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Introduction
➢Road Safety is a global challenge, with 1.19 million 

people dying every year according to WHO.

➢Most crashes, up to 95%, are caused by driver 

behavior, like speeding, distraction, fatigue, or 

impairment.

➢Advancements in Intelligent Transportation Systems 

(ITS) and Machine Learning are powerful tools for 

real-time driver behavior analysis and accident risk 

prediction.

➢  Most models lack interpretability and fail on 

imbalanced data, making them unreliable for safety. 
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Research Gaps & Objectives

➢ Research Gaps:

• Most Machine Learning models act as black boxes

• Driving datasets are highly imbalanced, with risky 

driving events being rare 

• Limited validation across different countries using 

real-world data

➢ Objectives:

• Evaluate 3 hybrid ML models RNN-AdaBoost, 

XGBoost,GANs

• Apply Conditional GANs (cGANs) for data 

augmentation

• Use SHAP for interpretability and feature analysis 

• Test generalizability on Belgium & UK datasets 
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Experimental Design

Naturalistic driving experiment:

➢Belgium: 43 drivers → over 7,000 trips

➢UK: 26 drivers → over 8,000 trips

➢Method: On road naturalistic driving study

➢Duration: 4 months

The naturalistic experimental design has been 

subdivided into four consecutive phases:

➢ Phase 1: Basiline phase

➢ Phase 2: Real-time warning using ADAS

➢ Phase 3: Driver feedback through mobile app

➢ Phase 4: Gamification features to promote safer 

driving
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Methodology
➢Data was segmented into 30-second intervals and 

categorized into three safety levels using the Safety 

Tolerance Zone concept, based on headway distance 

and speed thresholds:

• normal (low risk)

• dangerous (moderate risk)

• avoidable accident (high risk)

➢Hybrid Machine Learning Models:

1. RNN-AdaBoost: combines temporal sequence 

modeling with boosting

2. XGBoost-RF: powerful ensemble approach 

3. GANs: used for data augmentation through 

synthetic samples of rare risky events
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Multi-class Classification
➢ A major challenge was the imbalance of real-world driving data, to 

address this the SMOTE technique was applied to generate 

synthetic samples for rare risky behaviors

➢ Feature selection process: 

• Variance Threshold → removed low-information variables

• Mutual Information → kept most relevant predictors

• Normalization (Min-Max scaling) for consistent input ranges

➢ Selected Features: 

 
Belgium UK

GPS_distances_sum– Total distance traveled 
by the vehicle

GPS_distances_sum– Total distance traveled 
by the vehicle

GPS_spd_mean– Average speed of the 
vehicle during the trip

GPS_spd_mean– Average speed of the 
vehicle during the trip

ME_Car_speed_mean– Average speed of 
the vehicle

ME_Car_speed_mean– Average speed of the 
vehicle

DEM_evt_hb_lvl_H_mean– Mean level of 
harsh braking events recorded during the 
trip

IBI_value_mean– Mean time interval 
between successive heart beats
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Evaluation & Interpretability

➢ Evaluation Metrics: 

1. Accuracy → overall % of correct classifications

2. Precision → % of predicted risky behaviors that were 

actually risky

3. Recall → % of actual risky behaviors correctly detected

4. F1-score → balance between Precision and Recall

5. False Positive Rate (FPR) → % of safe driving wrongly 

classified as risky

➢ Interpretability: 

Used SHAP to explain feature contributions, increasing 

transparesy and trust in predictions.
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Results (1/2)
➢ Comparison of classification model evaluation metrics for Belgium and UK

•XGBoost-Rf: Delivered the best results in both datasets, with highest accuracy and 

lowest FPR

•RNN-AdaBoost: Lower performance with higher FPR, more prone to misclassification

•GANs: exhibits the lowest performance, lowest accuracy and F1-score and highest FPR, 

indicating a weaker ability to correctly classify instances

➢ Cross-Country Insights:

• Belgium: Risk mostly explained by speed and harsh braking 

• UK: Speed remains dominant, heartbeat intervals (IBI) play stronger role

• In both datasets Trip Distance has a moderate but consistent effect

Dataset Model Accuracy Precision Recall FPR F1-score
XGBOOST & RF 93% 93% 93% 7.4% 93%

Belgium RNN & AdaBoost 83% 82% 83% 14.7% 82%

GANS 76% 64% 76% 23.2% 66%

XGBOOST & RF 92% 92% 92% 9.8% 91%

UK RNN & AdaBoost 85% 84% 85% 10.3% 84%

GANS 79% 80% 79% 21% 74%
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Results (2/2)
➢ Top Influential Features:

1. Speed (ME_Car_speed_mean, GPS_spd_mean): Strongest driver of predictions.

2. Distance (GPS_distances_sum): Distinguishes normal vs risky trips.

3. Harsh braking (DEM_evt_hb_lvl_H_mean): Key risk factor in Belgium.

4. Heartbeat intervals (IBI): Stress-related influence, stronger in UK.

➢ Key Takeaways: 

• Speed Metrics→ strongest and most consistent predictors of risky driving.

• Physiological signals (e.g., heart rate/IBI) → add interpretability and enable 

personalized risk assessment.
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Conclusions & Future Work
➢ Conclusions:

• XGBoost-RF proved the most accurate and robust model across 

both datasets.

• SHAP analysis increased interpretability, showing speed as the 

dominant risk factor, with braking and physiological signals 

providing added insights.

• GANs showed limited performance as classifiers but remain 

promising for data augmentation to improve class balance.

➢ Future Work:

• Expand datasets with more drivers and diverse conditions to 

improve reliability and generalization.

• Optimize models for real-time deployment in ADAS and mobile 

systems.

• Integrate additional data (e.g., demographics, psychological traits, 

environmental conditions) for more personalized assessments.

• Develop hybrid approaches combining GANs with tree-based or 

sequential models to enhance both accuracy and robustness.
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