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ABSTRACT1
This study presents an unsupervised approach for detecting harsh cornering behavior using smartphone-2
based telematics enriched with infrastructure data. Unlike traditional methods that require fixed3
device orientation or labeled datasets, the proposed framework combines GPS-derived yaw and4
heading changes, orientation-invariant inertial sensor magnitudes, and spatial validation using5
OpenStreetMap to isolate turning maneuvers with safety relevance. A preprocessing pipeline iden-6
tifies candidate turns based on angular thresholds and proximity to mapped intersections. A multi-7
variate feature set is extracted from time-series windows around each turn, capturing translational8
and rotational dynamics. Outlier detection is performed using DBSCAN, with hyperparameters9
tuned via k-distance, and complemented by Isolation Forest to enhance robustness. The ensemble10
of detections shows strong separability when evaluated through supervised classifiers, achieving11
ROC-AUC scores above 0.98. Visual case studies further confirm the accuracy and interpretability12
of the identified events. This orientation-agnostic pipeline operates without labeled data, making13
it highly suitable for real-world deployment in driver behavior analysis, risk profiling, and road14
safety analytics. The study highlights the feasibility of combining sensor fusion and map-based15
filtering to detect unsafe driving behaviors at scale.16

17
Keywords: Smartphone telematics, harsh cornering detection, unsupervised learning, sensor fu-18
sion, OpenStreetMap, driver behavior, road safety.19
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INTRODUCTION1
Road safety data sources are essential for understanding the causes of crashes and predicting future2
risks to reduce road traffic accidents. Various factors, including driving speed, road infrastructure,3
and driver behavior, influence crashes. However, crashes are relatively rare, making it challenging4
to detect and assess road safety conditions in real-time. To address this challenge, researchers have5
employed crash surrogates in road safety studies in order to define crash proneness and associate6
it with crash risk (Gettman et al., Nikolaou et al. (1, 2)).7

The increasing adoption of smartphone-based telematics offers a scalable and cost-effective8
alternative for monitoring driver behavior (Mantouka et al. (3)). Smartphones, equipped with9
sensors such as accelerometers, gyroscopes, and GPS, generate rich datasets for analyzing vehicle10
dynamics. High G-force events, characterized by vehicle acceleration exceeding expected levels,11
typically result from hard braking or abrupt acceleration maneuvers. These events are widely used12
by researchers to evaluate driver behavior and identify high-risk drivers (Simons-Morton et al. (4)).13

Previous studies, such as Liu et al. (5), have explored smartphone-based detection of hard-14
braking events to enhance road safety services, demonstrating the potential of mobile sensors in15
real-world driving scenarios. Additionally, the use of gyroscopes in mobile applications, as dis-16
cussed in Barthold et al. (6), has shown promise in capturing rotational motion, making it a valuable17
tool for detecting cornering events.18

The accurate classification of vehicle cornering behaviors (e.g., normal vs. harsh turns) is19
crucial for a wide range of applications, including driver behavior analysis, autonomous driving20
systems, and vehicle safety enhancement. Identifying and mitigating harsh driving maneuvers21
is particularly significant, as these actions can lead to severe vehicle instability. For example,22
while rollover incidents constitute only 3% of all vehicle crashes, they account for nearly one-23
third of passenger fatalities, highlighting the critical risks associated with extreme driving events24
(Padmanaban and Husher (7)). The ability to detect and analyze these behaviors in real-time could25
play a pivotal role in reducing fatalities and improving road safety.26

While hard braking and rapid acceleration have been extensively studied in the context27
of smartphone-based telematics, harsh cornering remains comparatively underexplored despite its28
strong association with vehicle instability and elevated crash risk. Most commercial and academic29
telematics frameworks focus on longitudinal forces due to their simpler detection using accelerom-30
eter data and clearer regulatory implications. However, lateral dynamics during turning are equally31
critical, particularly in urban or suburban environments where sharp curves and intersections are32
frequent. Cornering events are inherently more complex to capture, as they depend on rotational33
motion, trajectory shape, and interaction with road geometry—factors that are difficult to quan-34
tify under unknown device orientations. The limited attention given to harsh cornering detection35
contrasts with its potential importance in crash prevention, driver feedback, and risk-based in-36
surance pricing. This gap highlights the need for robust, orientation-invariant methods capable37
of identifying aggressive turning behavior in naturalistic driving conditions. Most existing stud-38
ies that investigate harsh cornering rely on smartphones mounted in fixed orientations within the39
vehicle, enabling axis-specific thresholding for detecting lateral acceleration or angular velocity40
(Vlahogianni and Barmpounakis (8)). Moreover, a few studies rely on special equipment to align41
the smartphone to the vehicle’s coordinate system (Wang et al., Chen et al. (9, 10)). While effective42
in controlled settings, such methods lack robustness in real-world deployments where the smart-43
phone’s position and orientation can vary significantly. To address this limitation, the present study44
proposes an unsupervised methodology that leverages smartphone sensor and GPS data fused with45
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infrastructure information from OpenStreetMap. The approach estimates yaw rate over multiple1
temporal horizons to capture the full cornering profile, normalizes inertial data using vector mag-2
nitudes to remain invariant to phone orientation, and filters events based on geospatial validation3
near road intersections. By employing K-NearestNeighbors to guide hyperparameter tuning and4
DBSCAN to identify outliers, harsh cornering events are detected without reliance on labeled data5
or fixed sensor placement. This orientation-agnostic pipeline offers a scalable and flexible solution6
for real-world driving behavior analysis.7

DATA COLLECTION AND PREPROCESSING8
This section outlines the procedures followed to prepare the data used for detecting harsh cor-9
nering events from smartphone-based telematics. Given the challenges posed by real-world de-10
ployment—such as arbitrary device placement, sensor noise, and inconsistent sampling—careful11
attention was paid to both the selection of meaningful signals and the derivation of robust features.12
The dataset includes multimodal time-series data recorded during naturalistic driving, and prepro-13
cessing steps were designed to extract motion-related cues that can capture turning behavior in a14
device-agnostic manner.15

Data Source16
The dataset used in this study originates from OSeven Telematics and consists of anonymized17
time-series data collected from smartphone sensors at a frequency of 1 Hz. Each record includes18
GPS-derived location coordinates, speed, and heading (course over ground), as well as readings19
from embedded inertial sensors such as the accelerometer and gyroscope. The data is captured pas-20
sively during driving, leveraging consumer-grade smartphones placed arbitrarily inside the vehicle21
without fixed orientation or mounting. As a result, the dataset reflects realistic deployment con-22
ditions, including variability in device orientation, sensor noise, and driving environments. The23
temporal resolution and multimodal nature of the dataset make it suitable for modeling driving24
behavior and detecting dynamic events such as harsh cornering.25

In total, the dataset after filtering noisy GPS datapoints comprises 4,017 individual trips26
and 1,758,589 datapoints, representing a large and diverse sample of naturalistic driving behavior27
across various conditions.28

Yaw Rate Estimation29
To capture turning dynamics, we extract two features: (a) the maximum yaw rate across short hori-30
zons, representing the sharpness of a turn, and (b) the maximum total heading change, representing31
the overall extent of the maneuver. These are derived from GPS-based heading changes sampled32
at 1 Hz.33

The yaw rate at multiple temporal horizons is computed using Equation (1), which normal-34
izes heading changes over time to account for angular wraparound. The maximum absolute yaw35
rate across the past four seconds is extracted in Equation (2) to capture the sharpest recent change36
in heading. Similarly, the total turn angle at each horizon is defined in Equation (3), and the largest37
absolute heading deviation is summarized in Equation (4). These features together capture both38
the short-term intensity and the spatial extent of vehicle cornering behavior.39

yaw_raten =
((θt −θt−n +180) mod 360)−180

n ·∆t
, n = 1,2,3,4 (1)40

https://www.oseven.io
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max_yaw_rate = max(|yaw_rate1| , |yaw_rate2| , |yaw_rate3| , |yaw_rate4|) (2)1

turn_anglen = ((θt −θt−n +180) mod 360)−180, n = 1,2,3,4 (3)2

max_turn_angle = max(|turn_angle1| , |turn_angle2| , |turn_angle3| , |turn_angle4|) (4)3

Map-Based Validation Using OpenStreetMap4
After computing the turn angle at each timestamp, we apply a threshold of 70 degrees over the 45
seconds period to identify candidate turning events. This threshold is selected to filter out minor6
course deviations and emphasize maneuvers that are likely to affect vehicle stability if executed7
harshly. The resulting candidate events capture high-curvature segments in the trajectory, but they8
may still include false positives due to GPS noise, lane changes, or sudden heading corrections on9
straight roads.10

To enhance the reliability of turn detection, we introduce a validation step using map data11
from OpenStreetMap (OSM). The key idea is that genuine cornering events should occur in the12
vicinity of an actual road intersection. For each candidate turn event, we query the surrounding13
region within a fixed radius, 15 meters in our case, to check for the presence of an OSM-mapped14
intersection.15

Intersections are extracted using OSM road network data, typically by identifying nodes16
where multiple road segments meet at an angle, excluding nodes on roundabouts or interchanges.17
If no such intersection is found near the detected turn point, the event is considered a likely false18
positive and is discarded from further analysis.19

Since the map-based validation is only used to eliminate false positives among the detected20
cornering events, we avoid building a local road graph for each event—which would be computa-21
tionally intensive. Instead, we pre-load and index the entire road network of the Attica region in22
Greece. This area includes a mix of dense urban grids, suburban layouts, and rural roads, offering23
a realistic and structurally diverse environment. By covering this region in advance, we ensure fast24
spatial queries for intersection checks while maintaining robustness across varied road geometries.25

This spatial filtering step improves precision by enforcing a topological constraint: harsh26
cornering should correspond not just to sharp heading changes, but to those that align with actual27
road geometry. As a result, the dataset used in subsequent modeling stages contains a more robust28
set of turn events grounded in the physical infrastructure of the driving environment.29

This ensures that the final dataset focuses on significant cornering maneuvers that are more30
likely to impact vehicle stability and driver behavior. Figure 1 illustrates the distribution of total31
turn angles and vehicle speeds across the filtered dataset. As shown, most turns involve angles32
ranging from 70° to 180°, while vehicle speeds during these maneuvers are typically concentrated33
below 40 km/h, consistent with expected driving behavior in urban environments.34

After validation, the resulting dataset comprises approximately 1,900 high-confidence cor-35
nering events in Attica region of Greece, which form the basis for downstream clustering and36
anomaly detection.37

Orientation-Invariant Sensor Features38
Following the map-based validation step, the resulting set of candidate turn events was further pro-39
cessed to extract additional features from the inertial sensors. Given that smartphones in real-world40
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FIGURE 1: The histogram shows the distribution of total turn angles (blue) and vehicle speeds
(orange) across all turning events in the dataset.

deployments can be placed arbitrarily inside the vehicle—resulting in unknown and inconsistent1
orientation—the direct use of individual accelerometer and gyroscope axes (x, y, z) becomes un-2
reliable. To mitigate this, we compute the magnitude of the 3-axis accelerometer and gyroscope3
signals, which is invariant to device orientation and better suited for modeling motion intensity.4

The acceleration and gyroscope magnitude are calculated as the Euclidean norm of the5
three-axis readings at each timestamp t, as shown in Equations (5), (6):6

accel_magnitudet =
√

ax(t)2 +ay(t)2 +az(t)2 (5)7

gyro_magnitudet =
√

ωx(t)2 +ωy(t)2 +ωz(t)2 (6)8
These magnitude features allow us to quantify the overall intensity of linear and angular9

motion, respectively, without relying on axis-specific orientation. They are particularly useful for10
identifying sudden vehicle dynamics—such as sharp cornering or abrupt lateral shifts—regardless11
of how the phone is positioned within the car.12

Yaw Rate from Device Orientation Sensors13
In addition to estimating yaw rate from GPS-derived heading changes, we also compute a sec-14
ond yaw-related feature using the smartphone’s internal orientation sensor, often referred to as15
motionYaw. This value typically comes from a sensor fusion algorithm that combines data from16
the gyroscope, accelerometer, and magnetometer to provide a stable estimate of the device’s yaw17
(rotation around the vertical axis) relative to the current reference frame.18

To make this information comparable across time, we calculate the angular velocity—i.e.,19
the yaw rate—by differentiating the motionYaw value over time, taking into account angular20
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wraparound at 360° boundaries. The formula is similar in structure to the GPS-based yaw rate,1
but applied to orientation sensor output:2

yaw_rate_motiont =
((ψt −ψt−1 +180) mod 360)−180

∆t
(7)3

where ψt denotes the device yaw angle (in degrees) at time t, and ∆t is the sampling interval.4
Due to the arbitrary phone placement in real-world scenarios, we use this signal as a sup-5

plementary feature rather than a sole indicator of cornering.6

METHODOLOGY7
This section describes the full unsupervised pipeline for detecting harsh cornering events from8
smartphone-based telematics. It begins with the construction of time-series segments centered on9
cornering peaks, followed by feature extraction, normalization, and density-based clustering. The10
goal is to identify outlier turn maneuvers that deviate significantly from typical driving behavior.11

Feature Construction12
Each cornering event identified by the GPS-based turn angle threshold is further processed to ex-13
tract a consistent time-series window for feature computation. Specifically, for each record flagged14
as part of a turn, we identify the turn peak—the timestamp where the yaw rate is maximal—and15
extract a 3-second multivariate time-series window centered on this peak.16

This results in a fixed-length sequence of sensor observations spanning 1 second before17
and 1 second after the peak. Each window includes synchronized values from multiple sensor18
modalities:19

• GPS-derived features: speed, heading20
• Accelerometer: 3-axis linear acceleration21
• Gyroscope: 3-axis angular velocity22
• Device orientation: yaw angle23
This segmentation process transforms each turn into a comparable multivariate time-series,24

which forms the basis for computing robust, orientation-invariant features.25
From each time-series segment, we compute a set of 13 statistical and motion-based fea-26

tures that describe the dynamics of the turn. These include speed variations, angular motion inten-27
sities, rotational asymmetry, and trajectory properties. Table 1 summarizes the extracted features.28

These features collectively encode the intensity, variability, and asymmetry of each cor-29
nering maneuver. By capturing both translational and rotational dynamics—including maximum30
and minimum yaw rates from multiple sources—they offer a rich representation of the vehicle’s31
behavior during turning. The use of magnitudes for inertial sensors ensures robustness to phone32
orientation, while entry/exit speeds and heading change summarize the broader context of each33
maneuver.34

Unsupervised Detection of Harsh Cornering Events35
After feature extraction, we standardize the feature matrix using z-score normalization, ensuring36
that each feature contributes equally to the distance-based clustering that follows.37

We then apply the Density-Based Spatial Clustering of Applications with Noise (DB-38
SCAN) algorithm to identify harsh cornering events (Ester et al. (11)). DBSCAN is particularly39
well-suited for this application because it does not require the number of clusters to be specified in40
advance, and it explicitly labels as noise those points that do not belong to any dense region.41
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TABLE 1: Description of extracted features for each turn event

Feature Description
speed_min Minimum vehicle speed during the turn (km/h)
speed_max Maximum vehicle speed during the turn (km/h)
entry_speed Speed at the start of the turn window (km/h)
exit_speed Speed at the end of the turn window (km/h)
max_speed_change Maximum speed change observed within the window (km/h)
total_turn_angle_max Maximum heading change over fixed intervals (degrees)
yaw_rate_max Max yaw rate computed from GPS heading (°/s)
motion_yaw_rate_deg_max Max yaw rate from device orientation in degrees/s
motion_yaw_rate_deg_min Min yaw rate from device orientation in degrees/s
accel_magnitude_min Minimum acceleration magnitude (m/s2)
accel_magnitude_max Maximum acceleration magnitude (m/s2)
gyro_magnitude_min Minimum gyroscope magnitude (rad/s)
gyro_magnitude_max Maximum gyroscope magnitude (rad/s)

In our setting, this "noise" corresponds to abnormal or harsh turning events, under the1
assumption that most turns follow a typical behavioral pattern. DBSCAN treats these harsh events2
as statistical outliers in the feature space.3

Hyperparameter Tuning via K-Distance Heuristic4
DBSCAN requires two hyperparameters: the neighborhood radius ε and the minimum number of5
neighbors (min_samples) to form a dense cluster. While min_samples is typically set to a fixed6
value, selecting ε appropriately is crucial for meaningful outlier detection.7

To identify an appropriate value for the ε parameter in DBSCAN, we applied the k-distance8
heuristic, plotting the distance to each point’s 50th nearest neighbor after sorting all distances in9
ascending order as shown in Figure 2. The resulting curve exhibits a characteristic elbow shape,10
where a steep increase in distance suggests a transition from dense to sparse regions. We selected11
an ε value of 4.0, which captures the boundary between typical and anomaly turning behaviors.12
This selection balances precision in detecting dense clusters of regular maneuvers and recall in13
identifying true outliers representing harsh cornering.14

This hybrid approach leverages K-NeirestNeighbors to guide DBSCAN parameter tuning15
while maintaining the flexibility of density-based clustering to detect rare but significant behaviors.16

To assess the internal consistency of clusters formed by DBSCAN, we computed the silhou-17
ette score, a common metric for evaluating unsupervised clustering. The silhouette score quantifies18
how similar each point is to its own cluster compared to other clusters. In our case, DBSCAN19
achieved a silhouette score of 0.53, indicating moderately well-separated clusters, with outliers20
forming distinct, sparse regions in the feature space. This confirms the effectiveness of the ex-21
tracted features and selected ε in capturing cornering behavior patterns.22

While unsupervised, this score supports the intuition that regular and harsh cornering events23
occupy distinct zones in the feature space.24
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FIGURE 2: k-Distance plot used to determine the optimal ε parameter for DBSCAN. Each point
represents the distance to its 50th nearest neighbor, sorted in ascending order

Isolation Forest as a Complementary Detector1
In addition to DBSCAN, we evaluated the use of the Isolation Forest algorithm as a model-agnostic2
unsupervised method for detecting anomalous cornering behaviors. Isolation Forest builds an en-3
semble of random binary trees, where anomalous points are isolated with fewer splits. We applied4
the method on the same feature set, using 100 estimators and contamination parameter set to 0.02.5
Events with the shortest average path lengths were flagged as potential harsh turns.6

To further illustrate the characteristics of the harsh events detected by each method, Figure7
3 presents a comparison of feature distributions between DBSCAN and Isolation Forest detections.8
While both methods show elevated values in yaw-related and inertial features compared to normal9
turns, distinct patterns emerge. DBSCAN-detected events typically exhibit higher turn angles10
and yaw rates, while Isolation Forest tends to flag events with elevated motion asymmetry and11
gyroscope magnitude—even at moderate speeds. These differences support the hypothesis that the12
two methods capture complementary aspects of harsh cornering behavior.13

Table 2 summarizes the overlap and divergence between DBSCAN and Isolation Forest in14
detecting harsh cornering events. Only 50 harsh corner events were detected by both representing15
nearly 3% of the entire dataset. DBSCAN contributed 22 unique detections, typically involving16
sharp turns with high yaw rates, while Isolation Forest identified 26 distinct events characterized17
by subtle but higher speeds. The complementary nature of these results supports the use of an18
ensemble approach that combines both methods to improve detection robustness.19

Validation via Classifier-Based Separability20
To assess the internal consistency of the pseudo-labeled harsh cornering events, we evaluated how21
well the extracted features could separate harsh and normal turns using a supervised learning proxy.22
Specifically, we trained two binary classifiers—logistic regression and random forest—using the23
ensemble labels (union of DBSCAN and Isolation Forest detections) as target values.24
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FIGURE 3: Comparison of feature distributions for harsh cornering events detected by DBSCAN
(blue) and Isolation Forest (orange). Each boxplot represents one of the 13 extracted features,
grouped by detection method.
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TABLE 2: Summary of harsh cornering detections by DBSCAN and Isolation Forest.

Method Harsh Corners Detected Unique Events
DBSCAN 72 22
Isolation Forest 76 26
Intersection (Both) 50 -

We applied 5-fold cross-validation using ROC-AUC as the evaluation metric. The logistic1
regression model achieved a mean ROC-AUC of 0.986 ± 0.007, while the random forest classifier2
reached 0.994 ± 0.003, indicating excellent separability between harsh and normal cornering events3
in the feature space. These results validate that the extracted features—such as yaw rate, turn4
angle, acceleration and gyroscope magnitudes—capture the underlying dynamics of risky turning5
behavior effectively.6

To further interpret model behavior, we examined feature importances from the random for-7
est model as shown in Figure 4. The most influential features included maximum gyroscope mag-8
nitude, maximum yaw rate and speed confirming their relevance in characterizing high-intensity9
cornering maneuvers. These findings support the validity of the unsupervised ensemble detec-10
tion pipeline and highlight the robustness of the feature design in distinguishing abnormal vehicle11
dynamics.12

FIGURE 4: Feature importance scores from the random forest classifier trained to separate harsh
vs. normal cornering events using ensemble labels.
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Qualitative Case Studies and Map-Based Validation1
To complement the quantitative validation, we performed qualitative case studies by visualizing2
predicted harsh cornering events on real-world GPS trajectories. Using the original time-series3
data, we plotted the location of each detected event on a digital map.4

Figure 5 illustrates several representative examples of harsh cornering maneuvers detected5
by the ensemble model. For each case, we annotated the turn location with always-visible labels6
indicating vehicle speed and yaw rate. The trajectories clearly show sharp changes in direction or7
dynamics consistent with risky maneuvers. These visualizations confirm that the detected events8
correspond to turning behavior, and reinforce the effectiveness of combining orientation-invariant9
features, map-based filtering, and outlier detection.10

These case studies further support the model’s real-world interpretability and its potential11
applicability in driver feedback systems, road safety analytics, and fleet risk profiling.12

Figure 5a depicts a harsh cornering event at an urban intersection, where the vehicle enters13
the turn at a high speed of 42km/h—substantially exceeding typical safe turning speeds in such en-14
vironments. In Figure 5b, the vehicle executes a moderately fast cornering maneuver, with speeds15
ranging from 21 to 27km/h and yaw rates up to 27.4°/s, indicative of assertive but not necessarily16
unsafe driving. Figure 5c captures a sharp turn initiated immediately after departure, where the17
vehicle accelerates from 0 to 12km/h while reaching a peak yaw rate of 80°/s. This combination of18
low speed and extremely high angular velocity suggests a potentially unstable or abrupt maneuver.19
Lastly, Figure 5d presents a harsh 90° intersection turn with sustained high yaw rates, peaking at20
47.5°/s. The vehicle performs the turn at speeds between 18 and 23 km/h, reflecting a tight and21
aggressive maneuver that may compromise stability in a confined urban setting.22

DISCUSSION23
Summary of Key Findings24
This study developed and evaluated a fully unsupervised framework for detecting harsh cornering25
behavior using smartphone-based telematics and infrastructure data. By extracting yaw and turn26
dynamics from GPS, aggregating orientation-invariant inertial features, and validating events spa-27
tially with OpenStreetMap, the methodology identifies high-risk maneuvers in naturalistic driving28
conditions. Unsupervised clustering with DBSCAN and Isolation Forest allowed for robust detec-29
tion without the need for ground truth labels or fixed device mounting. The detected events showed30
strong separability in feature space, and qualitative map visualizations confirmed their real-world31
plausibility, demonstrating the strength of the approach in capturing aggressive turning patterns at32
scale.33

Limitations34
Despite the promising results, the study has several limitations that inform both the scope of inter-35
pretation and future development. One key limitation lies in the temporal resolution of GPS data.36
Sampling at 1 Hz restricts the granularity of yaw rate estimation and may fail to fully capture the37
sharpness of brief, high-intensity turns, especially in fast-moving traffic scenarios. Additionally,38
the lack of labeled ground truth data precludes formal validation of detection precision or recall.39
Although proxy evaluations using supervised classifiers and qualitative visual inspection support40
the method’s internal consistency, direct confirmation through video annotations or expert reviews41
would offer stronger validation.42

Another constraint arises from the geographical specificity of the dataset. Since the data43
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(a) Example of a harsh right turn with a speed above
30km/h in a curved urban road segment.

(b) Example of a harsh right turn within an urban
road network. At a speed of 32 km/h, the vehicle
undergoes a sharp change marked by a yaw rate of
61.0°/s

(c) Example of a harsh cornering maneuver per-
formed at a low-speed urban T-junction. However
the vehicle exhibits a sudden yaw rate spike, signal-
ing a highly aggressive turning maneuver.

(d) Example of a harsh 90° intersection left turn
with sustained high angular velocity in a narrow
road.

FIGURE 5: Representative examples of detected harsh cornering events visualized on real-world
map trajectories. Red markers indicate turning peaks, annotated with speed and yaw rate.

predominantly represents urban driving in Greece, the model may not generalize equally well1
across countries, climates, or vehicle types. Differences in road layout, driving culture, and smart-2
phone sensor characteristics could affect the reliability of feature patterns and detection thresholds.3
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The reliance on sensor magnitudes to maintain orientation invariance also removes directional con-1
text, which could be useful for more granular behavioral profiling or risk assessment. Lastly, the2
use of OpenStreetMap for validating turns assumes high-quality and up-to-date map data, which3
may not hold true in all regions, potentially reducing the applicability of the method in poorly4
mapped areas.5

Practical Applications6
Despite these limitations, the proposed framework has significant potential for real-world appli-7
cation across several domains. In driver behavior analysis and usage-based insurance, the ability8
to detect harsh cornering events without requiring sensor calibration or labeled data makes the9
pipeline well-suited for large-scale deployment on consumer smartphones. It can serve as a basis10
for driver risk scoring, performance feedback, or targeted coaching interventions. Fleet opera-11
tors could use the system to monitor aggressive maneuvers and prevent vehicle wear, while also12
improving safety outcomes across their networks.13

Moreover, road safety agencies and urban planners could benefit from spatially aggregating14
harsh cornering detections to identify risky intersections or infrastructure gaps. Such data-driven15
insights could support decision-making for traffic calming measures or redesigns. Finally, the16
mobile-friendly nature of the approach lends itself to real-time use in driver assistance systems or17
mobility apps, enabling live feedback during trip execution and promoting safer driving habits over18
time.19

Furthermore, the proposed framework can be extended by introducing a severity scoring20
system for detected harsh cornering events. By aggregating normalized values of yaw rate, turn an-21
gle, and gyroscopic magnitude into a composite severity index, each detected event can be ranked22
on a continuous scale rather than as a binary classification. This enables more nuanced interpreta-23
tions of driver behavior and supports stratified feedback mechanisms, where different intervention24
levels are matched to the severity of the maneuver. Severity scoring can also assist insurers in25
dynamically adjusting driver risk scores based on cumulative event intensity over time, rather than26
event frequency alone.27

Future Research Directions28
Several extensions could further improve the methodology and expand its scope. One avenue is29
the integration of complementary data sources, such as dashcam video or environmental and in-30
frastructure context, to enhance interpretability and aid in severity classification. Employing self-31
supervised or contrastive learning could unlock richer representations from large unlabeled datasets32
and improve cross-device generalization. Additionally, introducing directional features—perhaps33
through soft alignment with vehicle motion or inferred device orientation—could bring back valu-34
able information without losing robustness.35

Personalization of detection thresholds based on individual driving baselines may further36
enhance sensitivity and relevance, particularly when combined with privacy-preserving technolo-37
gies like federated learning.38

Finally, deploying the pipeline in real-time on mobile devices or edge platforms would al-39
low for instant detection and feedback, enabling new applications in connected vehicle systems and40
behavioral safety platforms. Moreover, aggregating detected events across space and time could41
support the creation of road safety heatmaps, helping identify high-risk locations and informing42
infrastructure improvements or targeted traffic interventions.43
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CONCLUSIONS1
This work presents a novel, unsupervised, and orientation-invariant approach to detecting harsh2
cornering behavior using standard smartphone sensors and open-source map data. The proposed3
pipeline successfully circumvents the limitations of fixed sensor placement and labeled training4
data, instead relying on outlier detection in a multi-sensor feature space to isolate aggressive5
turning events. By validating candidate maneuvers against real road geometry and demonstrating6
strong internal consistency in the resulting detections, the framework proves suitable for real-world7
driving behavior analysis.8

The method’s flexibility, low deployment cost, and robustness to phone placement make9
it highly applicable to modern telematics systems, driver monitoring solutions, and safety intelli-10
gence platforms. While limitations related to sampling rate, contextual generalization, and ground11
truth remain, the study establishes a strong foundation for unsupervised behavioral detection in12
naturalistic settings. As smartphone sensing and computational capabilities continue to improve,13
the proposed approach stands to play a significant role in advancing data-driven road safety and14
personalized mobility technologies.15
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