Traffic state prediction using Markov chain models

Constantinos Antoniou¹, Haris N. Koutsopoulos² and George Yannis¹

¹National Technical University of Athens
²Northeastern University

ECC 2007, 3 July 2007
Kos, Greece
Outline

- Motivation
- Methodology
 - Model-based clustering
 - Variable-length Markov chains
 - Nearest neighbors classification
- Application
- Main findings
Model-based clustering (I)

- Finite mixture models have been studied in the context of clustering
- Each component probability distribution in finite mixture models corresponds to a cluster
- Problems of determining the number of clusters and choosing appropriate clustering method can be recast as statistical model choice models
- Models that differ in number of components and/or component distribution can be compared
- Outliers can be explicitly handled (through additional distributions)
Model-based clustering (II)

• Cluster analysis
 – Initialization via model-based hierarchical agglomerative clustering
 – Maximum likelihood estimation via the EM algorithm
 – Selection of model and number of clusters using approximate Bayes factors (BIC approximation)
(Full) Markov chains

- One of the most general models for stationary categorical process
- Several applications in many fields, including transport-related
- Rather inflexible in terms of the number of parameters that it can represent
 - For a model with 4 states, chains with 0 to 5 parameters have dimensions of 3, 12, 48, 192 and 768
 - “dimensionality curse”
Variable-length Markov chains

• Allow memory of the Markov chain to have a variable length, depending on the observed past values
 – Computes a huge tree and then prunes it
• Fitting a vlmc from data involves estimation of the structure of the variable length memory
 – Can be reformulated as a problem of estimating a tree
 – Rather efficiently using the so-called context algorithm
Nearest neighbors classification

• Used to classify observations into the most appropriate clusters

• K-nearest neighborhood learning is the most basic instance-based method
 – Nearest neighbors are defined in terms of standard n-dimensional Euclidean distances
Application setup

• Freeway I-405 in Irvine, CA
• Morning period data (4am-10am)
• Speed, occupancy and flow data over 2-minute intervals
• Four days of data used for training
 – Model based clustering
 – Variable length Markov chain estimation
 – K-nearest neighbor training
• One different day used for application
• Locally weighted regression has been used for speed estimation/prediction
Stationarity assumption

Original data

Differenced data

Flow

Density

Speed

Differenced flow

Differenced density

Differenced speed

3/7/2007 ECC2007, Kos
Clustering and classification

- Considered mixture models
 - "EII": spherical, equal volume
 - "VII": spherical, unequal volume
 - "EEI": diagonal, equal volume and shape
 - "VEI": diagonal, varying volume, equal shape
 - "EVI": diagonal, equal volume, varying shape
 - "VVI": diagonal, varying volume and shape
 - "EEE": ellipsoidal, equal volume, shape, and orientation
 - "EEV": ellipsoidal, equal volume and equal shape
 - "VEV": ellipsoidal, equal shape
 - "VVV": ellipsoidal, varying volume, shape, and orientation
Optimal number of clusters
3- vs. 5-mixture models

<table>
<thead>
<tr>
<th></th>
<th>3 clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>1641</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
</tr>
</tbody>
</table>

- 98% of observations are clustered intuitively from the 5 to the 3 clusters
 - 1 and 5 into A
 - 2 and 3 into B
 - 4 into C
- The parsimonious 3 cluster model is retained
"Pruning" cutoff parameter

![Graph showing the relationship between AIC and Cutoff. The AIC decreases sharply with increasing Cutoff until a certain point, after which it levels off.](image-url)
Speed prediction

- Given the estimated variable-length Markov chain
- Predict the state of the traffic for the next interval
- Use locally weighted regression (loess) -trained on data from this cluster only- to compute speed
- Reference case: loess trained on all data – already a powerful approach

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Reference prediction</th>
<th>Markov-based prediction</th>
<th>Prediction improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSN</td>
<td>0.0449</td>
<td>0.0883</td>
<td>0.0801</td>
</tr>
<tr>
<td>RMSPE</td>
<td>0.0504</td>
<td>0.1049</td>
<td>0.0989</td>
</tr>
<tr>
<td>MPE</td>
<td>0.0044</td>
<td>0.0085</td>
<td>0.0033</td>
</tr>
<tr>
<td>U</td>
<td>0.0221</td>
<td>0.0434</td>
<td>0.0396</td>
</tr>
<tr>
<td>U^M</td>
<td>0.0177</td>
<td>0.0046</td>
<td>0.0017</td>
</tr>
</tbody>
</table>
Conclusion

• A methodology for identification and short-term prediction of traffic state
 – Model-based clustering
 – Variable length Markov chains
 – Nearest neighbor classification
• Application in a freeway network in Irvine, CA
• Potential uses may include automated incident detection, indirect capacity estimation etc
Thank you for your attention!

Questions?