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Abstract 

 
This study aims to divide traffic into meaningful clusters (regimes) and to 

investigate their impact on accident likelihood and accident severity. 

Furthermore, the likelihood of Powered-Two-Wheelers (PTWs) involvement 

in an accident is examined. To achieve the aims of the study, traffic and 

accident data for the period 2006-2011 from two major arterials in Athens 

were collected and processed. Firstly, a finite mixture cluster analysis was 

implemented to classify traffic into clusters. Afterwards, discriminant 

analysis was carried out in order to correctly assign new cases to the existing 

regimes by using a training and a testing set. Lastly, Bayesian logistic 

regression models were developed to investigate the impact of traffic regimes 

on accident likelihood and severity. The findings of this study suggest that 

urban traffic can be divided into different regimes by using average traffic 

occupancy and its standard deviation, measured by nearby upstream and 

downstream loop detectors. The results revealed potential hazardous traffic 

conditions, which are discussed in the paper. In general, high occupancy 

values increase accident likelihood but tend to lead to slight accidents, while 

PTWs are more likely to be involved in an accident when traffic occupancy 

is high. Transitions from particularly high to low occupancy also increase 

accident likelihood. 
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1. Introduction  

 

The effect of traffic characteristics on road safety has been investigated for many 

years. During the past decade, increased attention has been given to developing 

relationships between real-time traffic characteristics and road safety 

[1,2,3,4,5,6,7,8,9,10]. The great majority of studies utilize data from freeways, 
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whilst there are some studies which investigate accident likelihood in urban 

expressways [11].  

Although great effort has been made from researchers and practitioners, the impact 

of traffic states on traffic safety has not been deeply explored although a number 

of studies have suggested the division of traffic into regimes [12,13,14].  

More recent efforts have been found in literature. Abdel-Aty et al. [15] divided 

freeway traffic flow in high and low speed states and then examined severity and 

mechanism of multi-vehicle accident occurrence under these two different states, 

finding different results. Golob et al. [16,17] investigated the safety impact of 

traffic by dividing traffic flow into different traffic states (traffic regimes) by 

means of cluster analysis on the basis of traffic flow data collected from the nearest 

loop detector station from crash locations. The authors attempted to associate 

traffic regimes with accident type. 

A recent study by Xu et al. [18] demonstrates an effort by applying this 

methodology. The authors emphasized on the need to divide traffic in states and 

explore their effect on safety, due to the fact that different traffic states may have 

different influence on the risk of an accident. More specifically, the authors utilized 

traffic occupancy measured from nearby loop detectors and classified traffic flow 

into traffic states. Then, each traffic state was associated with a certain safety level. 

Moreover, it was found that the impact of traffic flow parameters on crash risk is 

not the same across different traffic flow state. 

Yeo et al. [19] proposed a methodology to investigate the relationship between 

traffic states and crash involvements on freeways. The authors defined the traffic 

states (free flow, back of queue, bottleneck front, congestion) according to their 

distinctive patterns and attempted to model the crash involvement rate for each 

traffic state. It was concluded that crash involvement rate in free flow state is 

approximately 5 times lower than in other traffic states. 

The literature review revealed that a major limitation is data availability, due to the 

fact that real-time data mainly regard freeways and not major urban arterials. 

Studies using real-time traffic data to investigate accident severity are relatively 

few [20,9,10], while only a few studies investigate both accident likelihood and 

severity [7].  Moreover, European countries are rarely considered, as only one 

study was found that explored safety of a motorway in Belgium [21]. Although 

there is a lot of studies investigating Powered-Two-Wheeler (PTW) accident risk 
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(22,23,24,25), to the best of our knowledge no studies linking PTW accident risk 

with real-time traffic data were found.  

Ensuring safety in major urban roads holds high priority. Consequently the primary 

objective of this study is to divide urban traffic flow into different regimes and to 

investigate their effect on accident likelihood and severity. Furthermore, PTW 

accident risk (involvement of a PTW in an accident) is also explored for the first 

time using this approach.  

The remainder of the paper is organized as follows. Firstly, the proposed 

methodology is demonstrated (finite mixture cluster analysis, discriminant 

analysis, Bayesian logistic regression). Then the data description and preparation 

are provided. Next, the application of the models is explained and the results are 

presented and discussed. The final section provide the conclusions. 

 

2. Methodology   

 

The statistical methods that applied to achieve the aims of this chapter, are 

described in the following subsections. Expectation Maximization clustering (EM) 

(or Finite Mixture) was used to classify traffic into different regimes. In addition, 

Bayesian logistic regression models were applied in order to correlate traffic 

regimes with traffic safety. 

 

2.1. Finite mixture cluster analysis 

Cluster analysis is a widely used method for grouping observations on the basis of 

similar data structure. In this study, finite mixture cluster analysis is used to 

identify homogenous groups of traffic conditions, which can be called “regimes”. 

A Gaussian finite mixture model-Based clustering (covariance parameterization 

and number of cluster selected via the Bayesian Information Criterion) was 

followed. The models were fitted by Expectation-Maximization algorithm. Fraley 

et al. [26] and Fraley and Raftery [27] provide a detailed description of Normal 

Mixture Modeling. All following equations appear in Fraley et al. [26]. 

A normal or Gaussian mixture model is assumed: 

∏ ∑ 𝜏𝑘𝜑𝑘(𝑥𝑖|𝜇𝑘 , 𝛴𝑘
𝐺
𝑘=1

𝑛
𝑖=1 ),     (Eq. 1) 

where x are the data, G is the number of components, 𝜏𝑘 is the probability that a 
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case belongs to the 𝑘𝑡ℎ component (𝜏𝑘 ≥ 0;  𝛴𝑘
−1𝜏𝑘 = 1) and 

𝜑𝑘(𝑥|𝜇𝑘 , 𝛴𝑘) = (2𝜋)−
𝑝

2|𝛴𝑘|−
1

2𝑒𝑥𝑝 {−
1

2
(𝑥𝑖 − 𝜇𝑘)𝑇𝛴𝑘

−1(𝑥𝑖 − 𝜇𝑘)}. (Eq. 2) 

The cluster is ellipsoidal, centered at the means 𝜇𝑘 . Their other geometrical 

features are determined by 𝛴𝑘 . Banfield and Raftery [28] suggested that each 

covariance matrix parameterized by eigenvalue decomposition takes the following 

form:  

𝛴𝑘 = 𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
𝑇 ,      (Eq. 3) 

where 𝜆𝑘  is a scalar, 𝐷𝑘  is the orthogonal matrix of eigenvectors, 𝐴𝑘  is a diagonal 

matrix where all the elements are proportional to 𝛴𝑘. It is suggested that 

characteristics of distributions such as orientation, volume and shape, are estimated 

by the data and can either vary between clusters or remain the same for all clusters 

[28,26,29]. 

According to Fraley et al. [26], the distribution for Expectation Maximization 

(EM) algorithm for multidimensional data, can be Spherical, Diagonal or 

Ellipsoidal. The Volumes and the Shapes of clusters can be equal or variable. The 

combination of these characteristics, defines each model (namely the covariance 

matrix 𝛴𝑘). For more information, the reader is encouraged to read the report by 

Fraley et al. [26]. 

The best model is determined according to the BIC (Bayesian Information 

Criterion) as initially proposed by Schwarz [29]. The BIC is basically the 

maximized log-likelihood but in order to avoid overfitting it includes a penalty 

term for the number of parameters in the model. The optimum number of clusters 

and the best model are defined by the value of BIC. A larger value of BIC indicates 

stronger evidence for the best model and number of clusters [27].   

 

2.2. Discriminant analysis 

In general, cluster analysis provides the optimum number of clusters as well as 

their centres. However, as correctly stated by Xu et al. [18], new observations 

cannot be directly assigned to the defined traffic regimes. In this case,  discriminant 

analysis is needed to be carried out. According to Johnson and Wichern [30], 

discriminant analysis allocates new cases to the pre-defined cluster groups. Fraley 

and Raftery [27] state that in discriminant analysis (or supervised classification) 
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known classifications (training set) are used to classify others (testing set).   

Several discriminant analysis methods exist. In this study, a Discriminant analysis 

through Eigenvalue Decomposition was applied. More specifically, the procedure 

of applying a Gaussian finite mixture modelling for discriminant analysis where 

each known group (class) is modelled by a single Gaussian term with the same 

covariance structure among classes, is named as Eigenvalue Decomposition 

Discriminant Analysis (EDDA) by Bensmail and Celeux [31]. When the model is 

a normal mixture fitted by model-based clustering, the procedure is known as 

mclustDA [27]. 

In the followed approach, a separate mean vector for each class is calculated, but 

with the same ellipsoidal covariance matrix, which basically is the same with linear 

discriminant analysis. 

 

2.3. Bayesian logistic regression 

When the dependent (response) variable is not continuous, the appropriate 

statistical models are discrete outcome models (e.g. binary, multinomial etc.). In 

this study, the response variables are binary, therefore binary logistic regression 

models are appropriate. 

The utility function U is:  

𝑈 = 𝛽0 + 𝛴𝛽𝑖𝑥𝑖       (Eq. 4) 

and the probability of an event is P is: 

𝑃 =
𝑒𝑈

𝑒𝑈+1
              (Eq. 5) 

where 𝛽0 is the constant term and 𝛽𝑖  is the coefficient for the explanatory variable 

𝑥𝑖 .  

The Bayesian logistic regression approach is different than the traditional 

frequentist approach, because prior distributions for each parameter are defined 

and then the data are used to update beliefs about parameters. Therefore, the 

posterior distributions and the 95% credible intervals are produced. Lunn et al. [32] 

suggest that it is preferable to use “vague” or “non-informative” priors if little is 

known about the coefficient values.  

It is noted that the likelihood function for Bayesian logistic regression is the same 

as in the frequentist inference. A rule of thumb is that an independent variable is 
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statistically significant if the 95% credible interval (2.5%-97.5%) of the beta 

coefficient does not include the value of zero [32]. The DIC as the Bayesian 

generalization of Akaike information criterion [33] is a measure of model fit and 

to compare models.  

 

3. Data preparation 

Accident and traffic data from the Kifisias and Mesogeion avenues were used to 

explore the effect of traffic regimes on accident likelihood and severity. Only urban 

roads were considered in contrary to previous studies which explored data from 

freeways [18]. Furthermore, Powered-Two-Wheelers (PTWs) were considered as 

well in order to model the likelihood of accidents including a PTW. 

The required accident data for Kifisias and Mesogeion avenues were collected 

from the Greek accident database SANTRA, which is provided by the Department 

of Transportation Planning and Engineering of the National Technical University 

of Athens. Only accidents with injuries were included (slight, severe, fatal). A 6-

year period was considered for the analyses of the present study, namely 2006-

2011.  

Traffic data were extracted from the Traffic Management Centre (TMC) of Athens, 

which operates on a daily basis from July 2004 covering various major arterials in 

Athens. TMC collects traffic occupancy (measured in %), traffic flow (measured 

in number of vehicles per 5min) and mean-time speed (measured in km/h).  

Each accident case was matched with traffic data from the closest upstream and 

downstream loop detectors. If an accident occurred on Wednesday 14 October 

2011 at 19:00, traffic data for Wednesday 14 October 2011 18:00-19:00 from the 

closest upstream and downstream loop detectors are considered. To explore 

accident likelihood, a sample of non-crash cases was selected as in previous similar 

studies in international literature. More specifically, 2 non-accident cases for the 

same location (same time, 1 week before and after the accident case) for each 

accident case were selected. For example, if an accident occurred on Wednesday 

14 October 2011 at 19:00, traffic data for Wednesday 7 October 2011 18:00-19:00 

and Wednesday 21 October 2011 18:00-19:00 were extracted. The purpose of this 

approach was to compare accident-free traffic regimes with traffic regimes just 

before occurrence of an accident. 
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Unrealistic traffic data were excluded from datasets and were not considered for 

further analysis (e.g., values of average occupancy that exceeded 100%, average 

speed higher than 150-160 km/h and so on), following the same approach as in 

Christoforou et al. [8] and Xu et al. [18]. This was observed in 4 cases only. 

A number of response variables were created, namely accident occurrence (1 for 

accident occurrence, 0 for non-accident occurrence), accident severity (1 for severe 

accidents, 0 for slight accidents) and PTW accident involvement (1 if a PTW was 

involved in an accident, 0 otherwise).  

Summing up, two final datasets were considered; the first involved 1434 total cases 

for accident likelihood (480 accident and 954 non-accident cases), and the second 

480 cases for accident severity (56 severe accidents, 424 slight accidents) and PTW 

accident involvement (298 accidents with PTWs, 182 accidents without PTWs).  

This study followed the approach of Xu et al. [18], who used the traffic occupancy 

of nearby upstream and downstream loop detectors to classify traffic regimes. This 

approach was extended by considering also the standard deviation of occupancy as 

well. 

 

4. Results 

To achieve the aims of the study, a finite mixture cluster analysis was carried out 

to identify traffic regimes, followed by a discriminant analysis to correctly assign 

cases to traffic regimes on the basis of average and standard deviation of 

occupancy extracted from nearby loop detectors. It is noted that this is one of the 

first times that this alternative clustering method is applied for this purpose. Lastly, 

the effects of traffic regimes on accident likelihood and severity by applying 

Bayesian logistic models were investigated. As mentioned earlier, two distinct 

datasets were created; the former involves all accident cases and a random 

selection of non-accident cases and was used for accident likelihood, while the 

latter involves all accident cases only and was exploited to model accident severity 

and PTW accident involvement. 

 

4.1. Finite mixture cluster analysis  

4.1.1. Accident and non-accident cases 

The average and standard deviation of occupancy were used to the first dataset of 
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the 1434 total cases (480 accident and 954 non-accident cases). The finite mixture 

cluster analysis results revealed nine clusters. This was the optimal number of 

clusters as determined by the BIC criterion. Similarly, the finite mixture models 

showed the optimal covariance matrix 𝛴𝑘 . More specifically, it has the form 𝛴𝑘 =

𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
𝑇  having an Ellipsoidal distribution, with a varying volume, shape and 

orientation between clusters (abbreviated VVV). The optimum number of clusters 

was determined to be five.  

Table 1, presents information about each cluster, as well as the mean value 

(clustering centre).  

Traffic Regimes Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6 Regime 7 Regime 8 Regime 9

Percentage of cases (%) 12.06% 21.41% 17.43% 11.30% 10.25% 1.88% 6.42% 9.48% 9.76%

Cases 173 307 250 162 147 27 92 136 140

Accident cases 54 103 66 47 66 16 34 40 54

Non-accident cases 119 204 184 115 81 11 58 96 86

Average Occupancy upstream (%) 10.81 4.35 10.52 23.52 18.89 30.82 28.59 12.87 29.74

Average Occupancy downstream (%) 14.15 5.45 7.95 11.24 14.89 6.07 34.78 27.9 24.53

St.deviation of Occupancy upstream (%) 1.32 0.67 1.45 3.75 7.86 11.81 10.41 1.57 5.67

St.deviation of Occupancy downstream (%) 2.82 0.76 1.028 1.18 3.99 1.44 9.55 6.69 4.15

Table 1: Clustering centres and information for different traffic regimes (accident 

and non-accident cases). 

 

The next two figures (Figure 1 and Figure 2) illustrate the scatterplot of occupancy 

values within the 9 clusters. 
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Figure 1: Scatter plots for average occupancy from upstream and downstream loop 

detectors for different clusters (regimes) regarding accident and non-accident 

cases. 

 

Figure 2: Scatter plots for standard deviation of occupancy from upstream and 

downstream loop detectors for different clusters (regimes) regarding accident and 

non-accident cases. 

 

The nine clusters are summarized as follows: 

Traffic regime 1: A relatively low percentage of total cases (12.06%) is assigned 

in cluster 1 (traffic regime 1). In traffic regime 1, there is a difference between 

upstream and downstream average occupancy (10.81% and 14.15% respectively). 

The standard deviation is low in both loop detectors, however a difference is 

observed.  

Traffic regime 2: Almost 1/5 of cases (21.41%) were classified in traffic regime 2. 

In this regime, especially low and homogenous values of occupancy measurements 

can be observed (both lower than 5.5%). The standard deviation of occupancies is 

also low. 

Traffic regime 3: 17.43% of total cases were assigned to cluster 3. The traffic 

characteristics of this traffic regime, are quite opposite to those of traffic regime 1. 

This regime presents a situation where there is a decrease in occupancy from 



10  

upstream to downstream. However the occupancy variation is quite low and 

similar. 

Traffic regime 4: 11.30% of total cases belong to cluster 4. As shown in table 6-2, 

the clustering centre for upstream loop detector is 23.52%, while the respective 

centre for downstream detector is 11.24%. Thus, there is a great difference in 

traffic occupancy between upstream and downstream loop detectors, implying a 

transition from congestion to much better traffic conditions. A difference in 

occupancy variation can also be observed, where the upstream detector has the 

higher. 

Traffic regime 5: The traffic conditions in this regime could be characterized as 

opposite to these of traffic regime 1. In this regime, both occupancies are relatively 

low, however, occupancy upstream is higher (almost 19%) than downstream 

(almost 15%). It is interesting, that the upstream occupancy faces a relatively high 

variation, having a high clustering centre for standard deviation (7.86%), while the 

standard deviation downstream is almost 4%. About 10% of cases belong to this 

traffic regime. 

Traffic regime 6: Despite consisting only of 1.88% of cases, this traffic regime 

might have some of the most interesting characteristics. There is a very high 

difference in occupancy between upstream (30.82%) and downstream (only 

6.07%) loop detectors, meaning the existence of a transition of very high 

congestion to a very high level of service. The clustering centre for upstream 

standard deviation of occupancy is also higher. 

Traffic regime 7: Traffic regime 7 consists of less than 7% of the total cases. 

Downstream and upstream occupancy values are considered high (34.78% and 

28.59%) indicating potential congestion. The clustering centres for standard 

deviations can be considered homogenous as well (9.55% for downstream and 

10.41% for upstream). 

Traffic regime 8: 9.48% of the sample is assigned to traffic regime 8. As shown in 

table 6-2, the clustering centres of average occupancy and standard deviation of 

occupancy upstream are 12.87% and 1.57% respectively, while those at 

downstream loop detector are 27.9% and 6.69% respectively. Therefore, a 

transition from low to high congestion can be observed. 

Traffic regime 9: Both occupancy measurements of upstream and downstream loop 
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detectors are high (29.74% and 24.53% respectively), indicating dense traffic 

conditions, however the clustering centres for the standard deviation of occupancy 

in this regime are significantly lower than those in traffic regime 7. 

 

4.1.1. Accident cases 

The average and standard deviation of occupancy were assigned to the dataset of 

the 480 accidents. The finite mixture cluster analysis results revealed five clusters. 

This was the optimal number of clusters as determined by the BIC criterion. 

Moreover, the finite mixture models showed the optimal covariance matrix 𝛴𝑘 . 

More specifically, it has the form 𝛴𝑘 = 𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
𝑇  having an Ellipsoidal 

distribution, with a varying volume, shape and orientation between clusters 

(abbreviated VVV, please see Fraley et al. [8]. The optimum number of clusters 

was determined to be five. Table 2 illustrates the distribution of cases in each 

cluster, as well as the mean value (clustering centre) for each cluster.  

Regimes Regime 1 Regime 2 Regime 3 Regime 4 Regime 5

Percentage of total cases (%) 25.83% 25.21% 12.92% 23.75% 12.29%

Cases 124 121 62 114 59

Slight accidents 115 93 55 105 56

Severe accidents 9 28 7 9 3

Accidents with a PTW 78 57 49 72 42

Accidents without a PTW 46 64 13 42 17

Average Occupancy upstream (%) 11.28 4.92 21.1 26.53 24.28

Average Occupancy downstream (%) 11.49 6.01 30.16 12.03 27.06

St.deviation of Occupancy upstream (%) 1.66 0.75 8.52 8.17 4.38

St.deviation of Occupancy downstream (%) 2.45 0.84 6.29 1.94 7.88  

Table 2: Clustering centres and information for different traffic regimes (accident 

cases). 

 

The next two figures (Figure 3 and Figure 4) illustrate the scatterplot of occupancy 

values within the 5 clusters. 
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Figure 3: Scatter plots for average occupancy from upstream and downstream loop 

detectors for different clusters (regimes) regarding accident cases. 

 

 

Figure 4: Scatter plots for standard deviation of occupancy from upstream and 
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downstream loop detectors for different clusters (regimes) regarding accident 

cases. 

 

The description of the five clusters (regimes) is as follows: 

Traffic regime 1: 26% of accident cases belong to traffic regime 1. Traffic regime 

1 is characterized by quite identical medium occupancy values in both upstream 

and downstream loop detectors. More specifically, the clustering centre for average 

occupancy upstream is 11.28%, while for downstream the respective mean is 

11.49%. The fluctuations in occupancy are similar as well. The level of service in 

that regime could be considered adequate.  

Traffic regime 2: 25.24% of accident cases belong to traffic regime 2. This regime 

is characterized by quite homogenous and low occupancy across the two loop 

detectors (4.29% and 6.01%). The standard deviations of occupancy upstream and 

downstream are homogenous and low as well.  

Traffic regime 3: 12.71% of cases are assigned to cluster 3. The main characteristic 

of this cluster, is the great difference observed in occupancy between upstream and 

downstream loop detectors. More specifically, the clustering centre for average 

occupancy downstream is 30.16%, while the respective centre upstream is 21.1%. 

These high values of occupancy indicate potential traffic congestion. Another 

interesting characteristic of this cluster is that the standard deviation of occupancy 

upstream is higher (8.52%) than downstream (6.29%). 

Traffic regime 4: This traffic regime consists of 23.72% of total accident cases. 

The main difference from traffic regime 4 is the totally different traffic conditions. 

More specifically, there is a transition from high occupancy upstream (26.53%) to 

low occupancy downstream (12.03%). The clustering centre for standard deviation 

of occupancy is significantly higher upstream (8.17%) than downstream (only 

1.94%). 

Traffic regime 5: Only 12.33% of accidents belong to this cluster. Cases in this 

cluster are characterized by homogenous and high occupancy across upstream and 

downstream loop detectors (24.28% and 27.06% respectively). The cluster’s centre 

for standard deviation of occupancy downstream is slightly higher than upstream.  

 

4.2. Discriminant analysis 
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The cluster analysis revealed meaningful groups of traffic regimes for the total 

cases (accident and non-accident cases) and also for accident cases. However, new 

observations cannot be directly assigned to previously pre-defined regimes. For 

that reason, discriminant analysis was carried out. Each dataset was randomly 

divided into a training and testing set. Each training set accounted for the 80% of 

each dataset, while each testing set accounted for the rest 20% of each dataset. The 

training sets were used for calibrating the models, while the testing sets were used 

to validate the models and test the accuracy for identifying traffic regimes and 

assigning new observations to the traffic regimes. 

 

4.2.1. Accident and non-accident cases 

The discriminant analysis performed on the total cases (accident and non-accident) 

and managed to classify 76.58% of total validation cases. The accuracy of 

predicted traffic regime memberships for the 20% testing set is illustrated on Table 

3. The lowest classification accuracy was observed for traffic regime 3 (60.71%), 

while some substantially higher accuracies were observed, for example for traffic 

regimes 2 (91.04%), 6 (100%) and 8 (92.31%). 

Regime 1 (%) Regime 2 (%) Regime 3 (%) Regime 4 (%) Regime 5 (%) Regime 6 (%) Regime 7 (%) Regime 8 (%) Regime 9 (%)

Regime 1 69.23% 0.00% 30.77% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Regime 2 0.00% 91.04% 8.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Regime 3 1.79% 37.50% 60.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Regime 4 0.00% 0.00% 20.59% 76.47% 2.94% 0.00% 0.00% 0.00% 0.00%

Regime 5 7.14% 0.00% 10.71% 0.00% 67.86% 7.14% 0.00% 7.14% 0.00%

Regime 6 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

Regime 7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 76.47% 11.76% 11.76%

Regime 8 7.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 92.31% 0.00%

Regime 9 0.00% 0.00% 0.00% 7.14% 10.71% 0.00% 3.57% 7.14% 71.43%

Traffic Regimes
Predicted group membership using discriminant analysis

Table 3: Validation results of discriminant analysis (accident and non-accident 

cases). 

 

4.2.2. Accident cases 

The accuracy of predicted traffic regime memberships for the 20% testing set is 

presented on Table 4. The 80.21% of validation cases can be correctly classified. 

The lowest classification accuracy was observed for traffic regime 5 (50%), 

however all other traffic regimes have significantly higher classification 

accuracies. Classification accuracy for traffic regimes 1, 3 and 4 was substantially 
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high reaching 82.14%, 100% and 89.4% respectively. 

Regime 1 (%) Regime 2 (%) Regime 3 (%) Regime 4 (%) Regime 5 (%)

Regime 1 82.14% 17.86% 0.00% 0.00% 0.00%

Regime 2 25.00% 75.00% 0.00% 0.00% 0.00%

Regime 3 0.00% 0.00% 100.00% 0.00% 0.00%

Regime 4 10.53% 0.00% 0.00% 89.47% 0.00%

Regime 5 25.00% 0.00% 16.67% 8.33% 50.00%

Traffic Regimes
Predicted group membership using discriminant analysis

Table 4: Validation results of discriminant analysis (accident cases). 

 

4.3. Bayesian logistic regression models 

4.3.1. Effect of traffic regimes on accident likelihood 

Using finite mixture cluster analysis, traffic data in both accident and non-accident 

cases were separated into 9 different traffic regimes on the basis of average and 

standard deviation of occupancy upstream and downstream of the accident 

location. A Bayesian logistic regression model was then developed to examine the 

relationship between traffic regimes and accident likelihood. Other variables such 

as traffic flow and speed were not included in the model because of the potential 

correlation with the traffic regimes, following the approach of previous studies 

[28]. 

The priors for the constant term and for the independent variables were all “vague” 

(non-informative), assuming to follow a normal distribution with zero mean and 

very low precision. The prior for the constant term was 

𝑎𝑙𝑝ℎ𝑎~𝑑𝑛𝑜𝑟𝑚(0, 0.0001). All categories of the independent variable “traffic 

regime”, were following the exact same non-informative normal distribution, e.g. 

for traffic regime 2, 𝑏𝑒𝑡𝑎1~𝑑𝑛𝑜𝑟𝑚(0, 0.0001). The first 5,000 samples were 

discarded as adaptation and burn-in. Three chains and 20,000 more samples were 

used to ensure convergence. In addition, monitoring of the MC errors was 

performed as previously. 

Table 5 summarizes the findings of the Bayesian logistic model for accident 

probability and provides the estimates of beta coefficients, the standard deviation 

and the 95% credible interval CI (2.5%-97.5%) and  the odds ratios (OR). Only 

statistical significant parameters are illustrated on the table. The DIC of the model 

was 1821.37. 
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Mean St.Deviation Odds Ratio 2.50% 97.50%

Constant term -0.7932 0.1643 0.452 -1.121 -0.4779

Traffic regime 1 (ref.) - - - - -

Traffic regime 5 0.5862 0.2334 1.797 0.1323 1.047

Traffic regime 6 1.183 0.4332 3.264 0.3482 2.047

DIC 1821.37

Variables
Parameters Estimates Credible Intervals

 

Table 5: Significant parameters estimates, credible intervals and odds ratios for 

accident probability model. 

 

Traffic regime 1 was the reference category for the dummy variable “traffic 

regime”. The mean value of coefficient on traffic regime 5, provides a credibly 

nonzero predictiveness for accident probability, because the 95% credible interval 

of the beta coefficient does not contain zero (beta=0.5862, CI=0.1323-1.047). 

Furthermore, traffic regime 6 was also found to be significant (beta=1.183, 

CI=(0.3482-2.047)). All other traffic regimes were not considered significant, 

because the value zero was included in the credible interval for the posterior 

distributions. The positive signs of the mean values of the parameters of traffic 

regimes 5 and 6, indicate that these traffic regimes are associated with higher 

accident risk than traffic regime 1, and thus being considered being hazardous 

traffic regimes.  

The odds ratio for traffic regime 5 is 1.797, meaning that the odds of accident 

occurrence for traffic regime 5 is almost twice than for traffic regime 1. Traffic 

conditions in this regime present a situation quite opposite of that of traffic regime 

1. In traffic regime 5, the occupancy is reduced from 18.89% upstream to 14.89% 

downstream, while in traffic regime 1 a small increase is observed (from 10.81% 

to 14.15%) and the values of occupancy are relatively lower. However, traffic 

regime 6 was found to be associated with even higher accident risk (OR=3.264). 

These results show that the transition from very high occupancy (30.82%) to very 

low occupancy (6.07%), is associated with high accident likelihood. It is also worth 

noticing, that in this regime, a significant change in standard deviation of 

occupancy from upstream (11.81%) to downstream (1.44%) is observed, 

indicating accident risk. 

 

4.3.2. Effect of traffic regimes on accident severity 
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A Bayesian logistic regression model was developed to examine the relationship 

between traffic regimes and accident severity.  

The priors for the constant term and for the independent variables were “vague” 

(non-informative), assuming to follow a normal distribution with zero mean and 

very low precision. The prior for the constant was 𝑎𝑙𝑝ℎ𝑎~𝑑𝑛𝑜𝑟𝑚(0, 0.0001). All 

categories of the independent variable “traffic regime”, were assumed to follow 

the same non-informative normal distribution, e.g. for traffic regime 2, 

𝑏𝑒𝑡𝑎1~𝑑𝑛𝑜𝑟𝑚(0, 0.0001). The first 1,000 samples were discarded as adaptation 

and burn-in. Three chains and 5,000 more samples were used to ensure 

convergence. Aside from visual inspection of the chains, the Monte Carlo (MC) 

errors (i.e. the Monte Carlo standard error of the mean values) were also monitored. 

According to Spiegelhalter et al. [33], MC errors less than 0.05 indicate that 

convergence may have been achieved. In the model all MC errors were very low 

(less than 0.005) indicating convergence. 

Table 6 summarizes the findings of the Bayesian logistic regression model for 

accident severity, and provides the estimates of beta coefficients, the standard 

deviation and the 95% credible interval (2.5%-97.5%) and the odds ratios (OR). 

Only statistical significant parameters are illustrated on the table. The value of the 

DIC of the model was 331. 

Mean St.Deviation Odds Ratio 2.50% 97.50%

Constant term -2.589 0.357 0.075 -3.353 -1.936

Traffic regime 1 (ref.) - - - - -

Traffic regime 2 1.377 0.419 3.963 0.5839 2.242

DIC 331

Variables
Parameters Estimates Credible Intervals

 

Table 6: Significant parameters estimates, credible intervals and odds ratios for 

accident severity model. 

 

Traffic regime 1 was used as a reference category and only traffic regime 2 was 

found to be significant, because the 95% credible interval of the beta coefficient 

does not contain zero (0.5839-2.242). Other traffic regimes do not provide a 

credibly nonzero predictiveness for accident severity, because zero was well 

among the 95% credible interval.. The positive sign of the mean value of the 

parameter of traffic regime 2, means that traffic regime 2 is associated with higher 
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accident severity than traffic regime 1. More specifically, the odds ratio of 3.963 

indicates that the odds of an accident being severe or fatal in traffic regime 2 is 

almost 4 times higher than for traffic regime 1. Both traffic conditions in upstream 

and downstream loop detectors have a similar and low variation in occupancy. 

Since traffic regime 1 indicates more congested traffic conditions, less congestion 

is associated with higher severity levels. This finding might be considered 

consistent with findings of similar studies in the past [34,35,8], verifying the 

assumption that under less congestion, drivers tend to drive at higher speeds and 

therefore more severe accidents may occur.  

 

4.3.3. Effect of traffic regimes on PTW accident involvement 

The relationship between traffic regimes and likelihood of PTW accident 

involvement was examined through the application of binary logistic models.  

The priors for the constant term and for the independent variables were “vague” 

(non-informative), assuming to follow a normal distribution with zero mean and 

very low precision. The prior for the constant term was 

𝑎𝑙𝑝ℎ𝑎~𝑑𝑛𝑜𝑟𝑚(0, 0.0001). All categories of the independent variable “traffic 

regime”, were following the exact same non-informative normal distribution, e.g. 

for traffic regime 2, 𝑏𝑒𝑡𝑎1~𝑑𝑛𝑜𝑟𝑚(0, 0.0001). The first 1,000 samples were 

discarded as adaptation and burn-in. Three chains and 20,000 more samples were 

used to ensure convergence. 

Table 7 summarizes the findings of the Bayesian logit model for PTW accident 

probability, and provides the posterior mean, the standard deviation and the 95% 

credible interval CI (2.5%-97.5%) and the odds ratios (OR). Only statistical 

significant parameters are illustrated on the table. The DIC of the model was 

625.51. 

Mean St.Deviation Odds Ratio 2.50% 97.50%

Constant term 0.53 0.1864 1.699 0.1679 0.902

Traffic regime 1 (ref.) - - - - -

Traffic regime 2 -0.6467 0.2613 0.524 -1.165 -0.138

Traffic regime 3 0.8263 0.3671 2.285 0.1274 1.564

DIC 625.51

Variables
Parameters Estimates Credible Intervals

 

Table 7: Significant parameters estimates, credible intervals and odds ratios for 
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PTW accident involvement model. 

 

Traffic regime 1 was the reference category. Traffic regimes 2 (beta=-0.6467, 

CI=(-1.165-0.138)) and 3 (beta =0.8263, CI=(0.1274-1.564)) were found to be 

significantly associated with PTW accident probability. However, traffic regime 2 

had a negative posterior mean value, meaning that at this traffic regime (lower 

occupancy) the risk of PTW accident involvement is lower. The positive sign of 

the posterior mean for traffic regime 3 shows that a consistent very high occupancy 

in upstream (21.1%) and downstream (30.16%) loop detectors, and high variation 

in occupancy upstream (8.52%) is associated with increased probability of 

accidents involving a PTW. All other traffic regimes were not statistically 

significant. 

 

5. Conclusions 

This study investigated the influence of traffic regimes on safety of two major 

urban arterials in Athens. For that reason, real-time traffic data from nearby loop 

detectors were exploited. This attempt might be considered as one of the first 

implementations of such approach for urban arterials. More specifically, finite 

mixture cluster analysis was performed on the basis of average and standard 

deviation of occupancy measured at the two nearby loop detectors in order to 

classify urban traffic conditions into meaningful groups (regimes). This clustering 

method has not been widely used in studies with real-time data and is considered 

promising. It also has the advantage of defining the optimum number of clusters, 

in contrast to the k-means method which is a very popular method. The results 

revealed 9 clusters for accident and non-accident cases (used for accident 

likelihood) and 5 clusters for accident cases (used for accident severity and 

Powered-Two-Wheeler likelihood of accident involvement). Then, discriminant 

analysis was carried out so as to identify and predict cluster membership, on the 

basis of a validation dataset which was used as a test set (20%). Lastly, Bayesian 

logistic regression models were applied to unveil the influence of different traffic 

conditions (regimes) on accident likelihood and accident severity, having an 

emphasis on PTWs.  

The findings of the study demonstrate that this approach is promising when applied 
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on urban networks. Concerning the likelihood of accident occurrence, higher 

occupancy was found to lead to high accident risk. Consequently, it can be 

concluded that higher occupancy and potentially congested traffic conditions 

contribute to higher accident occurrence but also may result to less severe 

accidents. When analysing accident severity, traffic regime 2 was found to have 

the greatest influence, correlating high accident severity with lower occupancy 

levels and therefore less congestion.  

The traffic condition that was identified as the most hazardous for accident 

occurrence was the traffic regime when the transition from very high to very low 

occupancy took place. This finding is consistent with the results of Hossain and 

Muromachi [11], who argue that a fast moving uncongested downstream when 

being followed by slow moving and congested upstream may be more hazardous. 

One possible reason for this finding may be the fact that drivers may compensate 

for travel time loss and consequently accelerate [11].  

It was also found that PTWs are more likely to be involved in accidents when the 

occupancy is very high (potential congestion). On the contrary, in low occupancy 

(traffic regime 2) PTWs are less likely to be involved in accidents, indicating that 

congestion is correlated with increased probability of PTW involvement in 

accidents. Consequently, traffic regime 2 is associated with higher accident 

severity but with lower PTW accident probability. 

In previous similar studies in international literature, traffic flow was classified in 

groups and in few studies the influence of these groups on freeway safety was 

investigated. This study aimed to add in the current knowledge by using real-time 

traffic data collected from nearby loop detectors in major urban arterials. 

Furthermore, alternative modeling methods such as the finite mixture cluster 

analysis were applied. Therefore, the research demonstrated in the paper can be 

considered a supplement to previous studies which could assist transportation 

professionals better understand the impact of traffic on road safety. The results of 

this study can be applied by transportation professionals to reduce crash risk and 

severity on urban areas by developing proactive safety management strategies. If 

the crash prone traffic regimes are identified then considerations should be given 

to improve road safety. For example, the results showed that the transition from 

very high occupancy to very low occupancy (traffic regime 6) is associated with 

high accident risk. Therefore, specific actions could be applied (e.g. variable 



21  

messages signs) to warn drivers and increase road safety levels.  

The authors recognize the limitations of the study. When modeling accident 

likelihood, it would be desirable to have the whole population of non-accident 

cases. However, this was not feasible as it would be extremely time consuming to 

collect and process such huge dataset. However, it is noted the approach of this 

study was widely followed by relevant past literature in the field and was proved 

to be efficient. 

Future research should focus on finding ways to improve the modeling methods of 

accident likelihood. In addition, more microscopic traffic data from urban and rural 

roads could be utilized.  
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