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Abstract 

 

Objective: Understanding the various factors that affect accident risk is of particular concern to decision makers 

and researchers. Recently, the incorporation of real-time traffic and weather data constitutes a fruitful approach 

when analysing accident risk. However, the vast majority of relevant research has no specific focus on vulnerable 

road users such as Powered-Two-Wheelers (PTWs). Moreover, studies using data from urban roads and arterials 

are scarce. This study aims to add to the current knowledge by considering real-time traffic and weather data from 

two major urban arterials in the city of Athens, Greece, in order to estimate the effect of traffic, weather and other 

characteristics on PTW accident involvement.  

Methods: Because of the high number of candidate variables, a Random Forest model was applied to reveal the 

most important variables. The significant variables according to the Random Forest model were used as input to 

a Bayesian logistic regression model in order to reveal the magnitude of their effect on PTW accident involvement.  

Results: The results of the analysis suggest that PTWs are more likely to be involved in multi-vehicle accidents 

than in single-vehicle accidents. It was also indicated that increased traffic flow and variations in speed have a 

significant influence on PTW accident involvement. On the other hand weather characteristics were found to have 

no effect.  

Conclusions: The findings of this study can be helpful contribute to the understanding of accident mechanism of 

PTWs to deploy in real-time safety management strategies aiming and to reduce accident risk of PTWs on urban 

arterials.  
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INTRODUCTION  

Mopeds and motorcycles (together as Powered-two-wheelers or PTWs) constitute a flexible and economic 

alternative for commuters and are widely used in dense urban areas where traffic density is high. However, PTW 

occupants face a much higher risk of being fatally injured than car occupants (Lin and Kraus, 2009), mainly due 

to the lack of protective equipment which is well-known to enhance passive safety (Viano, 1991). In 2013, circa 

3.862 riders (drivers and passengers) of motorcycles were killed in the European Union (ERSO, 2015). Most of 

moped fatalities occur on urban areas while the majority of motorcycle fatalities occur in rural areas (ERSO, 

2015). In Greece the majority of PTW fatalities are motorcyclists (ERSO, 2015). 
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In order to improve safety of PTWs, great efforts have been made explore PTW accident risk and a variety of 

accident-related factors have been identified. The road environment (road type, road geometry, roadside 

installations etc.) plays a very significant role in PTW accident risk (Haque et al., 2009; Haque et al., 2010; Harnen 

et al., 2003; Kasantikul et al., 2005; Wanvik, 2009; Daniello and Gabler, 2011). However, the effect of traffic and 

weather characteristics has not been extensively explored (Branas and Knudson, 2001; Houston and Richardson, 

2008; Xuequn et al., 2011; Abdul Manan and Várhelyi, 2012). It is noted that behavioural risk factors are 

considered important and have deeply explored in literature but do not fall in the scope of this study and thus are 

not discussed here.   

 

Recently, an increasing number of studies exploit real-time traffic and weather data in order to investigate accident 

risk on freeways. To the best of our knowledge there are no studies with real-time data that explore PTW accident 

risk, as the relevant literature has a more general scope, exploring accident risk (Abdel-Aty and Pande, 2005; 

Abdel-Aty et al., 2007; Ahmed and Abdel-Aty, 2012; Xu et al., 2013a and 2013b; Hassan and Abdel-Aty, 2013; 

Abdel-Aty et al. 2012; Yu and Abdel-Aty, 2013b), accident frequency (Yu and Abdel-Aty, 2013a; Yu et al., 2013) 

or accident severity (Christoforou et al., 2010; Golob et al., 2008; Yu and Abdel-Aty, 2014a and 2014b; Xu et al., 

2013b; Jung et al., 2010). It is also noted, that the vast majority of studies exploit freeway data. Concerning 

accident likelihood in particular, previous research on this topic suggests that common risk factors are mainly the 

variations in traffic conditions (Ahmed et al., 2012a and 2012b; Ahmed and Abdel-Aty 2012; Xu et al, 2013a and 

2013b; Zheng et al., 2010) and low visibility or adverse weather conditions (Xu et al., 2013a; Ahmed et al., 2012b; 

Abdel-Aty et al., 2012).  

 

Because of the low weight, the high acceleration and manoeuvring capabilities of PTWs it is very important to 

understand especially the influence of existing traffic conditions on PTW risk. In addition, PTW movements with 

simulation and also the various interactions taking place on dense urban environments are of also of great interest 

and have been investigated by various researchers (Dey et al., 2008; Vlahogianni et al., 2012; Nikias et al., 2012; 

Vlahogianni, 2014; Barmpounakis et al., 2014, Barmpounakis et al., forthcoming)  

 

Consequently urban PTW data need to be further explored. However, existing studies utilizing real-time traffic 

and weather data do not have particular focus on Powered-Two-Wheeler risk, as the literature review has showed. 

The present paper aims to add to the current knowledge by explaining Powered-Two-Wheeler (PTW) accident 

risk on urban arterials of Athens, Greece. Aside from the traditional accident attributes, real-time traffic and 

weather data are attempted to be correlated with PTW accident involvement. It is noted that the term “PTW 

accident risk”, refers to whether a PTW is involved or not in an accident that has already occurred. 

 

METHODS 

Data preparation 

Data for this study have been collected for the period 2006-2011 to investigate the relationship between traffic, 

weather and other characteristics with PTW accident risk. More specifically, the area of interest is in the Greater 

Athens area; two central densely urban arterials with very similar geometrical and traffic characteristics. 
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All accident data were collected from the Greek accident database SANTRA, which is provided by the National 

Technical University of Athens. It provides access to road accidents in Greece since 1985 in high detail and 

includes all relevant information about each accident (persons injured, severity of injuries, location, weather, 

accident type and so on). The traffic data were extracted from the Traffic Management Centre (TMC) of Athens, 

which operates since 2004 and covers several major roads in Athens by having 550 loop detectors, 217 cameras 

and 24 variable message signs. It also controls more than 800 junctions.  

 

The data includes traffic flow (number of vehicles per 5 min), traffic occupancy  (%) and mean-time speed (km/h). 

Weather data were collected from the Hydrological Observatory of Athens (HOA, 2012), which provides an 

online open-access database. HOA covers more than 10 meteorological stations located in the greater Athens area, 

measuring rainfall (mm), temperature (oC), relative humidity (%), solar radiation (W/m2), wind direction 

(degrees), wind speed (m/sec) etc. 

 

 

 

Then, each accident was assigned to the closest upstream loop detector and to the closest weather station. Note 

that, spacing between consecutive loop detectors is not consistently the same, since they were placed at specific 

places of interest (in terms of traffic interest) by the Traffic Management Centre. Some of the loop detectors were 

very closely spaced (the minimum distance between loop detectors was found to be about 68m), while a few 

detectors were very far from each other (the maximum distance between loop detectors was identified to be about 

1,13km). Accident cases where the location from the closest upstream loop detector was more than 600m were 

generally excluded, as such measurements could not considered to be highly reliable due to the complex nature 

of the urban environment. However, in cases where there were only a few minor roads merging on the major 

arterial, higher distances were included as well, although in general distances higher 750m were not considered 

reliable. 

 

Consequently, an observation is a record of each accident, the corresponding traffic and weather conditions and 

also various external factors. Traffic data from the closest upstream loop detector were considered. The 5-min raw 

traffic data were further aggregated to 1-hour level to obtain averages and standard deviations prior to an accident. 

Traffic flow was divided by the number of lanes for consistency reasons, as these arterials have segments with 

different number of lanes. It is noted that data from bus lanes were not considered in this study. When the time or 

location of an accident was not known, this case was deleted from the dataset.  

 

 

The 10-min raw weather data were aggregated in order to obtain maxima, averages and standard deviations in the 

time-slice of 1-hour prior to the time of the accident occurrence. Regarding rainfall, the sum and standard deviation 

of rainfall has also been calculated for 1h, 2h, 6h and 12h prior to the time of the accident. Moreover, the 

qualitative variable weather (good/adverse weather) and the pavement condition (good/wet) as originally coded 

in SANTRA database system were also considered for further analysis. 
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In this study, a time lag of 20 minutes was used, meaning that the time of each accident case was recalculated by 

subtracting 20 minutes, in order to avoid the impact of the accident itself on the traffic variables and to compensate 

for any potential inaccuracies in the precise time of the accident. Other similar studies have used similar or even 

larger time lags (Christoforou et al., 2010; Quddus et al., 2009). The following example illustrates the approach. 

If an accident occurred on 10 February at 10:00, then the relevant data are extracted for the time period 8:40 to 

9:40 from the closest upstream loop detector and from the closest meteorological station.  

 

The final dataset included 527 accident cases. PTWs were involved in 326 of those accidents (61.9% of the 

accidents). For the needs of the study, a new binary variable is created (1 for PTW accident involvement, 0 when 

no PTWs are involved in an accident) and expresses whether a PTW is involved in an accident. Powered-Two 

wheelers did not have separate lanes, but they share lanes with other vehicles (but not permitted to enter bus 

lanes).Tables 1, 2 and 3 provide a data description as well as some basic descriptive statistics.   

 

***Please insert Table 1 here*** 

 

***Please insert Table 2 here*** 

 

 

***Please insert Table 3 here*** 

Statistical Analysis 

Random Forests    A random forest is a classifier including a collection of tree-structured classifiers {h(x, Θk), k 

= 1,...}, where the {Θk} are independent identically distributed random vectors and each tree casts a unit vote for 

the most popular class at input x (Breiman, 2001). Strobl and Zeileis, (2008) suggest that in order to construct a 

random forest, a number of bootstrap samples from the original sample have to be drawn and afterwards a 

classification tree to each bootstrap sample has to be fitted (number of trees).  

 

Random Forests (RF) have been used in various similar traffic safety studies (Abdel-Aty and Haleem, 2011; 

Ahmed and Abdel-Aty, 2012; Yu and Abdel-Aty, 2014b) by ranking the explanatory variables according to their 

relative importance. Thus, this method is very useful when dealing with a high number of candidate explanatory 

variables, because it assists in selecting the most significant variables and then enter them in other statistical 

models. However, a limitation of this method is that the magnitude of the effect and the sign of each variable 

effect are not revealed. Therefore, it is used mainly as a preliminary analysis. 

 

Bayesian logistic regression    The Bayesian logistic regression approach is different than the traditional 

frequentist approach, in a sense that prior distributions for each parameter are defined and then the data are used 

to update beliefs about parameters. Therefore, the posterior distributions and the 95% credible intervals are 

produced. Any prior distribution can be potentially used, however, it is preferable to use “vague” or “non-

informative” priors if little is known about the coefficient values (Lunn et al., 2012). The likelihood function for 
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Bayesian logistic regression is the same as in the frequentist inference. Therefore, the logistic regression equation 

is: 

 

log (
𝑝

1−𝑝
) = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛        (Eq. 1) 

 

where 𝛽0 is the constant term, 𝛽𝑖 is a beta coefficient of the explanatory variable 𝑥𝑖 .  

 

While the “frequentist” approach considers the model parameters as fixed unknown constants and uses the data 

solely to best estimate the unknown values of the parameters, the Bayesian approach treats parameters as random 

variables and the data are used to update beliefs about the behaviour of the parameters. Moreover, Bayesian 

inference can effectively avoid the problem of over fitting that occurs when there is a low number of observations 

but high number of variables. 

 

 

A parameter is statistically significant if the 95% credible interval (2.5%-97.5%) of the beta coefficient does not 

contain include zero (Lunn et al., 2012). The DIC as the Bayesian generalization of Akaike information criterion 

(Akaike, 1974), is a measure of model fit and to compare models. More information about the Bayesian logistic 

regression technique can be found in Lunn et al. (2012). 

 

RESULTS AND DISCUSSION 

The preliminary analysis of the Random Forests (RF) served as a first screening to identify potential important 

variables that should be entered in the Bayesian logistic regression models. All traffic (flow, speed, occupancy) 

and weather (temperature, humidity, rainfall, wind speed, wind direction, solar radiation) related variables were 

considered as potential risk factors and were entered in the RF model. Traditional accident variables (such as 

accident type, location, pavement condition, etc.) were considered as well. All variables are listed in Tables 2, 3 

and 4. 

 

The variable importance ranking was explored by constructing 1000 trees and using mtry = 7. Figure 1 illustrates 

the variable importance rankings by ranking and sorting the . variables according to their relative importance. The 

blue vertical line was added for illustration purposes. More specifically, the vertical blue line was placed where a 

“gap” appears between more important and less important variables in order to visually separate them. Similarly, 

the red threshold line was added to aid the interpretation of the results. More specifically, this line was added at 

the absolute value of the lowest ranking predictor. Strobl et al. (2009) suggest that variables can be considered 

informative and potentially important if their variable importance value is above the absolute value of the lowest 

negative-scoring variable. All variables right to the red vertical line were further considered in the Bayesian 

logistic models. 

Explanatory variables to the right of dashed vertical line are identified to be potentially significant. However, 

another vertical line was set in order to highlight the very highly important predictors (to the right of the blue 

line). 
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The type of accident was identified as a considerably highly important predictor of PTW accident occurrence. 

Furthermore, the 1-h average speed upstream (V_avg_1h_up), the 1-h average occupancy upstream 

(Occ_avg_1h_up), 1-h average flow upstream (Q_avg_1h_up) and lastly the 1-h median flow upstream 

(Q_median_1h_up) were identified as highly significant as well. As in previous analyses, the variables had to be 

checked once more for potential correlations. However, as stated earlier, all variables right to the red vertical line 

are potentially significant. For example, standard deviation of occupancy (Occ_stdev_1h_up), coefficient of 

variation of speed (V_cv_1h_up), average temperature (T_1h_avg), maximum temperature (T_1h_max), 

maximum wind speed (W.Sp_1h_max) and average humidity (Hum_1h_avg) have also to be considered for the 

final models. 

 

***Please insert Figure 1 here*** 

 

Then, a correlation matrix of the variables entered in the final models has been checked to avoid multicollinearity 

problems. For example, the median flow although indicated by the RF model as significant, it was found to be 

correlated with the average flow (r=0.62) and thus removed from the model. Moreover, only the coefficient of 

variation of speed was retained to the model since it was correlated with standard deviation of occupancy (r=0.91). 

 

Afterwards, the Bayesian logistic regression was performed on the basis of the Random Forest model findings. 

The next table (Table 4) summarizes the findings of the Bayesian logistic regression model. This was the model 

with the lowest DIC value (640.05) and thus having the best fit. Furthermore, the area under the ROC curve (AUC) 

was used to assess the model fit. The area under the ROC curve shows how well the model discriminates between 

accidents with a PTW (y=1) and without a PTW (y=0) and it was found to be 0.724, indicating that the model can 

provide good discrimination. 

 

All prior distributions of the parameters were chosen to be non-informative, following a normal distribution with 

zero mean and a very low precision of 0.0001, namely ~dnorm(0, 0.0001). The first 5,000 iterations were 

discarded and used as burn-in and 3 chains of 20,000 iterations were set up. Regarding the two traffic variables in 

the model, they were not highly correlated (r=0.16). 

 

The beta coefficient of average flow has a positive sign, indicating that when flow increases, there is an increase 

in the probability of a PTW to have been involved in an accident. This means that in more congested traffic 

conditions, the probability that PTWs are more likely to be involved in accidents is high. One explanation could 

be the existence of increased interaction with other motorized traffic and the potential need for manoeuvres under 

these dense traffic conditions. 

 

Another interesting finding was that the coefficient of variation of speed (basically expressing variations in mean 

time speed) increase the probability of an accident involving a PTW. In literature, speed variations have been 

linked to high risk of accidents on freeways (Zheng et al., 2010; Xu et al., 2013b; Ahmed et al., 2012b; Hassan 

and Abdel-Aty, 2013). The finding of the Bayesian model suggests that large variations in speed, have an influence 

on PTW accidents in urban roads as well. It is important to comment on the high odds ratio (3.487) of the 
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coefficient of variation of speed variable, meaning that 1 unit increase results in 3.487 higher odds of an accident 

involving a PTW than that before the increase. 

 

Lastly, it was found that accident type was strongly associated with PTW accidents. It was found that PTWs are 

more associated with head-on collisions (Acc.type1), side (Acc.type3) and sideswipe collisions (Acc.type4). The 

95% credible intervals of the beta coefficient of Acc.type2 (rear-end collisions) include zero and therefore is non-

significant. The reference category was set us as an accident with a fixed object or run-off road collisions 

(Acc.type0). What is interesting is that by interpreting the odds ratios, PTWs are more likely to be involved in 

head-on, side and sideswipe collisions rather than a collision with a fixed-object or to run-off-road (7.737, 7.546 

and 2.652 times more likely respectively). This finding means that PTWs are more vulnerable and thus are more 

affected by interactions with other motorized traffic, as they are more likely to be involved in multi-vehicle 

accidents than in single vehicle accidents.  

 

In order to further support this finding, a table of descriptive statistics was constructed. Table 5 shows that 107 

PTW accidents are single-vehicle, while 219 PTW accidents are multi-vehicle. It is also shown that that the 

proportion of PTWs is significantly higher in head-on, side and sideswipe collisions, while in off-road and fixed 

object collisions the PTWs and other vehicles are almost equally involved. 

 

***Please insert Table 4 here*** 

 

***Please insert Figure 2 here*** 

 

***Please insert Table 5 here*** 

 

CONCLUSIONS 

The aim of the present study was to investigate Powered-Two-Wheelers (PTWs) accident risk and more 

specifically to understand the mechanism behind PTW involvement in accidents. For that reason, real-time traffic 

and weather data as well as other traditional accident characteristics from urban roads in Athens, Greece were 

exploited. Initially, a Random Forests (RF) model was utilized in order to rank the candidate variables according 

to their relative importance and provide a first insight on the potential significant variables affecting PTW accident 

risk. The RF technique revealed a significant effect of real-time traffic variables. However, no weather variables 

were indicated as significant.  

 

Afterwards, a Bayesian logistic regression model was applied on the basis of the RF preliminary analysis and 

provided useful information regarding the likelihood of PTW accidents in urban roads of the city of Athens. PTW 

accident probability was found to be positively influenced by high values of traffic flow and by variations in 

speed. Moreover, PTWs are more likely to be involved in multi-vehicle accidents than in single-vehicle accidents. 

However, rear-end accidents might probably occur in high congestion or in near signalized intersections and seem 

to affect more other types of motorized traffic, such as private cars. The fact that PTWs seem to be prone to be 

involved in such types of accidents when fluctuations in traffic conditions and conditions of increased traffic flow 
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exist, implies that in urban road roads, PTWs are particularly affected by the interaction with other motorized 

traffic. Therefore, PTW accident occurrence seems to be also a matter of behavioural interaction with other 

motorized traffic.  

 

The authors recognize the limitations of the study. The distance between consecutive loop detectors was not 

optimal as the placement of loop detectors served traffic management and not safety purposes. The best would be 

to have very dense network of detectors or perhaps keep only accident cases very close to detectors. This was not 

feasible since it would have resulted in further reduction in our sample size, which was already not very large. For 

that reason, it was decided to include also real-time weather variables and traditional accident variables in the 

study and not rely solely on the traffic variables. It is noted however, that studies in literature have considered 

measurements even longer than 1 mile (although such measurements concern freeways); see for example Zheng 

et al. (2010).  Moreover, data were not as microscopic as in other studies in the field and such time intervals used 

may be too large to capture short-term variations. In addition, traffic conditions and interactions at intersections 

need to be further examined in order to better understand the effect of real-time traffic at complex urban 

environments. Future studies on other cities’ urban arterials could utilize more microscopic traffic and weather 

data and perhaps consider carrying out separate analyses on intersections by including approaching traffic flows 

from all merging roads. 

 

However, to the best of our knowledge this study could be considered as one of the first attempts to utilize real-

time traffic and weather data from urban arterials in order to model PTW accident risk. The results of the study 

can potentially be used as a direction towards further research and also further actions from policy makers for 

better traffic monitoring in major urban arterials. By understanding the accident mechanism behind PTW 

accidents, accident risk of PTWs on urban arterials could be reduced.  

The authors are aware that data were not as microscopic as other studies in this field and that such time intervals 

used in the study may be too large to capture short-term variations. However, to the best of our knowledge this 

study could be considered as one of the first few attempts to utilize real-time traffic and weather data from urban 

arterials in order to model PTW accident risk. Future relevant studies on other cities’ urban arterials could utilize 

more microscopic traffic and weather data. 

 

The findings of this study can contribute to reducing accident risk of PTWs on urban arterials by deploying real-

time safety management strategies. For example, Lastly, after high risk conditions are identified (e.g. congested 

traffic, variations in mean speed), variable messages signs could be potentially used. 

 

 

 

REFERENCES 

Abdel-Aty M., Haleem K. Analyzing angle crashes at unsignalized intersections using machine learning 

techniques. Accident Anal Prev. 2011; 43: 461–470 

 



9 

 

Abdel-Aty M., Hassan H.M., Ahmed M., Al-Ghamdi A.S. Real-time prediction of visibility related crashes. 

Transportation Res C. 2012; 24: 288–298 

 

Abdel-Aty M., Pande, A. Identifying crash propensity using specific traffic speed conditions. Journal of Saf Res. 

2005; 36: 97– 108 

 

Abdel-Aty, M., Pande A., Lee C., Gayah V., Dos Santos C. Crash risk assessment using intelligent transportation 

systems data and real-time intervention strategies to improve safety on freeways. Journal of Int Trans Syst. 2007; 

11(3): 107-120 

 

Abdul Manan M.M., Varhelyi A. Motorcycle fatalities in Malaysia. IATSS Res. 2012; 36(1): 30-39 

 

Ahmed M., Abdel-Aty M. The viability of using Automatic Vehicle Identification data for real-time crash 

prediction. IEEE Transactions of Intel Transp Syst. 2012; 13(2): 459-468 

 

Ahmed M., Abdel-Aty M., Yu R. A bayesian updating approach for real-time safety evaluation using AVI data. 

Transportation Res Rec. 2012a; 2280: 60–67 

 

Ahmed M., Abdel-Aty M., Yu R. Assessment of the interaction between crash occurrence, mountainous freeway 

geometry, real-time weather and AVI traffic data. Transportation Res Board. 2012 January 22-26; Washington, 

D.C. 

 

Akaike H. A new look at the statistical model identification. IEEE Transactions on Aut Contr. 1974; 19: 716–723 

  

Barmpounakis E.N., Vlahogianni E.I., Golias J.C. Investigating Powered Two-Wheelers Overtaking Behavior in 

Urban Arterials. Transportation Res Board. 2014 January 12-16; Washington, DC. 

 

Barmpounakis E.N., Vlahogianni E.I., Golias J.C. Vision-based multivariate statistical modeling for powered two-

wheelers maneuverability during overtaking in urban arterials. Transportation Letters. In press; doi: 

http://dx.doi.org/10.1179/1942787515Y.0000000020  

 

Branas C.C., Knudson M.M. Helmet laws and motorcycle rider death rates. Accident Anal Prev. 2001; 33: 641-

648 

 

Breiman, L. Random Forests. Machine Learning. 2001; 45: 5-32 

 

Christoforou Z., Cohen S., Karlaftis M. Vehicle occupant injury severity on highways: An empirical investigation. 

Accident Anal Prev. 2010; 42: 1606-1620 

 

http://dx.doi.org/10.1179/1942787515Y.0000000020


10 

 

Daniello A., Gabler H.C. Fatality risk in motorcycle collisions with roadside objects in the United States. Accident 

Anal Prev. 2011; 43: 1167-1170 

 

Dey P.P., Chandra S., Gangopadhyay S. Simulation of Mixed Traffic Flow on Two-Lane Roads. Journal of Transp 

Eng. 2008; 134: 361-369 

 

European Road Safety Observatory, ERSO. Traffic safety basic facts “Motorcycles and mopeds”. European 

Commission, Traffic Safety Basic Facts on Motorways, European Commission, Directorate General for Transport. 

2015 

 

Golob T.F., Recker W.W., Pavlis Y. Probabilistic models of freeway safety performance using traffic flow data 

as predictors. Safety Science. 2008; 46: 1306-1333 

 

Haque M.M., Chin H.C., Huang H. Modelling fault among motorcyclists involved in crashes. Accident Anal Prev. 

2009; 41: 327-335 

 

Haque M.M., Chin H.C., Huang H. Applying Bayesian hierarchical models to examine motorcycle crashes at 

signalized intersections. Accident Anal Prev. 2010; 42: 203-212 

 

 

Harnen S., Wong S.V., Radin Umar R.S., Wan Hashim W.I. Motorcycle crash prediction model for non-signalized 

intersections. IATSS Res. 2003; 27(2): 58-65 

 

Hassan H.M., Abdel-Aty M.A. Predicting reduced visibility related crashes on freeways using real-time traffic 

flow data. Journal of Saf Res. 2013; 45: 29–36 

  

Houston D.J., Richardson L.E. Motorcyclist fatality rates and mandatory helmet-use laws. Accident Anal Prev. 

2008; 40: 200-208 

 

 

Jung S., Qin X., Noyce D.A. Rainfall effect on single-vehicle crash severities using polychotomous response 

models. Accident Anal Prev. 2010; 42: 213-224 

 

Kasantikul V., Ouellet J.V., Smith T., Sirathranont J., Panichabhongse V. The role of alcohol in Thailand 

motorcycle crashes. Accident Anal Prev. 2005; 37: 357-366 

 

Lin M.R., Kraus J.F. A review of factors and patterns of motorcycle injuries. Accident Anal Prev. 2009; 41:710-

722 

 



11 

 

Lunn D.J., Jackson C., Best N., Thomas A., Spiegelhalter D. The BUGS Book: A practical introduction to 

Bayesian Analysis. 2012; 1st ed., Boca Raton, FL., Chapman and Hall/CRC 

 

Nikias, V., Vlahogianni E., Lee T.-C., Golias J. Determinants of Powered Two-Wheelers Virtual Lane Width in 

Urban Arterials. International IEEE Annual Conference on Intelligent Transportation Systems (ITSC 2012). 2012; 

1205-1210: Anchorage, USA 

 

Quddus M.A., Wang C., Ison S.G. Road traffic congestion and crash severity: econometric analysis using ordered 

response models. Journal of Transp Eng. 2010; 136(5): 424–435 

 

Strobl C., Malley J., Tutz G. An Introduction to Recursive Partitioning: Rational, Application, and Characteristics 

of Classification and Regression Trees, Bagging, and Random Forests. Psychol Meth. 2009; 14(4): 323-348  

 

Strobl C., Zeileis A. Danger: High power! – exploring the statistical properties of a test for random forest variable 

importance. 2008; International Conference on Computational Statistics: Porto, Portugal 

  

The Hydrological Observatory of Athens (HOA). 2012; Retrieved from http://hoa.ntua.gr/   

 

 

Viano D. Effectiveness of Safety Belts and Airbags in Preventing Fatal Injury. SAE Technical Paper. 1991; 

910901. 

 

Vlahogianni E.I. Kinematic Characteristics and Interactions of Powered-Two- Wheelers Filtering and Overtaking 

in Urban Arterials. Transportation Res F. 2014; 24: 133-145 

 

Vlahogianni E.I., Golias J.C. Bayesian modeling of the microscopic traffic characteristics of overtaking in two-

lane highways. Transportation Res F. 2012; 15: 348-357 

 

Wanvik P.O. Effects of road lighting: An analysis based on Dutch accident statistics 1987-2006. Accident Anal 

Prev. 2009; 41: 123-128 

 

Xu C., Tarko A.P., Wang W., Liu P. Predicting crash likelihood and severity on freeways with real-time loop 

detector data. Accident Anal Prev. 2013b; 57: 30-39 

 

Xu C., Wang W., Liu P. Identifying crash-prone traffic conditions under different weather on freeways. Journal 

of Saf Res. 2013a; 46: 135-144 

 

Xuequn Y., Ke L., Ivers R., Du W., Senserrick T. Prevalence rates of helmet use among motorcycle riders in a 

developed region in China. Accident Anal Prev. 2011; 43: 214-219 

 

http://hoa.ntua.gr/


12 

 

Yu R., Abdel-Aty M. Investigating the different characteristics of weekday and weekend crashes. Journal of Saf 

Res. 2013a; 46: 91-97 

 

Yu R., Abdel-Aty M. Utilizing support vector machine in real-time crash risk evaluation. Accident Anal Prev. 

2013b; 51: 252-259 

 

Yu R., Abdel-Aty M. Using hierarchical Bayesian binary probit models to analyze crash injury severity on high 

speed facilities with real-time traffic data. Accident Anal Prev. 2014a; 62: 161-167  

 

Yu R., Abdel-Aty M. Analyzing crash injury severity for a mountainous freeway incorporating real-time traffic 

and weather data. Safety Sci. 2014b; 63: 50-56 

 

Yu R., Abdel-Aty M., Ahmed M. Bayesian random effect models incorporating real-time weather and traffic data 

to investigate mountainous freeway hazardous factors. Accident Anal Prev. 2013; 50: 371-376 

 

Zheng Z., Ahn S., Monsere C.M. Impact of traffic oscillations on freeway crash occurrences. Accident Anal Prev. 

2010; 42: 626– 636 

 

 

  



13 

 

List of Tables and Figures 

 

Table 1: Summary of accident related variables. 

 

Variable Type Abbreviation Description 

Yes=1 326 61.9%

No=0 201 38.1%

Yes=1 458 86.9%

No=0 69 13.1%

Day=1 332 63.0%

Night/Dusk=0 195 37.0%

Off road/Fixed object/Other 226 42.9%

Head-on 43 8.2%

Rear-end 91 17.3%

Side 67 12.7%

Sideswipe 100 19.0%

Straight line=1 497 94.3%

Curve=0 30 5.7%

Yes=1 174 33.0%

No=0 353 67.0%

Traffic lights=1 169 32.1%

No/Other=0 358 67.9%

Good=1 489 92.8%

Adverse=0 38 7.2%

Good=1 486 92.2%

Wet=0 41 7.8%

Descriptive Statistics

Dummy

Dummy

Dummy

Dummy

Dummy

MC.involvement.no

Barrier

Illumination

Acc.type

Euthigrammia

Intersection

PTW accident involvement

Dummy

Dummy

Weather

Pavement.conditions

Median

Illumination

Accident Type (collision type)

Road curvature

Rythmisi.kukloforias

Intersection

Weather conditions Dummy

Pavement conditions Dummy

Traffic control

 

 

Table 2: Summary of traffic related variables. 

 

Min Median Mean Max

Q_avg_1h_up Continuous 1h average flow per lane upstream 52.82 835.64 793.66 1848.91

Q_stdev_1h_up Continuous 1h st.deviation of flow per lane upstream 10.58 81.81 270.17 1165.50

Q_median_1h_up Continuous 1h median of flow per lane upstream 13.50 681.63 602.28 1889.13

Q_cv_1h_up Continuous 1h coefficient of variation of flow per lane upstream 0.02 0.08 0.11 0.58

V_avg_1h_up Continuous 1h average speed upstream 4.50 45.90 45.52 104.60

V_stdev_1h_up Continuous 1h st.deviation of speed upstream 0.00 3.06 5.13 28.08

V_cv_1h_up Continuous 1h coefficient of variation of speed upstream 0.00 0.08 0.15 0.89

Occ_avg_1h_up Continuous 1h average occupancy upstream 0.15 12.94 15.74 57.52

Occ_stdev_1h_up Continuous 1h st.deviation of occupancy upstream 0.00 2.06 3.96 30.84

Occ_cv_1h_up Continuous 1h coefficient of variation of occupancy upstream 0.00 0.17 0.25 1.76

Descriptive Statistics

Variable Type Description 

  

Min Median Mean Max

Q_avg_1h_up Continuous Vehicles/hour/lane 1h average flow per lane upstream 52.82 835.64 793.66 1848.91

Q_stdev_1h_up Continuous Vehicles/hour/lane 1h st.deviation of flow per lane upstream 10.58 81.81 270.17 1165.50

Q_median_1h_up Continuous Vehicles/hour/lane 1h median of flow per lane upstream 13.50 681.63 602.28 1889.13

Q_cv_1h_up Continuous unitless 1h coefficient of variation of flow per lane upstream 0.02 0.08 0.11 0.58

V_avg_1h_up Continuous Km/hour 1h average speed upstream 4.50 45.90 45.52 104.60

V_stdev_1h_up Continuous Km/hour 1h st.deviation of speed upstream 0.00 3.06 5.13 28.08

V_cv_1h_up Continuous unitless 1h coefficient of variation of speed upstream 0.00 0.08 0.15 0.89

Occ_avg_1h_up Continuous Percentage % 1h average occupancy upstream 0.15 12.94 15.74 57.52

Occ_stdev_1h_up Continuous Percentage % 1h st.deviation of occupancy upstream 0.00 2.06 3.96 30.84

Occ_cv_1h_up Continuous unitless 1h coefficient of variation of occupancy upstream 0.00 0.17 0.25 1.76

Descriptive Statistics

Variable Type Description Unit
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Table 3: Summary of weather related variables. 

 

*0 degrees is North wind, 90 degrees is East wind etc.

Min Median Mean Max

T_1h_max continuous 1h maximum temperature -1.70 17.85 18.72 42.17

T_1h_avg continuous 1h average temperature -2.14 17.23 18.20 41.99

T_1h_stdev continuous 1h st.deviation of temperature 0.02 0.30 0.39 2.84

Hum_1h_max continuous 1h maximum humidity 12.49 58.96 58.27 97.50

Hum_1h_avg continuous 1h average humidity 12.20 55.37 55.84 97.20

Hum_1h_stdev continuous 1h st.deviation of humidity 0.06 1.37 1.82 13.12

Rain_1h_sum continuous 1h sum of rainfall 0.00 0.00 0.05 6.60

Rain_1h_st.dev continuous 1h st.deviation of rainfall 0.00 0.00 0.01 1.20

Rain_2h_sum continuous 2h sum of rainfall 0.00 0.00 0.15 23.60

Rain_2h_st.dev continuous 2h sum of rainfall 0.00 0.00 0.02 1.84

Rain_6h_sum continuous 6h sum of rainfall 0.00 0.00 0.33 35.60

Rain_6h_st.dev continuous 6h st.deviation of rainfall 0.00 0.00 0.02 1.90

Rain_12h_sum continuous 12h sum of rainfall 0.00 0.00 0.53 52.80

Rain_12h_st.dev continuous 12h st.deviation of rainfall 0.00 0.00 0.02 1.67

W.Sp_1h_max continuous 1h maximum wind speed 0.00 2.32 2.72 9.67

W.Sp_1h_avg continuous 1h average wind speed 0.00 1.75 2.16 7.95

W.Sp_1h_stdev continuous 1h st.deviation of wind speed 0.00 0.34 0.39 1.39

W.Dir_1h_avg continuous 1h average wind direction 0.00 141.00 128.36 351.67

Sol_1h_max continuous 1h maximum solar radiation 0.00 264.75 354.07 1100.00

Sol_1h_avg continuous 1h average solar radiation 0.00 164.38 284.92 1007.29

Descriptive Statistics

Variable Type Description 

 

 

 

 

 

Table 4: Summary of the Bayesian logit model for PTW accident probability. 

 

Min Median Mean Max

T_1h_max continuous
o
C 1h maximum temperature -1.70 17.85 18.72 42.17

T_1h_avg continuous
o
C 1h average temperature -2.14 17.23 18.20 41.99

T_1h_stdev continuous
o
C 1h st.deviation of temperature 0.02 0.30 0.39 2.84

Hum_1h_max continuous % 1h maximum humidity 12.49 58.96 58.27 97.50

Hum_1h_avg continuous % 1h average humidity 12.20 55.37 55.84 97.20

Hum_1h_stdev continuous % 1h st.deviation of humidity 0.06 1.37 1.82 13.12

Rain_1h_sum continuous mm 1h sum of rainfall 0.00 0.00 0.05 6.60

Rain_1h_st.dev continuous mm 1h st.deviation of rainfall 0.00 0.00 0.01 1.20

Rain_2h_sum continuous mm 2h sum of rainfall 0.00 0.00 0.15 23.60

Rain_2h_st.dev continuous mm 2h sum of rainfall 0.00 0.00 0.02 1.84

Rain_6h_sum continuous mm 6h sum of rainfall 0.00 0.00 0.33 35.60

Rain_6h_st.dev continuous mm 6h st.deviation of rainfall 0.00 0.00 0.02 1.90

Rain_12h_sum continuous mm 12h sum of rainfall 0.00 0.00 0.53 52.80

Rain_12h_st.dev continuous mm 12h st.deviation of rainfall 0.00 0.00 0.02 1.67

W.Sp_1h_max continuous m/sec 1h maximum wind speed 0.00 2.32 2.72 9.67

W.Sp_1h_avg continuous m/sec 1h average wind speed 0.00 1.75 2.16 7.95

W.Sp_1h_stdev continuous m/sec 1h st.deviation of wind speed 0.00 0.34 0.39 1.39

W.Dir_1h_avg continuous degrees* 1h average wind direction 0.00 141.00 128.36 351.67

Sol_1h_max continuous W/m
2

1h maximum solar radiation 0.00 264.75 354.07 1100.00

Sol_1h_avg continuous W/m
2

1h average solar radiation 0.00 164.38 284.92 1007.29

Descriptive Statistics

Variable Type Description Unit
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Mean St.Deviation Odds Ratio 2.50% 97.50%

constant -1.321 0.295 0.267 -1.905 -0.740

Q_avg_1h_up 0.001 0.000 1.001 0.001 0.002

V_cv_1h_up 1.249 0.603 3.487 0.077 2.441

Acc.type0 (ref) - - - - -

Acc.type1 2.046 0.479 7.737 1.165 3.053

Acc.type2 0.435 0.260 - -0.071 0.948

Acc.type3 2.021 0.417 7.546 1.244 2.888

Acc.type4 0.976 0.263 2.652 0.478 1.497

DIC 640.095

Variables
Parameters Estimates Credible Intervals

 

 

 

 

Table 5: Descriptive statistics of accident type in relation to PTW accident involvement. 

 

Off-road/fixed object Head-on Rear-end Side Sideswipe

Without a PTW 119 6 37 8 31

With a PTW 107 37 54 59 69

Accident type
Accident

 

 

 

 

 

Figure 1: PTW accident probability variable importance provided by Random Forests. 
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Figure 2: Receiver Operating Characteristic (ROC) curve. 


