Investigation of the influence of the median to the relative risk of interurban road segments

G. Yannis, C. Antoniou and E. Bournelaki

National Technical University of Athens

Background

- Regression assumptions are often violated in practice
- Most common violation in road safety data related to error-structure distribution
- Poisson assumption commonly assumed
 - Fixed dispersion parameter (=1, i.e. mean=variance)
- Generalized linear models allow relaxation of this restriction
 - Dispersion parameter != 1 (quasi-Poisson)
 - Other distributions of the exponential family (e.g. negative binomial)

Data and methodology

- Data about straight and flat segments from the national highway network (PATHE)
- Accidents occurred between 1996 and 1999
- Generalized linear model

Final model specification

- Dependent variable: relative risk
- Independent variables
 - Median (0/1 binary variable, 1=with median)
 - Rain/dry (0/1 binary variable, 1=rain)
 - Lighting conditions (0/1 binary variable, 1=low lighting conditions)
 - Traffic flow (veh/day)

 $g(\mu_i) = \text{intercept} * 1 + b_{med} * median_i + b_{dark} * dark_i + b_{rain} * rain_i + b_{flow} * flow_i$

Estimation results Poisson

Poisson			
	Estimated	Standard	z-value
	Coefficient	error	
Intercept	0.19471	0.23342	0.834
No median	1.76023	0.15267	11.529
Dark	-0.5383	0.08612	-6.251
Wet pavement	-1.2185	0.10776	-11.308
Traffic flow	0.16353	0.03395	4.817
Null deviance	554.51 (83 degrees of freedom)		
Residual deviance	186.41 (79 degrees of freedom)		
AIC	475.75		

Estimation results quasi-Poisson

Quasi-Poisson				
	Estimated	Standard	z-value	
	coefficient	error		
Intercept	0.223	0.322	0.692	
No median	1.712	0.183	9.316	
Dark	-0.478	0.129	-3.706	
Wet pavement	-1.186	0.144	-8.201	
Traffic flow	0.159	0.0520	3.058	
Null deviance	243.37 (83 degrees of freedom)			
Residual deviance	78.93 (79 degrees of freedom)			
AIC	235.71			

Estimation results Negative binomial

Negative binomial				
	Estimated	Standard	z-value	
	coefficient	error		
Intercept	0.225	0.338	0.668	
No median	1.705	0.190	8.969	
Dark	-0.471	0.136	-3.456	
Wet pavement	-1.182	0.151	-7.791	
Traffic flow	0.158	0.0550	2.884	
Null deviance	235.109 (83 degrees of freedom)			
Residual deviance	73.408 (79 degrees of freedom)			
AIC	422.97			

Impact of median in accident rate

Conclusions

- Use of generalized linear models
- Insight that can be used to reduce accident frequency and severity
 - Non-linear increase of risk with the increase of AADT
 - Increase is higher in the absence of median
- Correlation of weather and lighting conditions with accidents
- Impact of road characteristics?
 - Lane width, curvature, upstream/downstream segments, type of cross-section, shoulder

Expected impacts

- Prioritization of road infrastructure improvements
- Targeted enforcement campaigns