterns, such as increased braking frequency. Regarding continuous variables, the lateral offset from the center 
of the road (Avgrspur) demonstrates a minor effect (e=−0.0006), suggesting that drivers who maintain a more 
consistent position closer to the right side of the lane exhibit more fuel-efficient behavior. Finally, the average 
clutch usage (AvgClutch) has the most substantial impact among continuous variables (e=−0.00006), highlighting 
that proper clutch management improves engine performance by reducing energy losses and optimizing gear 
choices. With an R2 of 0.784, the model effectively captures the factors influencing fuel consumption, reinforcing 
the importance of eco-driving techniques, environmental conditions, and driving behaviors for improving fuel 
efficiency. 

3.5 Crash Probability Model 

The probability model for crash risk provided further support for the hypothesis that eco-driving promotes road 
safety. Results demonstrated significant reductions in crash probabilities among eco-driving, particularly those 
adhering to stricter speed limits and possessing greater driving experience. Specifically, eco-driving was found to 
reduce crash probability by 66.2%, underscoring its critical role in enhancing road safety. A binary logistic model 
was derived for the probability of a crash based on the following relationships (Eq. 15 & Eq. 16): 
 

Crash Probability = 𝑒𝑁𝑢𝑚𝑂𝑓𝐶𝑟𝑎𝑠ℎ𝑒𝑠𝐴𝑣𝑒𝑟𝑎𝑔𝑒

𝑒𝑁𝑢𝑚𝑂𝑓𝐶𝑟𝑎𝑠ℎ𝑒𝑠𝐴𝑣𝑒𝑟𝑎𝑔𝑒+1
,      (15) 

 
NumOfCrashesAverage = 9.248 - 2.516×(Eco) + 0.689×(Environment) - 0.233×(Age) - 1.22×(FuelMoney) - 
0.41×(SpeedLimits),      (16) 
 
Where: 

• NumOfCrashesAverage: Indicator of crash occurrence (e.g., 0 = No and 1 = Yes). 
• Eco: Eco-driving scenario (e.g., 0 = Non-eco driving behavior and 1 = Eco-driving behavior) 
• Environment: Driving environment (e.g., 0 = Mountainous rural network, 1 = Rural network). 
• Age: Driver’s age (18–30 years). 
• FuelMoney: Monthly amount spent on fuel (e.g., 1 = €0–100, 2 = More than €101). 
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• SpeedLimits: Level of agreement with reducing speed limits (e.g., 1 = Not at all, 2 = Slightly, 3 = Somewhat, 
4 = Very, 5 = Extremely). 

Table 7 presents the binary logistic regression coefficients and associated statistics for each variable in the crash 
probability model. With the exception of Environment, whose p-value corresponds to 90% confidence, the 
remaining variables attain a 95% confidence level (i.e., p < 0.05). According to Table 7, Environment exhibits the 
greatest impact, approximately 39.5 times larger than FuelMoney, which shows the smallest effect on crash 
probability. Eco driving is 1.8 times more influential than the smallest effect, and SpeedLimits has an 8.07 stronger 
impact on crash probability than Age. 
 

Table 7: Model of Crash Probability 

Independent Variables βi Std. Error z Value p-Value e e* 
(Constant) 9.248 2.613 3.540 0.000 ***   

Discrete variables 
Eco -2.516 0.421 -5.977 0.000 *** -0.662 1.82 
Environment 0.689 0.398 1.731 0.083 * 14.365 -39.54 
FuelMoney -1.220 0.513 -2.378 0.017 ** -0.363 1.00 
SpeedLimits -0.410 0.184 -2.224 0.026 ** 2.932 -8.07 

Continuous variables 
Age -0.233 0.094 -2.479 0.013 ** -0.072 - 
Accuracy = 77.6%       
* Significance at the 90% confidence level/*** 99.9%. 
 
Eco-driving practices significantly lower the probability of crash involvement, with an elasticity of e=−0.662, 
demonstrating that drivers adhering to smoother accelerations, reduced engine revolutions (RPM), and consistent 
speeds experience a substantial reduction in crash risk. Rural environments (Environment) show the strongest 
effect, increasing crash probability (e=14.365). This is likely due to mountainous terrain, which often features 
abrupt inclines and sharp curves, limiting visibility and increasing the likelihood of crashes. The amount spent 
monthly on fuel (FuelMoney) shows the smallest impact (e=−0.363), with higher expenditures likely reflecting 
greater driving experience and vehicle familiarity, contributing to safer driving. Compliant drivers with reduced 
speed limits (SpeedLimits) significantly lowers crash probability (e=2.932), suggesting that drivers with higher 
compliance levels exhibit safer driving behaviors by maintaining lower speeds. Lastly, the driver's age (Age) has a 
moderate negative elasticity (e=−0.072), indicating that older drivers, possibly due to their experience and caution, 
have a lower crash risk. The binary logistic model achieves an accuracy of 77.6%, indicating its overall effectiveness 
in predicting crash probabilities. Moreover, the statistically significant predictors, including eco-driving behaviors, 
environmental conditions, and driver characteristics, provide meaningful insights into the factors influencing crash 
likelihoods. 

4. Discussion 

The findings of this study underscore the diverse benefits of eco-driving, demonstrating its effectiveness in 
reducing environmental pollutants, optimizing fuel use, and reducing crash probabilities in rural and mountainous 
road environments. This discussion contextualizes these outcomes within a broader context of suitability, critically 
evaluating limitations while outlining theoretical and practical implications. Eco-driving emerges as a 
transformative paradigm in sustainable transportation and traffic safety, warranting continued scholarly and 
practical attention. 
 
Empirical evidence verifies prior research confirming the effectiveness of eco-driving in curbing CO2 emissions and 
fuel consumption (Coloma et al., 2020). The current study substantiates these findings by documenting a 
quantifiable and significant reduction of 5.9% or 19.45 g/km in CO2 emissions within eco-driving scenarios. Coloma 
et al. (2020) further reported reductions in fuel consumption and CO2 emissions ranging from 5% to 12%, 
contingent on driving environments, emphasizing the influence of terrain and congestion patterns. These findings 
highlight the value of structured driver training programs and adaptive vehicular technologies as mechanisms for 
embedding eco-driving methodologies into everyday practice. In modeling CO emissions, the predictive framework 
indicated a 29.3% or 0.219 g/km reduction associated with eco-driving. Heightened braking variability emerged as 
a key driver of increased emissions, underscoring how erratic driving behaviors can worsen pollutant output. 
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Parallel findings by Lois et al. (2019) verify the relationship between driving dynamics and overall emissions. 
Regarding NOx emissions, the analysis revealed a 34.7% or 0.02 g/km decline attributable to eco-driving practices. 
The data emphasize that maintaining steady speeds and minimizing abrupt braking significantly mitigate NOx 
emissions, aligning with earlier evidence. Fuel consumption exhibited similar improvements under eco-driving 
scenarios (i.e., reduction in fuel consumption of 1.050 l/100km or 7%), particularly in rural terrains with fewer 
elevation shifts. These results suggest that eco-driving not only promotes environmental sustainability but also 
confers economic advantages, thereby offering dual benefits for stakeholders. Similarly, Jin et al. (2015) 
demonstrated that eco-driving strategies optimized for intersections not only reduced CO emissions but also 
achieved reductions in NOx emissions (e.g., 0.11% and 17.03%, respectively), underscoring the adaptability of eco-
driving techniques to various traffic scenarios (Jin et al., 2015). These results affirm eco-driving dual ecological and 
economic benefits, presenting compelling incentives for widespread promotion and adoption. 
 
The current study further demonstrated a decrease in crash probabilities by 66.2% among eco-driving. Compliance 
with speed limits and smoother driving techniques collectively bolstered safety metrics. In a related vein, D. 
Robertson et al. (2024) further confirm that eco-driving reduces the risk of collisions in commercial motor vehicles 
by enforcing consistent speed patterns and minimizing abrupt maneuvers, contributing to improved safety metrics. 
Moreover, Nævestad (2022) supports this finding, indicating that eco-driving practices improve road safety by 
reducing accident risk through smoother driving behaviors and higher compliance with speed regulations. These 
insights advocate for the systematic incorporation of eco-driving principles into traffic management systems, 
potentially augmented by vehicle telematics and targeted infrastructure adaptations. Yang et al. (2021) reinforce 
this perspective, demonstrating that integrating eco-driving with intelligent traffic management and vehicle-to-
infrastructure technologies can further reduce collisions and enhance operational efficiency. 
 
The policy and practical implications of these findings are significant, spanning driver education, training, and 
technological innovation. Integrating eco-driving modules into driver education and licensing can normalize 
sustainable driving behaviors from the outset, fostering environmental responsibility among both novice and 
experienced drivers. For drivers, particularly those operating in challenging terrains, targeted interventions 
focusing on adaptive techniques for varying gradients and conditions may yield considerable emissions reductions 
and improved safety outcomes. The incorporation of real-time in-vehicle feedback systems, as demonstrated by 
Ng et al. (2021), has also been shown to enhance fuel efficiency and reduce emissions, providing immediate 
behavioral cues to drivers. Equally important, Adamczak et al. (2020) underscore the role of structured incentives, 
such as financial rewards and discounts, in cultivating sustained compliance with eco-driving practices, resulting 
in measurable improvements in emission profiles. Finally, policymakers could amplify these effects by employing 
economic instruments, such as tax incentives or insurance premium reductions, to accelerate the adoption of eco-
driving technologies and training programs. 
 
Aside from the study contributions, this research acknowledges certain limitations. Although a driving simulator 
enables controlled experimentation, its ecological validity is constrained, necessitating further on-road 
evaluations. Additionally, the young-aged of the participants restricts somehow the generalizability of the findings, 
highlighting the importance of larger, more diverse participant pools in subsequent investigations. Moreover, 
cultural and regional gradations merit exploration to tailor eco-driving strategies effectively across various 
contexts. 
 
Future research could investigate the longitudinal effects of eco-driving training, assessing behavioral retention 
and possible evolution over extended periods. The interface between eco-driving and emerging automotive 
technologies—particularly in electric and hybrid vehicles—remains a promising area of inquiry (Neumann et al., 
2015). Studies examining adaptive cruise control, lane-keeping systems, and associated driver-assistance 
technologies may uncover synergistic effects that further enhance both environmental outcomes and road safety. 
Additionally, exploring how infrastructure design influences eco-driving efficacy, especially in mountainous 
regions, could provide actionable insights for policymakers and urban planners. 
 
In conclusion, this work delineates the multidimensional advantages of eco-driving namely, emission reduction, 
improved fuel efficiency, and decreased crash risks in rural and mountainous environments. It establishes a 
substantive basis for extending eco-driving through policy reforms, technological developments, and 
infrastructural investments. While longitudinal and real-world validations remain essential, the evidence 
presented underscores eco-driving integral role within sustainable transportation frameworks. Moving forward, 
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coordinated efforts among policymakers, researchers, and automotive industry stakeholders will be critical to 
realizing its full ecological and economic potential. 

5. Conclusions 

This investigation offers strong evidence for incorporating eco-driving strategies as a practical way to improve 
environmental sustainability, boost fuel efficiency, and enhance road safety. Through empirical models focused 
on CO2, CO, and NOx emissions, as well as fuel consumption, the study illustrates how eco-driving can notably cut 
both emissions and fuel usage, leading to positive ecological and economic outcomes. The findings indicate that 
eco-driving not only reduces pollutants but also reduces collision risks, reinforcing the argument for its wider 
acceptance. 
 
One standout aspect of this research is its integration of eco-driving principles in experimental settings to measure 
outcomes accurately in both rural and mountainous environments. Unlike many past studies focusing mainly on 
urban contexts, this work addresses eco-driving’s effectiveness in more demanding terrains, bridging an important 
research gap. By using advanced regression analysis, the study establishes credible evidence that eco-driving cuts 
emissions, boosts fuel economy, and promotes safer roads. 
 
Overall, this research identifies eco-driving as a pivotal strategy within the broader context of sustainable transport. 
Its diverse benefits, ranging from emission reductions and fuel savings to lower crash risks, point to a need for 
concerted efforts among policymakers, academia, and industry players to promote eco-driving. Future initiatives 
should refine training methods, explore technological advancements, and implement supportive policies to fully 
harness the environmental and financial rewards eco-driving can offer. 
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