
 

 

 

  

Abstract—Motorway traffic management and control relies 

on models that estimate and predict traffic conditions. In this 

paper, a methodology for the identification and short-term 

prediction of the traffic state is presented. The methodology 

combines model-based clustering, variable-length Markov 

chains and nearest neighbor classification. An application of 

the methodology for short-term speed prediction in a freeway 

network in Irvine, CA, shows encouraging results. 

 

I. INTRODUCTION 

Simulation of traffic dynamics is a fundamental 

component of dynamic traffic management and control. 

Mesoscopic and macroscopic simulation models usually 

represent traffic dynamics using speed-density 

relationships, fluid representation of traffic flow, elements 

of queuing theory, etc. Emerging DTA systems, used in 

real-time applications for traffic estimation and prediction, 

are simulation-based and use mesoscopic simulation 

models to capture traffic dynamics (DynaMIT [1], 

DYNASMART [2], and RENAISSANCE [3]). 

Traffic is volatile and can change states quickly, thus 

making modeling a challenging task. State identification 

would allow state-specific modeling of traffic, which could 

in turn result in more accurate simulation models, as state-

specific models could then be employed, presumably with 

superior performance. For example, [4] present an 

application of multimodal regression to speed-flow data, 

while [5] use cluster analysis to segment speed-density 

data and determine the regime boundaries for classic (two-

regime and three-regime) speed-density models. [6] 

combined clustering and locally weighted regression to 

develop multi-state alternative models to the typical speed-
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density relationship, while [7] compared machine learning 

approaches for more flexible modeling of traffic dynamics 

models. 

Key methodological elements used in this research are 

presented in the next section, in particular model-based 

clustering, variable-length Markov chains, and nearest 

neighbor classification. An application of this framework 

using data from a freeway network in Irvine, CA, follows. 

The performance and potential benefits of the presented 

framework in short-term speed prediction is demonstrated. 

The paper concludes with directions for further research. 

II. METHODOLOGY 

A. Model-based clustering 

Clustering and classification are tasks that are rather 

well researched as they have extensive applications in 

many practical and research fields. As a result, a range of 

approaches and algorithms are available, often based on 

heuristics. One rigorous approach to cluster analysis is 

based on probability modes (see [8-9] for a survey). Some 

of the most popular heuristics used for clustering are 

approximate estimation methods for appropriately defined 

probability models [10]. For example, standard k-means 

clustering [11] is equivalent to known procedures for 

approximately maximizing the multivariate normal 

classification likelihood when the covariance matrix is the 

same for each component and proportional to the identity 

matrix [10]. 

Finite mixture models have been proposed and studied 

in the context of clustering [12-17], often as a statistical 

approach to shed some light into practical questions that 

arise from the application of clustering methods [18-21]. 

Each component probability distribution in finite mixture 

models corresponds to a cluster. The problems of 

determining the number of clusters and of choosing an 

appropriate clustering method can be recast as statistical 

model choice problems, and models that differ in numbers 

of components and/or in component distributions can be 

compared. Outliers are handled by adding one or more 

components representing a different distribution for 

outlying data.  

 

1) Mixture models 

Given data y with independent multivariate observations 
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y1,…,yn the likelihood for a mixture model with G 

components is: 

  

! 

LMIX "1,L,"G;#1,L,#G | y( ) = # k fk y i |"k( )
k=1

G

$
i=1

n

%  

(1) 

where 

! 

fk  and 

! 

"
k
 are the density and parameters of the kth 

component in the mixture and 

! 

"
k
 is the probability that an 

observation belongs to the kth component.  

Data generated by mixtures of multivariate normal 

densities are characterized by groups or clusters centered 

at the means, with ellipsoidal surfaces of constant density.  

The geometric features (shape, volume, orientation) of the 

clusters are determined by the covariances 

! 

"
k
, which may 

be further parameterized to impose cross-cluster 

constraints. In the simplest case of spherical clusters of the 

same size 

! 

"
k

= #I , while in the case of clusters with the 

same geometry (but not necessarily spherical) 

! 

"
k

= "  

[22]. Only one parameter is needed to capture the 

covariance structure of the mixture when 

! 

"
k

= #I , while 

for d-dimensional data 

! 

d d +1( ) /2  and 

! 

G d d +1( ) /2( )  

parameters are needed for constant 

! 

"
k
 and unrestricted 

! 

"
k
 [15]. [19,23] proposed more flexible and general 

frameworks for geometric cross-cluster constraints in 

multivariate normal mixtures by parameterizing covariance 

matrices through eigenvalue decomposition.  

 

2) Cluster analysis 

The purpose of cluster analysis is to classify data of 

previously unknown structure into meaningful groupings. 

A strategy for cluster analysis based on mixture models is 

outlined next [10]. The strategy comprises three core 

elements: (i) initialization via model-based hierarchical 

agglomerative clustering, (ii) maximum likelihood 

estimation via the expectation-maximization (EM) 

algorithm, and (iii) selection of the model and the number 

of clusters using approximate Bayes factors with the BIC 

(Bayesian Information Criterion) [24] approximation.  

Model-based hierarchical agglomerative clustering is an 

approach to computing an approximate maximum for the 

classification likelihood: 

  

! 

LCL "1,L,"G;l1,L,l n | y( ) = f
l i
y i |"l i

( )
i=1

n

#   (2) 

where   

! 

l
i
 are labels indicating a unique classification of 

each observation, taking the value k if yi belongs to the kth 

component. In the mixture likelihood (eq. 1), each 

component is weighted by the probability that an 

observation belongs to that component. The presence of 

the class labels in the classification likelihood (eq. 2) 

introduces a combinatorial aspect that makes exact 

maximization impractical [10].  

[23] successfully applied model-based agglomerative 

hierarchical clustering to problems in character recognition 

using a multivariate normal model, with volume and shape 

held constant across clusters. This approach was 

generalized by [19] to other models and applications. 

In hierarchical agglomeration, each stage of merging 

corresponds to a unique number of clusters and a unique 

partition of the data. A given partition can be transformed 

into indicator variables, which can then be used as 

conditional probabilities in an M step of EM for parameter 

estimation, initializing an EM algorithm. This, combined 

with Bayes factors as approximated by BIC for model 

selection, yields a comprehensive clustering strategy:  

• Determine a maximum number of clusters, M, and 

a set of mixture models to consider.  

• Perform hierarchical agglomeration to 

approximately maximize the classification 

likelihood for each model and obtain the 

corresponding classifications for up to M groups.  

• Apply the EM algorithm for each model and each 

number of clusters 2,…,M, starting with the 

classification from hierarchical agglomeration.  

• Compute BIC for the one-cluster case for each 

model and for the mixture model with the optimal 

parameters from EM for 2,…,M clusters.  

B. Variable-length Markov chains 

One of the most general models for a stationary 

categorical process taking values in a finite categorical 

space X, is a full Markov chain (of possibly high, but finite 

order).  [25]. The only implicit assumption aside from 

stationarity is the finite memory of the process. A 

stationary full Markov chain of order p exists whenever the 

transition mechanism has no specific structure; that is the 

state space is the entire Xp. While such general models 

may be theoretically attractive, they also have practical 

limitations. For example, a full Markov chain is rather 

inflexible in terms of the number of parameters that it can 

represent. For a model with 4 states, chains with 0 to 5 

parameters have dimensions of 3, 12, 48, 192 and 768, 

respectively. Markov chains can only be fitted in these 

“intervals”, thus reducing the model flexibility (e.g. if 48 

parameters are not enough, one needs to estimate 192 

parameters; intermediate values are not possible.) This 

issue introduces another problem with the full Markov 

chain model, the “dimensionality curse”, as the dimension 

of the model increases exponentially with the order p. 

Markov processes have found many applications in a 

diverse number of fields. For example, [26] propose an 

analytical methodology for prediction of the platoon 
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arrival profiles and queue length along signalized arterials 

using Markov decision processes (an extension of Markov 

chains). Other applications of Markov processes in 

transport-related literature include indicatively pavement 

management [27] and bridge maintenance management 

[28-29]. [30] model mobile terminals communication with 

their base station using hidden Markov models in 

combination with clustering algorithms. 

Variable length Markov chains (vlmc) address both 

issues introduced above and provide a natural and elegant 

way to avoid (some of) the difficulties mentioned. The 

idea is to allow the memory of the Markov chain to have a 

variable length, depending on the observed past values 

[31]. Fitting a vlmc from data involves estimation of the 

structure of the variable length memory, which can be 

reformulated as a problem of estimating a tree, using the 

so-called context algorithm [32], which can be 

implemented very efficiently.  

A variable length Markov chain is a potentially high 

order Markov chain, taking values in a finite categorical 

space, with a natural parsimonious structure for the 

transition probabilities. Let (Xt)t!Z be a stationary process 

with values Xt!X. A function called preliminary context 

function encapsulates the information that reflects which 

vectors from the infinite past of the process are relevant. If 

a number p exists, such that the cardinality of the 

preliminary context function is not infinite for the entire 

domain, then (Xt)t!Z is called a stationary variable length 

Markov chain of order p. The context function c(·) can be 

reconstructed from the context tree !c which is nothing else 

than the minimal state space of the underlying variable-

length Markov chain.  

Fitting a variable-length Markov chain can be done with 

a version of the tree structured context algorithm [32]. The 

variable length memory is usually represented with an 

estimated context tree. Thus, tree-structured models were 

fitted, where every terminal node (as well as some internal 

nodes) represents a state in the Markov chain and is 

equipped with corresponding transition probabilities. The 

context algorithm grows a large tree and prunes it back 

subsequently. The pruning part requires specification of a 

tuning parameter, the so-called cutoff. The cutoff K is a 

threshold value when comparing a tree with its subtree by 

pruning away one terminal node; the comparison is made 

with respect to the difference of deviance from the two 

trees. A large cutoff has a stronger tendency for pruning 

and yields smaller estimated context trees, i.e. a smaller 

dimension of the model.  

C. Nearest neighbors classification 

Clustering methods are usually accompanied by a 

classification algorithm so that they can be applied. 

Nearest neighbor classification is one of the standard 

classification methods. During the application phase, 

standard methods, such as the k-nearest neighbor 

approach, can be used to classify new traffic measurements 

(characterized by e.g. flow and density) to the most 

appropriate cluster. k-nearest neighborhood learning is the 

most basic instance-based method, and assumes that all 

instances (or observations) correspond to points in the n-

dimensional space [11]. The nearest neighbors of an 

instance are defined in terms of the standard Euclidean 

distance.     

Let an observation x be described by the feature tuple 

<a1(x), a2(x),..., an(x)> where ar(x) denotes the values of 

the r
th

 attribute of x. In the context of traffic dynamics, the 

attributes of x could be density and flow, but also other 

parameters, such as time of day, prevailing weather 

conditions, and traffic mix. The distance between two 

instances xi and xj is then defined to be: 

 

! 

d(xi,x j ) " ar xi( ) # ar x j( )( )
2

r=1

n

$  (3) 

 

In nearest-neighbor learning the target function may be 

either discrete-valued or real-valued. In the discrete case, 

such as this one, where the goal is to assign a cluster to 

each new instance xq, the algorithm selected the k 

instances from the training set that are nearest to xq (as 

defined by the distance above), and returns  

 

! 

ˆ f xq( )" argmax
u#V

$ u, f (xi)( )
i=1

k

%  (4) 

 

where " is the Kronecker operator   

!
"
# =

=
otherwise

baif
ba

0

1
),($  (5) 

 

III. APPLICATION 

A. Data   

The Irvine data set includes five days of sensor data from 

freeway I-405. Four days of data were used for the model 

based clustering, Markov chain estimation, and k-nearest 

neighbor training, while the data from the fifth day was 

used for the validation of the approach. Morning period 

(04:00am to 10:00am) data have been used. Speed, 

occupancy and flow data over 2-minute intervals were 

available for calibration and validation. (Local) density 

was obtained from the occupancy measurements. 

One of the few explicit assumptions of Markov chain 

modeling is the stationarity of data, which is not in general 

true for traffic data. Fig. 1 demonstrates the non-
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stationarity of the data used in this research by showing the 

autocorrelation functions for up to a lag of 300 intervals. 

The long series of slowly decaying autocorrelation 

fractions is a typical evidence of non-stationarity. 

 
Fig. 1. Autocorrelation functions of original data 

 

One way to transform non-stationary data to stationary 

data is to difference them (once or more). Fig. 2 shows the 

autocorrelation functions for the (one-step) differenced 

data. Note that this time autocorrelation fractions for up to 

50 lags is shown. Simply differencing the data once results 

in stationary data, that can be modeled using Markov 

processes. 

 
Fig. 2. Autocorrelation functions of differenced data 

 

B. Goodness-of-fit statistics 

The following appropriate statistics have been used [33]:  

• Normalized root mean square error (RMSN) [34-

35] 

• Root mean square percent error (RMSPE) [36] 

• Mean percent error (MPE) [36] 

• Theil’s U coefficient, as well as its bias, variance 

and covariance components [37] 

The purpose of using multiple statistics is that they can 

capture different aspects of the obtained results. The 

normalized root mean square error (RMSN) and root mean 

square percent error (RMSPE) quantify the overall error of 

the simulator. These measures penalize large errors at a 

higher rate than small errors. The formula for calculating 

the RMSN value is: 

( )

!

!

=

=

"

=
N

n

o

n

N

n

o

n

s

n

Y

YYN

RMSN

1

1

2

 (6) 

where N is the number of observations, Yn
o
 is an 

observation and Yn
s
 is an estimated/predicted value at time 

n. 

RMSPE is calculated based on the following formula: 

!
=

"
#

$
%
&

' (
=

N

n

o

n

o

n

s

n

Y

YY

N
RMSPE

1

2

1
 (7) 

The mean percent error (MPE) statistic indicates the 

existence of systematic under- or over-prediction in the 

estimated measurements and is calculated by: 

!
=

"
#

$
%
&

' (
=

N

n

o

n

o

n

s

n

Y

YY

N
MPE

1

1
 (8) 

Percent error measures are often preferred to their 

absolute error counterparts because they provide 

information on the magnitude of the errors relative to the 

average measurement. Another measure that provides 

information on the relative error is Theil's inequality 

coefficient, given by: 

 (9) 

U is bounded and takes values between zero and one 

(0#U#1, where U=0 implies perfect fit between observed 

and simulated measurements). Theil's inequality 

coefficient may be decomposed into three proportions of 

inequality: the bias (U
M

), the variance (U
S
) and the 
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covariance (U
C
) proportions given, respectively by: 

 (10) 

 (11) 

 (12) 

where ! is the correlation between the two sets of 

measurements, s
s
 and s

o
 are the standard deviations of the 

average simulated and observed measurements, 

respectively. By definition, the three proportions sum to 1 

(U
M

+U
S
+U

C
=1). The bias proportion reflects the 

systematic error. The variance proportion indicates how 

well the simulation model is able to replicate the 

variability in the observed data. These two proportions 

should be kept as close to zero as possible. The covariance 

proportion measures the remaining error and therefore 

should be close to 1. Note that since the various 

measurements are taken from non-stationary processes, the 

proportions can only be viewed as rough indicators to the 

sources of error.    

The application of this research was performed within 

the R Software for Statistical Computing v.2.4.0 [38] using 

the Mclust package [10] for model-based clustering and 

the vlmc package [31] for estimation of variable-length 

Markov chains.  

 

C. Clustering and classification 

The best functional form of the mixtures to be considered 

for clustering, and the optimal number of clusters were 

sought using the model-based clustering algorithm [10] on 

the stationary/differenced data. The following different 

mixture models were considered (in increasing order of 

flexibility and complexity): 

• "EII": spherical, equal volume  

• "VII": spherical, unequal volume  

• "EEI": diagonal, equal volume and shape 

• "VEI": diagonal, varying volume, equal shape 

• "EVI": diagonal, equal volume, varying shape  

• "VVI": diagonal, varying volume and shape  

• "EEE": ellipsoidal, equal volume, shape, and 

orientation  

• "EEV": ellipsoidal, equal volume and equal shape 

• "VEV": ellipsoidal, equal shape  

• "VVV": ellipsoidal, varying volume, shape, and 

orientation   

Fig. 3 shows the obtained curves for the different 

functional forms. The best one -indicated by the “top” line, 

i.e. the largest BIC, in the figure- is obtained by the most 

general model (VVV) with 5 clusters.  

 
Fig. 3.  Optimal number of clusters 

 

However, the marginal benefit of 5 clusters over 3 

clusters is minimal, and it is considered to use the more 

parsimonious model with only 3 clusters. The 

classification obtained with the 5 clusters is compared with 

the classification obtained by 3 clusters in Table 1. 98% of 

the observations are clustered “correctly” from the five-

mixture model to the three-mixture model. The 

interpretation of this mapping is that clusters 1 and 5 of the 

5-cluster model are mapped onto cluster A of the 

parsimonious 3-cluster model, clusters 2 and 3 are mapped 

onto cluster B of the 3-cluster model, and cluster 4 is 

mapped onto cluster C. The parsimonious 3-cluster model 

is retained for the remainder of this application. 

 
TABLE 1  

CORRESPONDENCE OF CLUSTERS IN 3- AND 5-MIXTURE MODELS 

  3 clusters 

  A B C 

1 1641 62 0 

2 3 1217 0 

3 0 440 0 

4 7 0 172 

5
 c

lu
st

e
r
s 

5 57 0 0 

 

D. Markov chain training 

Variable length Markov Chain computes a huge tree and 

then prunes it. The cutoff for this pruning is an input 

parameter, which –in this case- was obtained using a line-

search for the value that provided the highest value for the 

Akaike Information Criterion (AIC) [39]. It appears from 

Fig. 4 that the optimal value for the cutoff parameter is 3.6, 
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which is actually picked as the cutoff for the remainder of 

this application. The minimum AIC obtained with this 

cutoff value is equal to 4699.09. 

 

 
Fig. 4. AIC vs cutoff for VLMC 

 

E. Speed prediction 

Traffic state identification can have many applications in 

the field of traffic management and control. In this section, 

it is indicatively applied to speed prediction. Locally 

weighted regression (loess) [11] is trained on the training 

data.   

Given the estimated variable-length Markov process, for 

each observation, the Markov chain model is used to 

predict the state of the traffic for the next interval. After 

each “new” instance is classified to a cluster, a speed value 

is estimated using the appropriate locally weighted 

regression (which was trained with data only from the 

relevant cluster.) 

Table 2 presents the results of the speed prediction using 

the two approaches, using several measures of goodness-

of-fit. Percent improvement due to the more elaborate 

technique is also presented. A clear improvement is 

indicated by all statistics. The percent improvement ranges 

between 5 and 10 percent for RMSN, RMSPE, and U, 

while it exceeds 60% for MPE and U
M

.  

 
TABLE 2 

COMPARISON OF GOODNESS-OF-FIT STATISTICS  

 

Estimation 
Reference 

prediction 

Markov-

based 

prediction 

Prediction 

improve-

ment 

RMSN 0.0449 0.0883 0.0801 9.3% 

RMSPE 0.0504 0.1049 0.0989 5.7% 

MPE 0.0044 0.0085 0.0033 60.7% 

U 0.0221 0.0434 0.0396 8.8% 

U
M
 0.0177 0.0046 0.0017 63.6% 

 

 

In recent research, [6-7] found that loess outperforms 

other machine learning approaches and the typical speed-

density relationship for speed estimation. Therefore, this 

performance should be considered as an improvement over 

an already powerful reference case. 

 

F. Model diagnostics 

Fig. 5 shows the residuals of the fitted variable-length 

Markov Chain model against the contexts, i.e., produces a 

boxplot of residuals for all contexts used in the model fit. 

Intuitively, a context is a “case” that is not pruned from the 

context tree. The number of observations per context state 

is also illustrated, along the x-axis of the figure. 

Furthermore, the width of each boxplot is proportional to 

the square root of the number of observations that it 

represents. For a few contexts (such as 2 and 2222) the 

residuals are zero (indicated by lack of a boxplot and a 

small square along the x-axis). This implies that this past 

state seems fairly well predictable, based on this dataset. 

 

IV. CONCLUSION 

A methodology for the identification and short-term 

prediction of traffic state has been presented. The 

methodology comprises state-of-the-art components, such 

as model-based clustering, variable length Markov chains 

and nearest neighbor classification. An application of the 

methodology to short-term speed prediction in a freeway 

network in Irvine, CA, provides encouraging results. 

Traffic state identification and prediction has many 

possible applications in the field of motorway traffic 

surveillance and control, including automated incident 

detection and capacity estimation. Incident detection can 

be achieved when the observed traffic state differs from 

the state that was expected, based on short-term 

predictions. A deviation from this expectation may suggest 

that some special event has disrupted the normal flow of 

traffic. In terms of capacity, there are no direct ways to 

measure or observe it. Instead, modelers and operators rely 

on indirect evidence on capacity. Information on the 

expected vs. observed traffic state may provide some 

further evidence.  
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