

1 **Improving Driver Safety Tolerance Zone through Holistic Analysis of Road, Vehicle and**
2 **Behavioural Risk Factors: A Comparison using Driving Simulator and Naturalistic Data**

3 **Eva Michelaraki**

4 PhD, Research Associate

5 Department of Transportation Planning and Engineering

6 National Technical University of Athens, Athens, Greece, GR15773

7 *Email: evamich@mail.ntua.gr

8 **George Yannis**

9 Professor

10 Department of Transportation Planning and Engineering

11 National Technical University of Athens, Athens, Greece, GR15773

12 Email: geyannis@central.ntua.gr

13 Word Count: 6,493 words + 4 tables (250 words per table) = 7,493 words

14 *Submitted: July 31, 2025*

15 *Corresponding Author

16

17

18

19

20

21

22

1 **ABSTRACT**

2
3 Headway, the time or distance between two vehicles, is a critical factor in road safety, particularly in relation
4 to rear-end collisions. This study aims to improve the Driver Safety Tolerance Zone (STZ) by examining
5 the combined influence of road environment, vehicle state and driver behaviour through a holistic approach.
6 The STZ represents the dynamic balance between task complexity and coping capacity and is designed to
7 capture transitions between safe, risky and potentially hazardous driving phases. To achieve this, data were
8 collected from a naturalistic driving experiment involving 135 and a driving simulator study with 55
9 participants. Generalized Linear Models (GLMs) were used to identify the key explanatory variables of
10 headway events, while Structural Equation Models (SEMs) explored the latent constructs of task
11 complexity, coping capacity and risk. Results indicated that task complexity had a positive correlation with
12 crash risk, especially during night-time and adverse weather conditions. Conversely, coping capacity,
13 reflected through behavioural indicators, was negatively associated with risk, highlighting drivers' ability
14 to compensate under challenging conditions. A positive relationship was observed between task complexity
15 and coping capacity, implying that drivers respond to more demanding situations by increasing their
16 engagement. This study demonstrated the effectiveness of the STZ concept as a comprehensive model for
17 interpreting driving behaviour across diverse conditions. The benefits of integrating behavioural,
18 environmental and vehicle-related data to enhance traffic safety were also highlighted. The outcomes of
19 this holistic approach may provide meaningful guidance for policymakers, encouraging data-informed
20 safety strategies and the adoption of connected, user-oriented technologies.

21
22
23 **Keywords:** Safety Tolerance Zone; Task Complexity; Coping Capacity; Crash Risk; Structural Equation
24 Models.

1 INTRODUCTION

2 One of the primary contributors to traffic collisions is insufficient headway, the gap between two
 3 vehicles, which, when too narrow, restricts the following driver's ability to respond to sudden braking by
 4 the vehicle ahead (1). This distance can be quantified in terms of both time and space (2). Maintaining an
 5 adequate headway is essential for managing both the physical and cognitive demands of driving, as it
 6 provides drivers with sufficient time to react to abrupt changes in traffic. Having this time reduces stress
 7 and cognitive load, thereby enhancing situational awareness. In contrast, limited headway heightens crash
 8 risk by demanding faster reflexes and greater concentration, which can increase stress and lead to faster
 9 onset of fatigue.

10 Driver workload, often considered a mediating variable between task difficulty and performance,
 11 reflects the driver's capacity to meet task demands (3). An increase in perceived workload typically prompts
 12 compensatory behaviour, such as reducing speed or increasing headway, to manage more challenging
 13 driving conditions. Research has shown that increased workload is often associated with decreased speed
 14 and extended headway, as drivers attempt to simplify the task. Additionally, variability in speed and
 15 headway tends to rise with higher workload (4), indicating reduced control over longitudinal vehicle
 16 dynamics. Lateral position variability has also been observed to both increase and decrease depending on
 17 the source of workload (5). These fluctuations can raise crash risk, particularly if they result in lane
 18 departures or dangerously short headways. Moreover, if drivers fail to adjust adequately to higher workload
 19 or task complexity, their reaction time to hazards may increase, leaving insufficient time to avoid a collision.

20 The ultimate goal of the current work is to develop a context-aware 'Safety Tolerance Zone' for
 21 both simulator and naturalistic driving experiments. This STZ defines the point at which self-regulated
 22 driving remains within safe boundaries (6). It represents the zone where the demands of the driving task
 23 (i.e. task complexity) are balanced with the driver's ability to manage those demands (i.e. coping capacity).
 24 The STZ consists of three distinct phases: normal driving, danger and avoidable accident. The normal
 25 driving phase reflects conditions in which the likelihood of a crash is low and the driver is effectively
 26 adapting their behaviour to meet task requirements. The danger phase emerges when changes in conditions
 27 indicate an increased crash risk, although a collision is not yet inevitable. The STZ transitions into this
 28 phase when real-time measurements detect risk-elevating changes. The final phase, the avoidable accident
 29 phase, occurs when a crash scenario is unfolding, but there is still an opportunity for the driver to take
 30 corrective action. In this phase, the urgency for intervention is heightened; without timely responses, a crash
 31 becomes highly likely.

32 Within the above framework, this research constitutes a holistic approach to improve driver STZ
 33 through the analysis of road, vehicle and behavioural risk factors. The aim of this study was to determine
 34 the interactions among road, vehicle and driver risk factors for the identification of the STZ. More
 35 specifically, the impact of task complexity and coping capacity (in terms of both vehicle and driver state
 36 factors) on crash risk was investigated. For that purpose, a large dataset spanning four months from both
 37 simulator and naturalistic driving experiment was exploited.

38 The structure of the paper is as follows: At the beginning, the study's motivation and objectives,
 39 along with an explanation of the STZ concept are presented. Next, a comprehensive overview of the data
 40 collection process is provided. Then, the research methodology is described, including the theoretical basis
 41 of the models employed. Moreover, the analysis results are presented, followed by a detailed discussion of
 42 the main conclusions. Finally, suggestions and directions for future research are highlighted.

45 DATA OVERVIEW

46 To fulfill the aim of this work, a simulator experiment was conducted with 55 participants,
 47 complemented by a naturalistic driving experiment, involving 135 drivers. Furthermore, data from 31,954
 48 on-road and 165 simulator trips were collected and analyzed. Key explanatory variables related to risk and
 49 the most reliable indicators of task complexity (e.g. weather, time indicator), coping capacity - vehicle state
 50 (e.g. gearbox, vehicle age, fuel type) and coping capacity - driver state (e.g. headway, speed, harsh brakings)

were evaluated. **Figure 1** presents the conceptual framework used for risk prediction, focusing on task complexity and coping capacity.

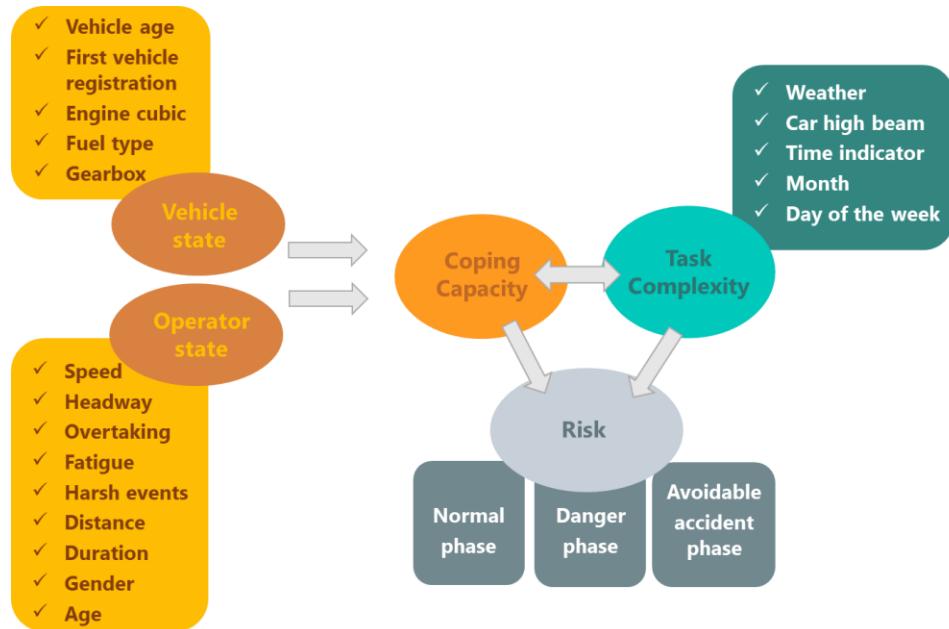


Figure 1 Conceptual framework for risk prediction in function of task complexity and coping capacity

In relation to the STZ concept, a comprehensive system of monitoring technologies was deployed across three aspects: driver, environment and vehicle. Vehicles were equipped with Mobileye and CardioDashcam systems to continuously monitor the road environment and driving behaviour. For monitoring the driver's physiological state and detecting drowsiness or sleepiness, CardioWheel and the PulseOn wearable were used. Vehicle-related indicators, such as GPS position, inertial data and engine parameters, were collected via OBD-II and Fleet Management System interfaces, contributing to the evaluation of coping capacity in terms of vehicle state. An intervention device, connected to the CardioGateway, provided real-time visual and auditory alerts based on the driver's current STZ, while a smartphone application monitored key performance indicators, such as speeding, harsh events or mobile phone use while driving. The technology illustrated in **Figure 2** captures indicators related to the driver, environment and vehicle state, which were used to assess task complexity and coping capacity.

Figure 2 Technologies used to measure driver, environment and vehicle state

1 **METHODS**

2
 3 As part of this research, Generalized Linear Models (GLM) were implemented to examine the the
 4 key correlations among observed metrics and identify the effect of task complexity and coping capacity on
 5 specific driving performance parameters. Moreover, Structural Equation Models (SEM) were performed to
 6 identify the impact between latent and observable variables of task complexity and coping capacity with
 7 crash risk. SEM constituted the key component of this study as it can be used to explore how the model
 8 variables are inter-related, allowing for both direct and indirect relationships to be modelled. In the present
 9 analysis, task complexity, coping capacity and risk are the unobserved variables which are estimated from
 10 specific parameters.

11 **Generalized Linear Models (GLM)**

12
 13 Generalized Linear Model (GLM) is an adaptable extension of traditional linear regression that
 14 accommodates response variables with error distributions beyond the normal distribution. This framework
 15 broadens linear regression by introducing a link function to connect the linear predictor to the response
 16 variable and by allowing the variance of each observation to vary as a function of its expected value (7).

17 In a GLM, each observed outcome Y of the dependent variables is assumed to arise from a
 18 distribution belonging to the exponential family, a broad category that encompasses distributions such as
 19 normal, binomial, Poisson and gamma (8). The expected value, μ , of the response variable is modelled as a
 20 function of the independent variables X , typically through the following equation:

21

$$E(Y|X) = \mu = g^{-1}(X\beta) \quad (1)$$

22
 23 where: $E(Y|X)$ is the expected value of Y conditional on X ; $X\beta$ is the linear predictor, a linear
 24 combination of unknown parameters β ; g is the link function.

25 In this framework, the variance is typically a function, V , of the mean:

26

$$Var(Y|X) = V(g^{-1}(X\beta)) \quad (2)$$

27
 28 While it is advantageous for the variance function V to arise from a distribution within the
 29 exponential family, it is not strictly required; the variance may simply be modelled as a function of the
 30 predicted value.

31 The unknown parameters, β , in the model are commonly estimated using methods such as
 32 maximum likelihood estimation, maximum quasi-likelihood, or Bayesian approaches. A foundational
 33 aspect of the development of the GLM was the extension of the normal distribution, traditionally used in
 34 linear regression, to the broader class of exponential family distributions. This generalization was formally
 35 introduced by Collins et al. (9). To illustrate, consider a single random variable y , where the probability
 36 mass function (for discrete variables) or probability density function (for continuous variables) is defined
 37 in terms of a parameter θ . The distribution is said to belong to the exponential family if it can be expressed
 38 in the following form:

39

$$f(y; \theta) = s(y)t(\theta)e^{a(y)b(\theta)} \quad (3)$$

40
 41 where: a , b , s and t are known functions. The symmetry between y and θ becomes more evident if
 42 the equation above is rewritten as follows:

43

$$f(y; \theta) = \exp [\alpha(y)b(\theta) + c(\theta) + d(y)] \quad (4)$$

44 where: $s(y) = \exp[d(y)]$ and $t(\theta) = \exp[c(\theta)]$

If $a(y) = y$ then the distribution is said to be in the canonical form. Moreover, any additional parameters beyond the primary parameter of interest θ are considered nuisance parameters, which are incorporated into the functions a , b , c and d and are treated as if their values are known. It is also important to address multicollinearity in regression models, which arises when two or more independent variables are highly correlated. This issue can be evaluated using the Variance Inflation Factor (VIF), a diagnostic measure that quantifies the extent of multicollinearity. A commonly used threshold is a VIF value below 5 (VIF<5), indicating that the variable is suitable for inclusion in the model. However, in some cases, VIF values below 10 may still be considered acceptable depending on the context and field of application.

Structural Equation Models (SEM)

Structural Equation Modelling (SEM), also known as path analysis, is a multivariate statistical technique used to test hypotheses about the relationships among interacting observed and latent (unobserved) variables (10). In this context, observed variables are directly measurable, while latent variables represent theoretical constructs that cannot be measured directly. SEM is composed of two main parts: the measurement model and the structural model (11). The measurement model evaluates how effectively observed exogenous variables represent the latent constructs and accounts for any measurement errors. In contrast, the structural model explores the causal relationships between variables, allowing for both direct and indirect effects to be modelled. This dual structure enables SEM to go beyond standard regression methods, which typically assume only direct relationships between variables.

The general formulation of SEM, as outlined by Washington et al. (12), is as follows:

$$\eta = \beta\eta + \gamma\xi + \epsilon \quad (5)$$

In equation (3), η represents a vector of endogenous variables, ξ represents a vector of exogenous variables, β and γ are vectors of coefficients to be estimated and ϵ represents a vector of regression errors.

The measurement models can be described as follows (Chen, 2007):

$$x = Ax\xi + \delta, \text{ for the exogenous variables} \quad (6)$$

$$y = Ay\eta + \zeta, \text{ for the endogenous variables} \quad (7)$$

In equations (6) and (7), x and δ denote vectors corresponding to the observed exogenous variables and their associated measurement errors, respectively, while y and ζ represent vectors for the observed endogenous variables and their corresponding errors. The matrices Ax and Ay are structural coefficient matrices that quantify the influence of latent exogenous and endogenous variables on the observed variables. It should be noted that prior to estimating the SEM, an Exploratory Factor Analysis (EFA) was also conducted using principal axis factoring with varimax rotation to determine the structure of latent constructs. Two latent variables (i.e. task complexity and coping capacity) were defined based on observed indicators. Items with factor loadings ≥ 0.40 were retained for their respective constructs. The EFA supported the assignment of variables to the two constructs, which were then used in the SEM framework.

Goodness-of-Fit Measures

In model selection, evaluation metrics play a crucial role in assessing the quality and performance of statistical models. Several widely used goodness-of-fit measures include the Goodness-of-Fit Index (GFI), the (Standardized) Root Mean Square Error of Approximation (RMSEA), the Comparative Fit Index (CFI) and the Tucker-Lewis Index (TLI). These metrics evaluate how well the model reproduces the observed data by comparing the observed and estimated variance-covariance matrices. Additionally, the Akaike Information Criterion (AIC) is commonly employed to compare models with different combinations

1 of explanatory variables, as it balances model fit with model complexity by penalizing the inclusion of
2 additional parameters (13).

3

$$4 AIC = -2L(\theta) + q \quad (8)$$

5

6 where: q is the number of parameters and L(θ) is the log-likelihood at convergence. Lower values
7 of AIC are preferred to higher values because higher values of -2L(θ) correspond to greater lack of fit.

8

9 The Bayesian Information Criterion (BIC) is used for model selection among a finite set of models;
10 models with lower BIC are generally preferred.

11

$$12 BIC = -2L(\theta) + q \ln (N) \quad (9)$$

13

14 It is worth mentioning that the AIC and BIC are commonly used metrics for evaluating model
15 performance while accounting for model complexity. Both criteria incorporate a measure of model fit along
16 with a penalty term that increases with the number of estimated parameters, thereby discouraging
17 overfitting. Lower values of AIC or BIC indicate a more parsimonious and better-fitting model.

18 The Comparative Fit Index (CFI) is based on the noncentral χ^2 distribution and assesses model fit
19 by comparing the hypothesized model to a baseline (independence) model. CFI values range from 0 to 1,
20 with values above 0.95 indicating a good model fit. Generally, a CFI value exceeding 0.90 (CFI>0.90) is
21 considered acceptable and reflects a strong overall model fit. The formula for calculating the CFI is given
22 as follows:

23

$$24 CFI = 1 - \frac{\max (x_H^2 - df_{H,0})}{\max (x_H^2 - df_H, x_I^2 - df_I)} \quad (10)$$

25

26 where: x_H^2 is the value of χ^2 and df_H is degrees of freedom in the hypothesized model and x_I^2 is the
27 value of χ^2 and df_I is the degrees of freedom in the independence model.

28

29 The Tucker-Lewis Index (TLI), also known as the non-normed fit index, accounts for model
30 parsimony by incorporating the model's degrees of freedom into the assessment. As a result, when two
31 models exhibit similar fit indices, the TLI favors the more parsimonious model, that is, the one with more
32 degrees of freedom. Unlike some standardized indices, the TLI is not bounded strictly between 0 and 1 and
33 it can occasionally produce values less than 0 or greater than 1. Nonetheless, TLI values exceeding 0.90
34 (TLI>0.90) are commonly interpreted as indicators of a very good model fit. The formula is given as
35 follows:

$$36 TLI = \frac{\frac{x_I^2 - x_H^2}{df_I - df_H}}{\frac{x_I^2}{df_I} - 1} \quad (11)$$

37

38 where: x_H^2 is the value of χ^2 and df_H is the degrees of freedom in the hypothesized model and x_I^2 is
39 the value of χ^2 and df_I is the degrees of freedom in the independence model.

40

41 One of the most commonly used goodness-of-fit indices today is the Root Mean Square Error of
42 Approximation (RMSEA). RMSEA evaluates how well a model, with unknown but optimally chosen
43 parameter estimates, would fit the population's covariance matrix. It measures the unstandardized
44 discrepancy between the observed data and the model, adjusted for model complexity through the degrees
45 of freedom. RMSEA values range from 0 to 1, with values of 0.05 or lower generally indicating a good fit
46 to the data. Additionally, the p-close value tests the null hypothesis that RMSEA is less than or equal to
47 0.05. If the p-close value exceeds 0.05, the null hypothesis is accepted, suggesting that the model closely
48 fits the data (RMSEA<0.05). The formula is given as follows:

$$RMSEA = \sqrt{\frac{x_H^2 - df_H}{df_H(n-1)}} \quad (12)$$

where: x_H^2 is the value of x^2 and df_H is the degrees of freedom in the hypothesized model; n is the sample size.

The Goodness of Fit Index (GFI) is a measure of fit between the hypothesized model and the observed covariance matrix. The adjusted goodness of fit index (AGFI) corrects the GFI, which is affected by the number of indicators of each latent variable. The GFI and AGFI range between 0 and 1, with a value of over 0.9 generally indicating acceptable model fit. In general, values more than 0.90 for GFI are generally accepted as indications of very good overall model fit ($GFI > 0.90$).

RESULTS

An initial comparison of average speeds between the two experiments revealed notable differences. Specifically, in the naturalistic driving experiment, the average speed was 47.5 km/h, whereas in the simulator experiment, the average speed was higher at 58.9 km/h. This variation may be attributed to the controlled and safe environment of the simulator, which potentially encourages participants to drive at higher speeds compared to real-world road conditions, where adherence to traffic regulations and safety concerns play a greater role. The distribution of average speeds across both experimental designs is illustrated in **Figure 3**.

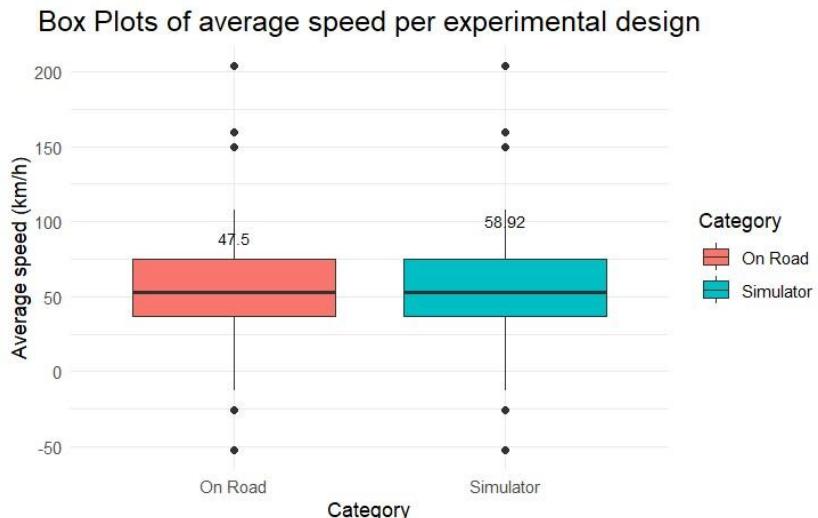


Figure 3 Box plots of average speed per driving experiment

Driving Simulator Analyses

GLM Results

Several regression models were tested using different combinations of variables. For each configuration, multiple alternatives were evaluated by comparing their respective log-likelihood values. GLM investigated the relationship between the headway and several explanatory variables of task complexity and coping capacity. More specifically, the dependent variable of the developed model was the dummy variable “headway”, which was coded with 1 if there was a headway event and with 0 if not.

1 For task complexity, the variable used was time indicator. Concerning coping capacity - driver
 2 state, the variables used were duration, average speed, time-to-collision (TTC), fatigue and hand-on event.
 3 The "hands-on event" variable, indicating when a driver places their hands on the wheel, can be used to
 4 infer instances of driver distraction. If a driver frequently needs to put their hands back on the wheel, it
 5 might suggest they were previously distracted or not fully engaged in manual driving tasks. It should be
 6 clarified that the explanatory variables of vehicle state, such as fuel type, vehicle age or gearbox are not
 7 available in the simulator experiment (as only a single vehicle configuration was used) while socio-
 8 demographic characteristics, such as gender or age were not statistically significant at a 95% confidence
 9 level; thus, these variables were not included in the models. The model parameter estimates are summarized
 10 in **Table 1**.

11
 12 **TABLE 1 Parameter estimates and multicollinearity diagnostics of the GLM for headway**

Variables	Estimate	Std. Error	z-value	Pr(z)	VIF
(Intercept)	0.859	0.221	3.896	< .001	-
Time indicator	-0.690	0.318	-7.443	< .001	1.209
Average speed	0.742	0.080	9.231	< .001	1.020
Time to collision	0.004	3.116	14.300	< .001	1.018
Duration	-5.658	1.395	-4.057	< .001	1.040
Fatigue	5.088	1.587	3.206	0.001	1.114
Hands on wheel	5.369	2.311	2.323	0.020	1.076
Summary statistics					
AIC	4546.08				
BIC	4141.62				
Degrees of freedom	33820				

13
 14 Findings derived from **Table 1** demonstrated that all the explanatory variables were statistically
 15 significant at a 95% confidence level. In addition, there was no issue of multicollinearity as the VIF values
 16 are much lower than 5. Regarding the coefficients, it was found that time of the day was negatively
 17 correlated with headway, which means that drivers tend to keep safer distances from the vehicle in front of
 18 them during the night. This may probably be due to the fact that there is no heavy traffic during night hours;
 19 thus, headway events are avoided.

20 Moreover, it was found that indicators of coping capacity, such as average speed and TTC had a
 21 positive impact on headway. This means that higher average speeds are associated with an increased
 22 likelihood of headway events. Additionally, fatigue and hands-on events were positively correlated with
 23 headway. This means that both driver's fatigue and the occurrence of hands-on events are associated with
 24 more frequent instances of reduced following distances (closing headway). Fatigue can impair a driver's
 25 ability to maintain consistent headway, resulting in more frequent adjustments and closing gaps. Similarly,
 26 hands-on events, where drivers re-engage with the steering wheel, often occur in response to challenging
 27 driving conditions, leading to more frequent and closer following distances as drivers navigate these
 28 situations.

29 On the other hand, duration found to be negatively correlated with headway events. This indicates
 30 that as the duration of a trip increases, the likelihood of headway events decreases. Longer trips might
 31 involve more consistent driving patterns and steadier speeds, leading to fewer instances where drivers need
 32 to adjust their following distance. Additionally, drivers may become more relaxed and maintain a more
 33 constant headway over extended periods, reducing the frequency of headway adjustments.

34
 35 *SEM Results*

36
 37 Following the exploratory analysis, the variables related to the latent variables "task complexity"
 38 and "coping capacity" were estimated from various indicators. Risk was measured by means of the STZ

1 levels for headway (level 1 refers to 'normal driving' used as the reference case; level 2 refers to 'dangerous
2 driving' while level 3 refers to 'avoidable accident driving').

3 The latent variable of task complexity was measured by means of the exposure indicators of trip
4 duration and distance travelled. It was found that distance and duration had a positive correlation with task
5 complexity. In addition, the latent coping capacity was measured by means of driver state indicators, such
6 as TTC, average speed, hands-on event and fatigue. It was revealed that hands-on event and fatigue were
7 positively correlated with coping capacity, indicating that fatigued drivers tend to be more cautious in their
8 driving. When drivers experience fatigue, they often become more aware of their limitations and the
9 potential dangers of their condition. As a result, they may adopt more cautious driving behaviours, such as
10 reducing speed, increasing following distance and avoiding risky manoeuvres, in an effort to compensate
11 for their reduced alertness and reaction times.

12 On the other hand, TTC and average speed were negatively correlated with coping capacity. This
13 means that as TTC and average speed increase, an individual's coping capacity tends to decrease. In other
14 words, higher TTC and faster driving speeds are associated with lower ability to manage stress and
15 challenges. This negative correlation suggests that when drivers experience longer TTC and higher speeds,
16 they may find it more difficult to cope with the demands and stressors of driving. Conversely, lower TTC
17 and slower speeds might be linked to higher coping capacities, indicating that these drivers are better
18 equipped to handle stress and challenges.

19 The SEM between the latent variables revealed some interesting findings: first, task complexity
20 and coping capacity were inter-related with a positive correlation (regression coefficient=0.14). This
21 positive correlation indicated that higher task complexity was associated with higher coping capacity
22 implying that drivers coping capacity increases as the complexity of driving task increases. Overall, the
23 structural model between task complexity and risk showed a positive coefficient, which means that
24 increased task complexity relates to increased risk according to the model (regression coefficient=0.53).
25 On the other hand, the structural model between coping capacity and risk showed a negative coefficient,
26 which means that increased coping capacity relates to decreased risk according to the model (regression
27 coefficient=-4.29). The respective path diagram of the SEM is presented in **Figure 4**.

28 To evaluate the model fit of the SEM, several goodness-of-fit indices were computed. The GFI and
29 AGFI were used to assess the extent to which the hypothesized model reproduces the observed covariance
30 structure. The resulting GFI was 0.973 and AGFI was 0.952, both exceeding the conventional threshold of
31 0.90, indicating a very good model fit. Additional indices, including the CFI = 0.966, TLI = 0.944 and
32 RMSEA = 0.079, further support the adequacy of the model and confirm the robustness of the latent
33 structure. **Table 3** summarizes the model fit of SEM applied for headway, while residual variances details
34 for both driving experiments are presented in **Table 4**.

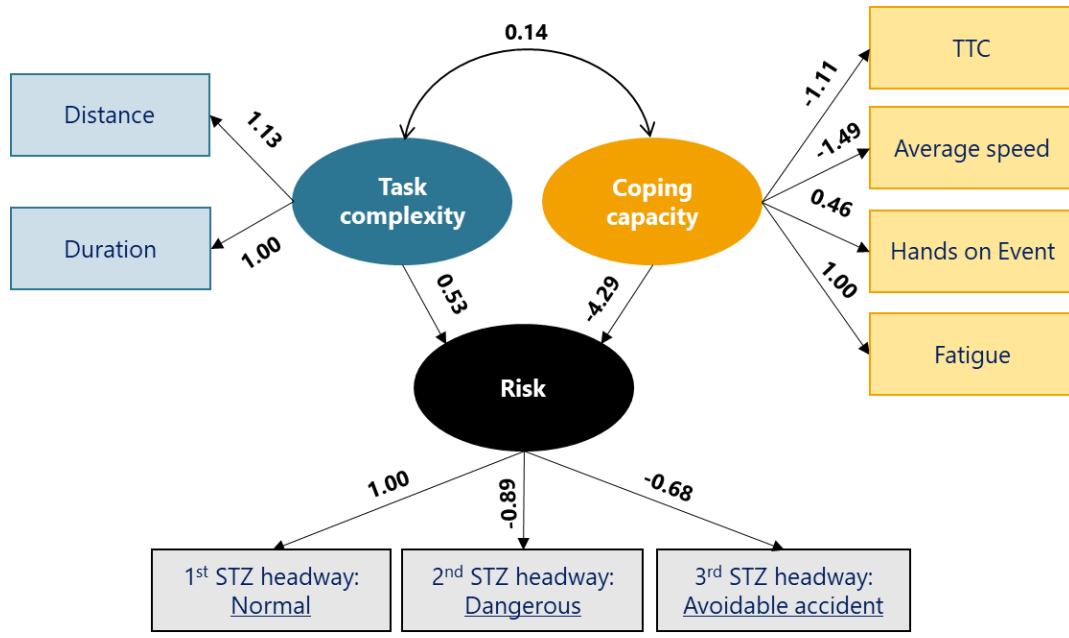


Figure 4 SEM results of task complexity and coping capacity on risk (STZ headway) - simulator experiment

Naturalistic Driving Analyses

GLM Results

Similar to the simulator analyses, GLM investigated the relationship between the headway and several explanatory variables of task complexity and coping capacity. More specifically, the dependent variable of the developed model is the dummy variable "headway", which is coded with 1 if there is a headway event and with 0 if not. For task complexity, the variables used are time indicator and weather. Concerning coping capacity - vehicle state, the variables used are fuel type, vehicle age and gearbox, while for coping capacity - driver state, the variables used are duration, harsh accelerations, harsh brakings, average speed, gender and age. The model parameter estimates are summarized in **Table 2**.

Findings derived from **Table 2** demonstrated that all the explanatory variables were statistically significant at a 95% confidence level. In addition, there was no issue of multicollinearity as the VIF values are much lower than 10. With respect to the coefficients, it was found that time of the day was negatively correlated with headway, which means that drivers tend to keep safer distances from the vehicle in front of them during the night. This may probably be due to the fact that there is no heavy traffic during night hours; thus, headway events are avoided. The weather variable showed a negative correlation with headway, indicating that fewer headway events occur during adverse weather conditions, such as rain. This suggests that drivers tend to exercise more caution and maintain longer following distances when windshield wipers are active, reflecting an increased emphasis on safety in adverse weather conditions.

Furthermore, vehicle age appeared to have a positive relationship with the dependent variable, (i.e. headway), indicating that as the vehicle age increases, the likelihood of headway events also increases. This suggests that older vehicles are more frequently involved in headway events, which could be due to various factors, such as the cautious driving habits of owners of older vehicles or the reduced performance and response times of older vehicles necessitating greater following distances. Interestingly, fuel type and gearbox were negatively correlated with headway. In particular, the negative value of the "fuel type" coefficient implied that when the fuel type was diesel, the headway percentage became lower. This suggests that vehicles running on diesel are associated with a lower frequency of headway events compared to those

1 running on hybrid electric or petrol. Similarly, the negative value of the "gearbox" coefficient demonstrated
 2 that vehicles with an automatic gearbox experienced fewer headway events. This indicates that vehicles
 3 with automatic transmissions are less likely to encounter headway events compared to those with manual
 4 transmissions, possibly due to the smoother and more consistent driving patterns facilitated by automatic
 5 gearboxes.

6
 7 **TABLE 2 Parameter estimates and multicollinearity diagnostics of the GLM for headway**

Variables	Estimate	Std. Error	z-value	Pr(z)	VIF
(Intercept)	-0.339	0.003	-14.275	< .001	-
Time indicator	-4.713	1.527	-3.086	0.002	1.001
Weather	-0.059	0.007	-2.852	< .001	1.003
Fuel type - Diesel	-3.432	1.906	-8.094	< .001	3.888
Vehicle age	3.194	1.601	9.942	< .001	4.765
Gearbox - Automatic	-5.122	1.213	-4.032	0.003	2.851
Duration	8.283	3.969	19.871	< .001	1.279
Harsh brakings	5.707	2.456	32.562	< .001	3.396
Harsh accelerations	4.590	2.201	25.239	< .001	3.404
Average speed	7.686	5.019	36.273	< .001	1.103
Gender - Female	-2.097	1.349	-2.775	< .001	1.495
Age	3.764	1.879	3.203	< .001	6.119
Summary statistics					
AIC	568996.72				
BIC	339955.85				
Degrees of freedom	822,164				

8
 9 Moreover, it was revealed that indicators of coping capacity – driver state, such as duration, harsh
 10 accelerations, harsh brakings and average speed had a positive impact on headway. This means that longer
 11 trip duration, instances of harsh accelerations and brakings and higher average speeds are associated with
 12 an increased likelihood of headway events. These factors suggest that more aggressive driving behaviours
 13 and longer driving times contribute to more frequent occurrences of maintaining following distances.

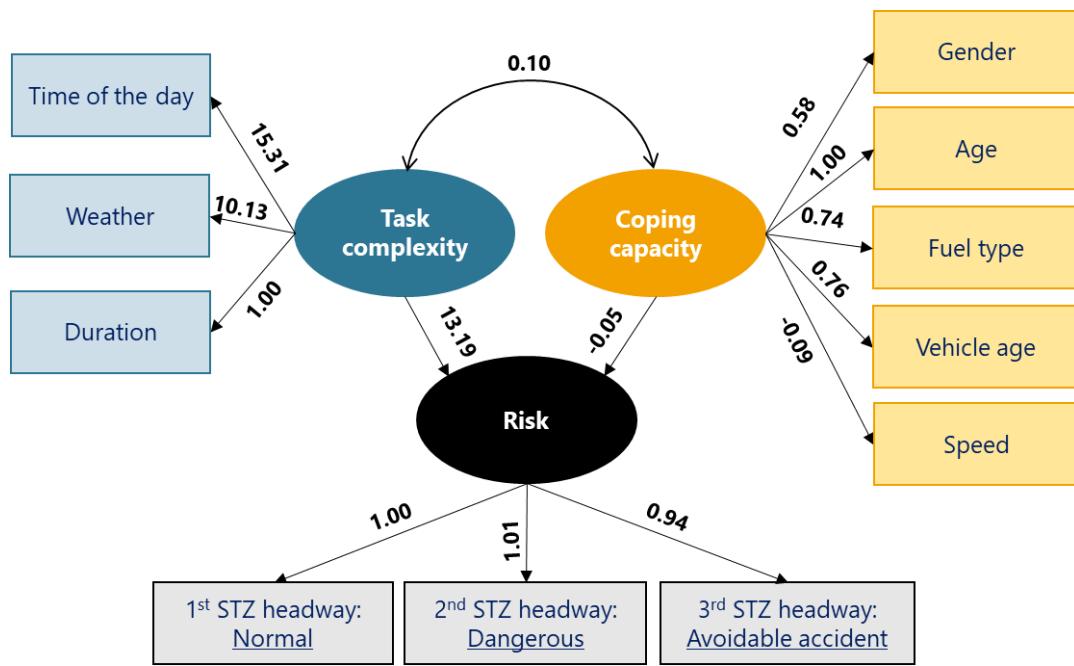
14 Taking into account socio-demographic characteristics, gender was negatively correlated with
 15 headway. In particular, the negative value of the "gender" coefficient implied that as the value of the
 16 variable was equal to 1 (males coded as 0, females as 1), the headway percentage was lower. This suggests
 17 that female drivers perform fewer headway events and tend to be more cautious in maintaining following
 18 distances compared to male drivers. On the other hand, age was positively correlated with headway,
 19 indicating that as the driver's age increases, the likelihood of headway events also increases. This suggests
 20 that older drivers tend to have more headway events, which could be due to various factors, such as slower
 21 reaction times, leading to a greater need to maintain safe following distances.

22
 23 *SEM Results*

24
 25 The latent variable of task complexity was measured by means of the environmental indicator of
 26 time of the day and weather. Exposure indicators, such as trip duration was also included in the task
 27 complexity analysis. It was revealed that time of the day, weather and duration had a positive correlation
 28 with task complexity. In addition, the latent coping capacity is measured by means of both vehicle and
 29 driver state indicators. Vehicle state includes variables such as vehicle age and fuel type, while driver state
 30 includes indicators, such as average speed, gender and age. Results indicated that vehicle age, fuel type,
 31 gender and driver's age were positively correlated with coping capacity. These factors imply that certain
 32 vehicle characteristics and driver demographics contribute to enhanced coping mechanisms in various

1 driving conditions. Interestingly, average speed appeared to have a negative impact on coping capacity.
 2 This suggests that as the average speed increases, the ability of drivers to manage and respond to driving
 3 demands and challenges effectively decreases. Higher speeds likely reduce the time available for decision-
 4 making and increase the complexity of driving tasks, thereby diminishing coping capacity.

5 The structural model between the latent variables showed some interesting findings: first, task
 6 complexity and coping capacity are inter-related with a positive correlation (regression coefficient=0.10).
 7 This positive correlation indicated that higher task complexity was associated with higher coping capacity
 8 implying that drivers coping capacity increases as the complexity of driving task increases. Overall, the
 9 structural model between task complexity and risk revealed a positive coefficient, which means that
 10 increased task complexity relates to increased risk according to the model (regression coefficient=13.19).
 11 On the other hand, the structural model between coping capacity and risk showed a negative coefficient,
 12 which means that increased coping capacity relates to decreased risk according to the model (regression
 13 coefficient=-0.05). The respective path diagram of the SEM for headway is presented in **Figure 5**.
 14



15
 16 **Figure 5 SEM results of task complexity and coping capacity on risk (STZ headway) -**
 17 **naturalistic driving experiment**

18 The CFI of the model is equal 0.945; TLI is 0.927 and RMSEA is 0.106. **Table 3** summarizes the
 19 model fit of SEM applied for headway per driving experiment. The resulting GFI was 0.921 and AGFI was
 20 0.914, both exceeding the conventional threshold of 0.90, indicating a very good model fit. These indices
 21 confirmed that the proposed latent structure, relating task complexity, coping capacity and risk (headway),
 22 adequately represented the observed data relationships in both driving experiments.
 23
 24

1 TABLE 3 Model Fit Summary for STZ headway per driving experiment

Model Fit measures	Values	
	Simulator Experiment	Naturalistic Experiment
CFI	0.966	0.945
TLI	0.944	0.927
RMSEA	0.079	0.106
GFI	0.973	0.921
AGFI	0.952	0.914
Hoelter's critical N ($\alpha = .05$)	247.93	224.06
Hoelter's critical N ($\alpha = .01$)	300.04	241.36
AIC	65281.04	2.043×10^7
BIC	65445.96	2.043×10^7

2 Residual variances details for headway per driving experiment are presented in Table 4.

3 TABLE 4 Residual variances STZ headway per driving experiment

Variable	Estimate	Std. Error	z-value	P(> z)
Simulator experiment				
Distance	0.108	0.024	4.576	< .001
Duration	0.107	0.023	4.542	< .001
Fatigue	0.950	0.024	39.002	< .001
TTC	0.939	0.025	38.280	< .001
Average speed	0.890	0.026	33.990	< .001
HandsOnEvent	0.989	0.024	40.565	< .001
Headway STZ level 0	-0.242	0.059	-4.082	< .001
Headway STZ level 1	0.177	0.049	3.652	< .001
Headway STZ level 2	0.422	0.029	14.344	< .001
Naturalistic experiment				
Duration	0.996	0.001	67.537	< .001
Time indicator	0.564	8.911×10^{-4}	63.976	< .001
Weather	0.006	6.643×10^{-4}	8.283	< .001
Age	0.035	6.662×10^{-4}	51.797	< .001
Average speed	0.991	0.001	66.324	< .001
Fuel type	0.473	8.009×10^{-4}	59.334	< .001
Vehicle age	0.436	7.641×10^{-4}	57.346	< .001
Gender	0.677	0.001	64.155	< .001
Headway STZ level 0	0.055	1.368×10^{-4}	40.312	< .001
Headway STZ level 1	0.032	1.188×10^{-4}	26.257	< .001
Headway STZ level 2	0.138	2.400×10^{-4}	57.352	< .001

6 **DISCUSSION**

7 The performance and insights from the naturalistic experiment compared with those from the
 8 simulator experiment revealed key interesting findings. To begin with, when comparing average speeds
 9 between naturalistic and simulator experiments, a significant difference was observed. Specifically, the
 10 average speed in on-road trials was lower compared to the simulator experiments. Real-world driving
 11 involves navigating traffic, dealing with road hazards and adhering to strictly enforced speed limits, all of
 12 13

1 which necessitate frequent speed adjustments and lower overall speeds. Moreover, the potential for road
2 crashes and the unpredictability of other drivers in actual driving conditions often result in higher levels of
3 caution and stress, leading drivers to adopt more conservative driving behaviour. In contrast, simulator
4 experiments provide a controlled environment, allowing for higher speeds.

5 Regression analysis was conducted to examine the interaction of road, vehicle and driver variables
6 on crash risk. The GLMs revealed consistent patterns across both simulator and naturalistic experiments,
7 indicating that despite differing conditions, the core relationships among variables, particularly task
8 complexity and coping capacity, remained stable. A negative correlation between time of day and headway
9 was found in both environments, showing that drivers tend to maintain safer following distances during
10 nighttime. This may be due to reduced traffic volumes and increased caution during these hours.

11 The analysis also showed that diesel vehicles had shorter headways compared to other fuel types,
12 potentially due to their greater torque and acceleration capability. Automatic gearboxes were associated
13 with fewer headway events, possibly reflecting smoother acceleration and more relaxed driving behavior.
14 This aligns with Török's (14) findings that automation can reduce crash severity compared to manual
15 control. Furthermore, it was demonstrated that the majority of the indicators of coping capacity had a
16 positive relationship with headway. For instance, speed had a positive effect on headway both on the
17 naturalistic and the simulator experiment. Higher speeds, TTC, fatigue and hands-on events were linked to
18 increased following distances, reflecting cautious adaptation under challenging conditions. Interestingly,
19 while increased speed led to longer headways in this study, this contrasts with Brackstone et al. (15), who
20 found the opposite trend. Lastly, socio-demographic factors also played a role; female drivers tended to
21 maintain larger headways, while older drivers were associated with more frequent headway events.

22 Through the application of SEM models, latent analysis from the simulator and naturalistic driving
23 experiments revealed complicated effects of task complexity and coping capacity on risk. In particular, both
24 simulator and on-road results revealed a positive correlation between task complexity and crash risk,
25 influenced by factors such as time of day and adverse weather, which amplify the difficulty of driving tasks
26 and contribute to reduced attention and slower reaction times. Drivers experienced increased cognitive
27 workload when dealing with in-vehicle systems or navigating complex environments, further heightening
28 the risk of a crash.

29 Meanwhile, coping capacity demonstrated a negative correlation with crash risk in both
30 experimental contexts, meaning that higher coping capacity is associated with a lower likelihood of crashes.
31 This can be attributed to the fact that drivers with greater coping abilities are more capable of managing
32 demanding driving situations. They are generally better at handling stress, making quick and accurate
33 decisions and maintaining effective vehicle control, all of which support safer driving. On the other hand,
34 drivers with lower coping capacity may find it difficult to manage complex scenarios, resulting in a
35 heightened risk of crashes.

36 The latent analysis also demonstrated a positive relationship between task complexity and coping
37 capacity, suggesting that drivers' ability to cope tended to increase as driving tasks became more
38 demanding. When faced with challenging conditions, such as driving in adverse weather, drivers appeared
39 to engage more actively with the driving task, effectively regulating their responses to potential hazards.
40 This increased focus encouraged the development of advanced driving strategies and skills, enabling them
41 to navigate difficult situations more efficiently. As a result, exposure to complex driving scenarios
42 contributed to enhanced driving competence and a stronger ability to respond to unforeseen challenges on
43 the road. It was also found that task complexity had a stronger influence on risk than coping capacity. In
44 addition, a positive correlation between risk and the STZ indicators was observed, with the highest values
45 appearing in the normal driving phase (STZ level 1).

46 A primary limitation of this study is the simulator experimental sample size of drivers which may
47 impact the generalizability of the findings. Secondly, the dataset, drawn from the naturalistic experiment
48 may not fully capture the diversity of driving behaviour across various regions, populations or transport
49 modes and may pose limitations on the generalisability of conclusions on a global scale. The impact of
50 participants' health or medical status was not taken into account.

1 Future research efforts could consider additional and drivers' age groups, while larger datasets from
 2 across the world could enhance the analysis procedure. Demographic characteristics such as educational
 3 level or driving experience could be also taken into consideration. The sample size could be strengthened,
 4 while comparisons among different countries or transport modes could be also made. Moreover, additional
 5 task complexity and coping capacity risk indicators (i.e. driving profiles) could be utilized, while other
 6 methodologies, such as deep learning techniques could be also implemented.

7 CONCLUSIONS

8 The aim of this study was to improve the Driver Safety Tolerance Zone (STZ) through a holistic
 9 analysis of road, vehicle and behavioural risk factors. A comparative approach based on driving simulator
 10 and naturalistic data was implemented and the complex interrelations among task complexity, coping
 11 capacity and crash risk were identified.

12 GLMs were conducted to examine the the key correlations among observed metrics and identify
 13 the effect of task complexity and coping capacity on specific driving performance parameters. Moreover,
 14 SEMs were performed to identify the impact between latent and observable variables of task complexity
 15 and coping capacity with crash risk.

16 The findings revealed that task complexity was positively associated with crash risk, particularly
 17 under challenging conditions, such as night-time driving and adverse weather. In contrast, coping capacity
 18 was shown to be negatively correlated with crash risk, indicating that drivers with better physiological,
 19 behavioural or vehicle-related coping characteristics were more likely to operate safely under demanding
 20 conditions. Interestingly, a positive relationship was also found between task complexity and coping
 21 capacity, meaning that drivers become more engaged and adaptive when confronted with difficult driving
 22 situations.

23 This study presents a holistic approach to road safety by conceptualizing the environment, vehicle
 24 and driver as interconnected components of a unified system. Taking into account both naturalistic and
 25 simulator data and applying the STZ concept, the research captured the dynamic interplay between task
 26 complexity, coping capacity and crash risk. The findings demonstrated that these variables are not only
 27 individually impactful but also positively interrelated, suggesting that drivers tend to compensate for
 28 complex driving conditions through increased engagement. This integrated perspective enhances the
 29 accuracy of risk assessment and supports the development of more effective, targeted safety interventions.
 30 Overall, the STZ models proved to be a robust tool to understand driver behaviour under varying conditions
 31 and provided a valuable foundation for data-driven safety planning, Intelligent Transport System design
 32 and informed policy-making.

33 ACKNOWLEDGMENTS

34 The research was funded by the EU H2020 i-DREAMS project (Project Number: 814761) funded by
 35 European Commission under the MG-2-1-2018 Research and Innovation Action (RIA).

36 AUTHOR CONTRIBUTIONS

37 The authors confirm contribution to the paper as follows: study conception and design: Eva Michelaraki,
 38 George Yannis; data collection: Eva Michelaraki; analysis and interpretation of results: Eva Michelaraki,
 39 George Yannis; draft manuscript preparation: Eva Michelaraki. All authors reviewed the results and
 40 approved the final version of the manuscript.

41 DECLARATION OF CONFLICTING INTERESTS

42 The authors declared no potential conflicts of interest with respect to the research, authorship, and/or
 43 publication of this article.

44 FUNDING

45 The authors disclosed no financial support for the research, authorship, and/or publication of this article.

REFERENCES

1. Fu, C., Lu, Z., Ding, N., & Bai, W. (2024). Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather. *Physica A: Statistical Mechanics and its Applications*, 642, 129792.
2. Risto, M., & Martens, M. H. (2013). Time and space: The difference between following time headway and distance headway instructions. *Transportation research part F: traffic psychology and behaviour*, 17, 45-51.
3. Luo, S., Yi, X., Shao, Y., & Xu, J. (2022). Effects of distracting behaviors on driving workload and driving performance in a city scenario. *International journal of environmental research and public health*, 19(22), 15191.
4. Parkes, A. M., Luke, T., Burns, P. C., & Lansdown, T. (2007). Conversations in cars: the relative hazards of mobile phones (Vol. 664). Transport and Road Research Laboratory.
5. Engström, J., Johansson, E., & Östlund, J. (2005). Effects of visual and cognitive load in real and simulated motorway driving. *Transportation research part F: traffic psychology and behaviour*, 8(2), 97-120.
6. Michelaraki, E., Katrakazas, C., Brijs, T., & Yannis, G. (2021). Modelling the safety tolerance zone: Recommendations from the i-DREAMS project. In 10th International congress on transportation research.
7. Hastie, T. J., & Pregibon, D. (2017). Generalized linear models. In *Statistical models in S* (pp. 195-247). Routledge.
8. Dunn, P. K., & Smyth, G. K. (2018). Chapter 10: Models for Counts: Poisson and Negative Binomial GLMs. In *Generalized Linear Models With Examples in R* (pp. 371-424). New York, NY: Springer New York.
9. Collins, M., Dasgupta, S., & Schapire, R. E. (2001). A generalization of principal components analysis to the exponential family. *Advances in neural information processing systems*, 14.
10. Harrison, L., & Friston, K. J. (2007). Effective connectivity. *Statistical parametric mapping: the analysis of functional brain images*, 508-521.
11. Stein, C. M., Morris, N. J., & Nock, N. L. (2011). Structural equation modeling. In *Statistical human genetics: Methods and protocols* (pp. 495-512). Totowa, NJ: Humana Press.
12. Washington, S., Karlaftis, M., Mannerling, F., & Anastasopoulos, P. (2020). Statistical and econometric methods for transportation data analysis. Chapman and Hall/CRC.
13. Vrieze, S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). *Psychological methods*, 17(2), 228.
14. Török, Á. (2020). A novel approach in evaluating the impact of vehicle age on road safety. *Promet-Traffic & Transportation*, 32(6), 789-796.
15. Brackstone, M., Waterson, B., & McDonald, M. (2009). Determinants of following headway in congested traffic. *Transportation Research Part F: Traffic Psychology and Behaviour*, 12(2), 131-142.