
Abstract— The Extended Kalman Filter, a well-established 

and straightforward extension of the Kalman filter, requires a 

computationally intensive linearization step. In this paper, the 

use of the simultaneous perturbation is proposed for the 

computation of the gradient in a far more efficient way than 

the usual numerical derivatives. The resulting algorithm is 

applied to the problem of on-line calibration of traffic 

dynamics models and empirical results are presented. The use 

of the simultaneous perturbation gradient approximation 

provides significant improvement over the base case, and 

comparable results to those obtained by the more 

computationally intensive finite difference gradient 

approximation. 

I. INTRODUCTION 

HE original Kalman filter theory applies to linear 

systems. However, since many interesting problems are 

non-linear, solutions for non-linear models have been 

sought, leading to the development of modified Kalman 

Filter methodologies. The most straightforward extension is 

the Extended Kalman Filter (EKF), in which optimal 

quantities are approximated via first order Taylor series 

expansion (linearization) of the appropriate equations. The 

Iterated EKF (IEKF) method attempts to improve upon 

EKF, by using the current estimate of the state vector to 

linearize the measurement equation in an iterative mode.  

The different methods have different performance 

characteristics in terms of computational effort and accuracy 

of the results [1, 2]. The linearization step of the gradient 

computation usually dominates the computational 

performance of these algorithms. In this paper, the use of the 

simultaneous perturbation [3] for the computation of the 

gradient is considered and compared to the commonly used 

numerical derivative using finite differences. 

Simultaneous perturbation has been considered as a 

component in optimization frameworks. For example, 

simultaneous perturbation was combined with dynamic 
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tunneling for training single hidden layer feedforward 

networks [4]. In another example, Alessandri and Parisini 

[5] present a tuning methodology for complex large-scale 

models, based on the suitable use of neural networks and 

specific stochastic-approximation algorithms. Spall [6] 

presents a resampling-based method for computing the 

information matrix efficiently, which relies on an efficient 

technique for estimating the Hessian matrix, introduced as 

part of the adaptive (“second-order”) form of the 

simultaneous perturbation stochastic approximation (SPSA) 

optimization algorithm. Chan et al. [7] address the 

optimisation of particle filtering (or Sequential Monte Carlo, 

SMC) methods using stochastic approximation. In 

particular, the Simultaneous Perturbation Stochastic 

Approximation (SPSA) algorithm is used for the 

optimisation of an average cost function. 

The remainder of this paper is structured as follows. 

Section II introduces the linear Kalman filter framework 

while Section III discusses non-linear extensions. Section IV 

outlines the gradient approximation approach that is 

combined with the EKF in Section V. Section VI presents 

an application of the resulting algorithm in a network in 

Irvine, CA, and Section VII concludes the paper.  

II. LINEAR KALMAN FILTER FRAMEWORK 

The Kalman Filter (Algorithm 1) is the optimal minimum 

mean square error (MMSE) estimator for linear state-space 

models [1]. While the model formulation of the on-line 

calibration is not linear (due to the indirect measurement 

equation), it is still useful to review the basic Kalman 

Filtering algorithm, since modified Kalman Filter 

methodologies have been developed for non-linear models.  

The Kalman filter provides a recursive solution to the 

linear optimal filtering problem defined by the following 

equations  

 

Xh +1 = FhXh + wh (1) 

 

Yh = HhXh + uh (2) 

 

where hX is the vector of state variables at interval h, hY

is the vector of measurements observed during interval h,

wh is assumed to be a vector of zero mean, normal and 

uncorrelated errors with covariance matrix Qh and uh is 
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assumed to be a vector of zero mean, normal and 

uncorrelated errors with covariance matrix Rh .

A common way to look at the recursive nature of the 

Kalman Filter is as a “prediction-correction” approach, due 

to the two steps of time and measurement update. In words, 

the main steps of the Kalman Filter are as follows. Suppose 

that a starting estimate of the state X0 is available (3), 

along with an estimate of the initial state variance-

covariance matrix P0 (4). A time update phase makes a 

prediction of the state (5) and its covariance matrix (6) for 

the next time interval.  

 

The measurement update phase incorporates the new 

information about the measurement vector Yh and uses it 

to correct the prediction of the state made during the time 

update. Instrumental in this process is the Kalman gain Gh ,

which is computed as per (7). The state can then be updated 

(corrected) using (8). Similarly, the state covariance is 

updated using (9).  

Further information on the Kalman Filter can be found in 

many texts, including for example [2], [8], and [9].  

III. NON-LINEAR KALMAN FILTER ALGORITHMS 

Non-linear models are very common. In the remainder of 

this section the Extended and Iterated Extended Kalman 

Filter algorithms are outlined as they apply to the following 

non-linear state-space model:  

 

Xh +1 = FhXh + wh (10) 

 

Yh = h(Xh ) + uh (11) 

 

The transition equation (10) is assumed to be linear (for 

example, an autoregressive process). The function h(.), 

however, is more general and therefore is not assumed to be 

linear.  

A. Extended Kalman Filter 

The Extended Kalman Filter employs a linearization of 

the non-linear relationship to approximate the measurement 

equation with a first-order Taylor expansion:  

 

Hh =
� h(x*)

�x*

x*
= X h|h�1

(12) 

 

The main steps of the Extended Kalman Filter are shown 

in Algorithm 2. Besides the addition of the linearization step 

in (17), this algorithm is a straightforward extension of the 

linear Kalman filter.  

 

Further information on the Extended Kalman Filter can be 

found in many texts, including for example [8], and [9]. 

B. Iterated Extended Kalman Filter 

The Iterated Extended Kalman Filter is an extension of the 

EKF that can provide superior performance. The update step 

of the EKF involves the linearization of the measurement 

equation about the present best estimate of the state vector 

X, i.e., Xh |h�1, the calculation of the Kalman gain and the 

update of the state vector and its covariance. However, once 

this step is completed, a presumably superior estimate Xh |h

is available which could then be used to linearize the 

measurement equation (17) and repeat the update step (18-

20). At the end of this iteration an even better estimate of 

the state vector is available, which can in turn be used to 

linearize the measurement equation. These iterations could 

be repeated as many times as deemed necessary. Each of 

these iterations comprises (17-20).  

IV. GRADIENT APPROXIMATION APPROACHES 

A key step of the EKF and IEKF is the linearization, i.e. 

the calculation of the gradient. In cases where analytical 
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relationships exist, this can be performed analytically (e.g. 

[14,18]. However, in cases that the measurement equation 

cannot be represented analytically (e.g. [10, 11]) alternative 

approaches are required for the calculation of numerical 

derivatives. Considering the applications in transportation 

modeling in which such approaches can be applied [10-14], 

the properties of the gradient approximation approaches 

include robustness to noisy functions and ability to handle 

large-scale problems. 

The need for solving multivariate optimization problems 

is pervasive in engineering and stochastic approximations 

are one of the techniques that have received considerable 

attention. The Finite Difference Stochastic approximation 

(FDSA) method computes a search direction by comparing 

the objective function after perturbing each variable 

individually [3]. While FDSA is an option with proven 

performance, it is associated with considerable 

computational complexity: each gradient calculation 

involves at least n+1 function evaluations, where n is the 

number of parameters to be calibrated. 

Spall [3,15] proposed an algorithm for the solution of the 

problem of minimizing an objective function based on a 

stochastic approximation of the gradient. Simultaneous 

Perturbation Stochastic Approximation (SPSA) provides 

significant computational improvements over FDSA by 

perturbing all variables at once. SPSA requires only two 

computations of the objective function at a given iterate for 

estimating the gradient vector, irrespective of the number n

of parameters to be calibrated. 

Although FDSA is expected to give a more accurate and 

reliable estimate of the gradient vector at each iteration, the 

associated computational cost is high. Studies have shown 

that SPSA and FDSA require a comparable number of 

iterations to reach the global optimum. The per-iteration 

computational savings of SPSA thus result in a significantly 

more efficient algorithm for large-scale applications. Spall 

shows, through several standard stochastic problems, that 

SPSA outperforms FDSA in terms of overall convergence 

speed. The performance of SPSA for the calibration of 

large-scale traffic simulation models has also been 

demonstrated in Balakrishna et al. [12,13,16], who also 

include more details about the algorithm. 

V. SP-EKF: A COMBINATION OF EKF AND SP 

In this paper, the use of the gradient approximation of the 

SPSA algorithm is proposed as an alternative for the 

linearization step of the EKF. The SPSA algorithm iterates 

from an initial guess of the optimal � , using a gradient 

approximation that depends on the highly efficient 

"simultaneous perturbation" (SP). The innovation of SP is 

that it does not require each of the n elements to be 

perturbed individually, but instead all elements are 

perturbed simultaneously. As a result, only two function 

evaluations are required (compared to 2n when a finite 

difference gradient approximation is used). The perturbation 

is based on a randomly generated p-dimensional random 

perturbation vector � , where each of the n components of 

� are independently generated from a zero-mean 

probability distribution satisfying the conditions in Spall [3]. 

A practical and suitable approach is the use of a Bernoulli 

±1 distribution with probability of ½ for each ±1 outcome. 

Spall [17] notes that uniform and normal random variables 

are not allowed for the elements of � k by the SPSA 

regularity conditions (as they have infinite inverse 

moments). 

The simultaneous perturbation approximation to the 

unknown gradient ( )�̂ĝ is obtained from: 

ĝ �̂( )=
y �̂ + c �( )� y �̂ � c �( )

2c

�1

�1
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�1

M
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�

�
�
�
�

(21) 

where y(.) are measurements of the loss function based on 

the perturbation around the current �̂ , � i is the ith 

component of the � vector, which may be ± 1 random 

variables as discussed above, and c is an appropriately 

selected small positive number. The common numerator in 

all n components of ( )�̂ĝ reflects the simultaneous 

perturbation of all components in �̂ (in contrast to the 

component-by-component perturbations in the standard 

finite-difference approximation.)  

The expected value of ( )�̂ĝ is a biased estimator of the 

true gradient ( )�g , i.e. E ĝ �̂( )[ ]= g �( )+ bias . The 

bias is small and proportional to c
2
.

To summarize, in the proposed algorithm the linearization 

step of the EKF (17), would be replaced by (21).  

VI. APPLICATION  

The objective of this application is to demonstrate the 

feasibility of this approach the context of the on-line 

calibration of traffic dynamics models. An example of such 

models is the estimation and prediction of speed based on 

density measurements. Rather than relying on a single off-

line calibrated relation, in this application the model 

parameters are dynamically re-estimated in each time 

interval so that the model output would better match the 

prevailing traffic condition. 

A. On-line calibration of traffic dynamics models 

The on-line calibration problem is formulated as a state-

space model, comprising measurement and transition 

equations [18]. The transition equation for the state vector 

can be written in the general form of an autoregressive 

process. The speed-density relationship provides a (likely 
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non-linear) measurement equation. However, the problem is 

under-defined, as the dimension of the state vector (densities 

plus model parameters) is larger than the number of 

equations (speed measurements). To overcome this issue 

(and also introduce additional information into the 

formulation), it is possible to augment the formulation with 

two additional sets of measurement equations. First, off-line 

calibrated values of the parameters of the speed-density 

relationship can be used as a priori estimates of the actual 

parameters values. In addition, density measurements 

(obtained, for example, indirectly from occupancy reported 

by sensors) can be incorporated directly.  

1) Measurement Equations 

The speed-density relationship provides the first 

measurement equation, which can be written in the 

following general form:  

( ) hhh

m

h +K,u += ,h (22) 

where h is the interval of interest, h(.) is the mapping of 

densities into speeds, h, is the vector of parameters to be 

calibrated, K h is the vector of densities that are used as 

state variables, and  h+ is a vector of Gaussian, zero-mean, 

uncorrelated errors. An example of a functional form for the 

speed-density relationship is:  

 u = u f 1�
max(0, K �Kmin )

K jam

�

�
��

�

�
��

�


�

�
�




�

�
�

�

(23) 

where u denotes the speed, u f is the free flow speed, K is 

the density, Kmin is the minimum density, K jam  is the jam 

density and P and Q are model parameters. Further examples 

of speed-density relationships can be found in e.g. [19] and 

[20].  

Density measurements (obtained, for example, indirectly 

from occupancy reported by sensors) can also be used as a 

priori estimates of the density state vector:  

 hh

m

h -KK +=  (24) 

where K h

m
is the vector of measurements and h- is a vector 

of Gaussian, zero-mean, uncorrelated errors. Off-line 

calibrated values of the parameters of the speed-density 

relationship can be used as a priori estimates of the actual 

parameter values:  

hh

m

h .,, += (25) 

where h. is a vector of Gaussian, zero-mean, uncorrelated 

errors.  

2) Transition Equations 

The transition equation can be written in the general form:  

 hhh wXX +=
+

)f(1 (26) 

The state vector Xh comprises the model parameters and 

densities to be estimated.  

The transition equation for the parameters can be 

represented as an autoregressive process:  

 h

h

rhp

h

p

hh �+= �
�=

+
,F, 1 (27) 

where r is the degree of the autoregressive process and Fh

p

is a matrix of autoregressive factors capturing the 

contribution of the parameter vector in interval p on the 

parameter vector in interval h. The autoregressive degree, 

the transition matrices Fh

p
, and the error terms h� are 

estimated off-line.  A detailed description of this process 

can be found in numerous references (e.g. [21] pp. 56-58 

and [22] pp. 54-60) and is outside the scope of this paper. 

For the special case of r = 0, this transition equation reduces 

to a random walk: hhh �+=
+

,, 1 , which is what has 

been assumed –without loss of generality- in the application 

in this paper. 

Density measurements are usually available in intervals 

finer than the estimation interval. For example, 

measurements may be available every 30 seconds or every 

minute, while estimation of the model parameters may be 

performed every 5, 10 or 15 minutes. One way to express 

the transition equation of the density measurements is to 

construct a finer autoregressive process, in which each 

element of the state vector depends on the preceding 

elements. For each element in the density measurement state 

vector the transition equation could be:  

 kt +1 = f t +1

s ks

s= t� l

t

� + � t (28) 

where t is the measurement time, l is the degree of the 

autoregressive process, f t +1

s
is the autoregressive factor 

mapping the contribution of ks on  kt +1, and � t is a 

Gaussian, zero-mean error, uncorrelated with the other error 

terms.  

B. Data and Methodology 

Several days of sensor data from freeway I-405 in Irvine, 

CA, have been used. Validation of the algorithms involved 

off-line calibration of the approach with several days of data 

and subsequent application of the models for different days 

(not used in the off-line calibration). Morning period 

(04:00am to 10:00am) data have been used, since this 

period includes the peak flow for this sensor). Speed and 

density data are available in 30-second intervals.  

The chosen speed-density relationship has been used for 

the estimation of both off-line and on-line calibrated speeds. 

First, a priori estimates of the parameters (along with 

densities) were used for the estimation and prediction of off-

line calibrated speeds. A priori estimates of the parameter 

values are obtained by fitting the speed-density relationship 

to an initial set of data (three days) using non-linear least 

squares and are then held constant for the entire period. The 

accuracy of these off-line calibrated speeds was used as a 
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baseline reference, from which the benefits obtained from 

the on-line calibration are measured.  

Data from a different day (not used in the off-line 

calibration) was then used for the on-line calibration of the 

speed-density relationship parameters for each data-set, 

using the Extended Kalman Filter modifications presented 

above, where the finite difference and stochastic 

perturbation linearization steps have been used. The 

estimated parameters were then used for the prediction of 

the parameter values using the transition equation (27). The 

estimated and predicted speeds were obtained by 

substituting in (23) the on-line calibrated 

(estimated/predicted) parameters for each time and the 

corresponding densities. 

The parameter vector would then become 

 �h = �h �h Kmin,h K jam,h u f ,h[ ].

The application of the EKF and the IEKF requires the 

differentiation of (23). However, due to the maximizing 

function, (23) is not continuously differentiable. In order to 

overcome this issue, the numerical differentiation is applied 

each time to the regime, in which the evaluation point 

belongs. 

The performance of each algorithm is assessed using the 

normalized root mean square error (RMSN) of the speeds 

(used, for example, in [23, 24]):  

RMSN =
N u � û( )

2

N
�

u
N

�
(29) 

where N is the number of measurements and û denotes 

estimated (respectively predicted) speeds.  

C. Results 

Table I presents the estimation and prediction results 

obtained by the various alternative algorithms (1Pred 

denotes one-step ahead results, while 2Pred denotes two-

step ahead results). For each case, RMSN values are 

presented, along with percent improvement relative to the 

base case (in parentheses below the RMSN values; the 

offline case is used as the reference case). Offline 

corresponds to the results obtained when the off-line 

computed parameter values are used, which is used as the 

base case. FD-EKF denotes the EKF algorithm when the 

finite difference method is used for the computation of the 

gradient in the linearization step, while in the SP-EKF the 

simultaneous perturbation algorithm has been used for the 

computation of the gradient in the linearization step. Due to 

the different scale of the state variables, the magnitude of 

the elements of vector � has been normalized in the SP 

gradient approximation step. Iterated EKF has also been run 

for both gradient computation approaches. The results for 

FD-IEKF and SP-IEKF presented in Table I correspond to 4 

iterations of the IEKF algorithm. 

 The first observation is that all on-line calibrated sets of 

parameters result in significant improvements over the base 

case. As expected, the use of the FD results in larger 

improvements than the use of the SP for the gradient 

approximation step for the estimated speeds. Predicted 

speeds, however, are fit better by the SP-generated speeds. 

This is a property that should be further investigated 

empirically and theoretically. The use of the iterated 

algorithms improves the estimation and prediction of the 

speeds.  
TABLE I

ESTIMATION AND PREDICTION RESULTS 

Est 1Pred 2Pred 

Offline 0.0709  0.0733 0.0755 

FD-EKF 
0.0588 

(17%) 

0.0712 

(3%) 

0.0713 

(6%) 

SP-EKF 
0.0611 

(14%) 

0.0669 

(9%) 

0.0676 

(10%) 

FD-IEKF 
0.0573 

(19%) 

0.0675 

(8%) 

0.0688 

(9%) 

SP-IEKF 
0.0574 

(19%) 

0.0671 

(8%) 

0.0680 

(10%) 

An interesting observation is that the two gradient 

approximations perform similarly. Considering the vastly 

different computational requirements of the two approaches, 

it becomes apparent that the combination of the SP gradient 

approximation with the IEKF algorithm results in superior 

accuracy than the FD-EKF (or equivalent accuracy with the 

FD-IEKF) but with significantly lower computational 

requirements. Note that each iteration of the FD-EKF 

requires 2n function evaluations (where n is the number of 

parameters), while SP-EKF requires only two irrespective of 

the number of parameters to be estimated. In this particular 

application, where the number of parameters to be estimated 

for each interval is 35 (30 densities plus 5 parameters of the 

speed-density relationship), each FD gradient approximation 

run requires 70 function evaluations while each SP gradient 

approximation run only 2 function evaluations. This impact 

becomes even more pronounced as the cost of running each 

function evaluation increases, e.g. in the case of simulation 

functions. 

VII. CONCLUSION 

In this paper, the use of the simultaneous perturbation is 

proposed for the computation of the gradient in a far more 

efficient way than the usual numerical derivatives. The 

resulting algorithm is applied to the problem of on-line 

calibration of traffic dynamics models and empirical results 

are presented. The use of the SP gradient approximation 

provides comparable results to those obtained by the more 

computationally intensive FD algorithm. After four 

iterations of the iterated EKF algorithm, the SP gradient 

approximation algorithm provides equivalent results with 

those obtained with the FD gradient approximation (after 

the same number of iterations).  
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The approach should be further studied in terms of its 

theoretical properties and validated. Furthermore, issues like 

the scalability, the convergence, the robustness to noise, the 

performance when the prediction horizon is extended, need 

to be further investigated empirically. 
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