
 Time series and support vector machines to predict Powered-Two-Wheeler 

accident involvement and accident type 

 

Theofilatos, A., Yannis, G., Antoniou, C., Chaziris, A., Serbis, D. 

 

 

Abstract 

 

Predicting and explaining road accident probability by exploiting high resolution traffic 

data has been a continuously researched topic in the last years. However, there is no 

specific focus yet on Powered-Two-Wheelers. Furthermore, urban arterials have not 

received adequate attention so far, since the vast majority of relevant literature concerns 

freeways. This study aims to contribute to the current knowledge by investigating the 

possibility of utilizing support vector machine (SVM) models for predicting Powered-

Two-Wheeler (PTW) accident involvement and PTW accident type on urban arterials. 

The proposed methodology is applied on the basis of both original and transformed 

time series of real-time traffic data collected from urban arterials in Athens, Greece for 

the years 2006-2011. Findings suggest that that PTW accident involvement and PTW 

accident type can be adequately defined by the prevailing traffic conditions. When 

predicting PTW accident involvement, the original traffic time series performed better 

than the transformed time series. However, in a few cases, the difference between 

original time series and transformed time series was negligible. On the other hand, when 

PTW accident type is investigated, neither of the two approaches clearly outperformed 

the other. The results of the study indicate that the combination of SVM models and 

time-series data can be used for road safety purposes especially by utilizing real-time 

traffic data. 
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1. Introduction and background 

 

Road accidents are a serious burden to society. Annually, there are 1.25 million 

fatalities, while half of fatalities on the world’s roads are “vulnerable road users”: 

pedestrians, cyclists and motorcyclists (WHO, 2015). Therefore, road safety is a major 

concern for societies, as accidents impose serious problems to societies in terms of 

human costs, economic costs, property damage costs and medical costs.  

 

A significant increase in motorcycling activities is observed in many countries 

worldwide during the last years. Over the last twenty years, the number of mopeds and 

motorcycles together referred to as Powered-two-wheelers (PTWs) in Europe has 

almost doubled (Yannis et al., 2010). This shift in mode choice is likely to be attributed 

to economic, mobility and flexibility benefits offered by PTWs. Furthermore, it should 

be considered that PTW fatalities accounted for 18% of the total number of road 

accident fatalities in 2013 in the European Union-23 (EU-23) countries, (ERSO, 2015). 



The majority of moped fatalities occurred in urban areas whereas the majority of 

motorcycle fatalities occurred in rural areas (ERSO, 2015). Per vehicle mile travelled, 

motorcycle riders have a 34-fold higher risk of death in an accident than the other motor 

vehicles users (Lin and Kraus, 2009). 

 

Huge efforts have been made by researchers to explain PTW accident risk. Numerous 

PTW accident-related factors have been identified in international literature. For 

example, the road environment such as road type, road geometry and roadside 

installations have been found to have an influence on PTW accident occurrence 

(Harnen et al., 2003; Wanvik, 2009). Haque et al. (2009) found that several geometrical 

and environmental factors were linked with non-at fault crashes of motorcyclists. 

Schneider IV et al. (2012) stated that younger motorcyclists, riders under the influence 

of alcohol (DUI), riders without insurance or not wearing helmet are more likely to be 

at-fault in a crash. For a more complete list of PTW relevant risk factors, the reader is 

encouraged to refer to Vlahogianni et al. (2012) and Theofilatos and Yannis (2015). 

 

The impact of traffic characteristics on PTW safety has not been investigated in a large 

extent. Various studies have addressed the effect of traffic on vehicle accidents but the 

literature regarding PTW accidents is limited (Abdul Manan and Várhelyi, 2012; 

Sharma et al., 2013). The investigation of PTW safety in relation to traffic 

characteristics on a real-time basis is considered highly important due to the 

vulnerability of PTWs, but also due to the conflicting interactions with other vehicles 

on the road, which complicates the understanding PTW drivers’ behaviour 

(Barmpounakis et al., forthcoming). Recently, there is a recent trend in predicting and 

explaining road accident occurrence with real-time traffic data (Abdel-Aty and Pande, 

2005; Abdel-Aty et al., 2007; Ahmed and Abdel-Aty, 2012; Yu and Abdel-Aty, 2013a). 

However, to the best of our knowledge, there are no relevant studies dedicated to PTWs. 

 

Accident type (referred also as collision type or crash type) is identified as another 

important parameter with a significant role in road safety, as underlined by a number 

of studies (Kim et al., 2006; Pande and Abdel-Aty, 2006). However, various types of 

collisions are generally not distinguished in most studies, possibly because of the 

difficulties in collecting the necessary data (Christoforou et al., 2011). Christoforou et 

al. (2011), also stressed that in most of the studies that considered different accident 

types, a distinction between single- and multi-vehicle accidents is made. The majority 

of these studies utilize aggregated traffic data (Ceder and Livneh, 1982; Zhou and 

Sisiopiku, 1997). However, some studies exploit real-time data (Abdel-Aty and Pande, 

2005; Lee et al., 2006; Pande and Abdel-Aty, 2006). For example, Abdel-Aty and 

Pande and (2005), exploited real-time traffic from the I-4 corridor in Orlando and 

attempted to investigate the factors determining the accident type. The authors found 

that variation in speed 10 to 15 minutes prior to an accident is among the most 

significant factors. Golob et al. (2008), stated that congestion had a considerable 

influence on vehicle involvement. For example, the authors mention that congestion in 

the left and interior lanes distinguishes single- from multi-vehicle accidents. 

 



Summing up, Powered-Two-Wheeler safety has not received significant attention when 

real-time traffic data are used. Moreover, there are a few more gaps of knowledge in 

terms of data. First, the vast majority of relevant international literature exploited real-

time traffic data from freeways and not from urban roads. Secondly, time series of real-

time traffic data were not extensively utilized in investigating road accidents so far.  

 

In terms of methodology, traffic time series could be exploited by means of predictive 

models such as k-NN, Support Vector Machines (SVMs) and so on (Zhao et al., 2012). 

Support Vector Machines in specific, is a relatively new statistical method used for 

predictive purposes in road safety (Li et al. 2008; Yu and Abdel-Aty, 2013b). Moreover, 

as Li et al. (2008) suggest, the assessment of SVM models’ performance when only 

traffic flow is considered, should be implemented 

 

Consequently, the research presented in this paper aims to add to the current knowledge 

by investigating the possibility of utilizing support vector machine (SVM) models for 

predicting Powered-Two-Wheeler (PTW) accident involvement and PTW accident 

type on urban arterials, by exploiting real-time traffic data. It is noted that the term 

“predicting PTW accident involvement”, refers to the prediction of whether a PTW is 

involved or not in an accident that has occurred. 

 

2. Methodology 

 

In order to predict PTW involvement and PTW accident type a combined 

methodological approach was followed. More specifically, a time series classification 

was performed by applying SVMs (Support Vector Machines), which is a very 

powerful and advanced machine learning technique. Firstly, the SVMs were applied by 

utilizing the original time series data and secondly by utilizing the DWT (Discrete 

Wavelet Transform) transformed data. Lastly, the results are compared. 

 

2.1. Time series approach 

 

2.1.1. Original time series data 

 

Time series classification is used when it is desired to build a classification model based 

on labelled time series and then use the model to predict the label of unlabelled time 

series. Classification of unlabelled time series to existing classes is a further traditional 

data mining task. By “labelled time series”, it means that a training dataset with 

correctly classified observation is used, and then the built models are used to predict 

the labels of a test dataset (Kleist, 2015). 

 

It is possible to extract new features from time series in order to potentially improve 

the performance of classification models. There are various such techniques for feature 

extraction such as the Singular Value Decomposition (SVD), Discrete Fourier 

Transform (DFT), Discrete Wavelet Transform (DWT), Piecewise Aggregate 

Approximation (PAA), Perpetually Important Points (PIP), Piecewise Linear 

Representation and Symbolic Representation (Zhao, 2012).  



 

In this approach, the original time series data are used, namely data which have been 

sampled at equispaced points in time, without applying any techniques for feature 

extraction. 

 

2.1.2. Wavelet transform 

 

The Wavelet transform provides a multi-resolution representation using wavelets. In 

this chapter, a Discrete Wavelet Transform (DWT) is used to extract features from time 

series and then build a classification model (Burrus et al., 1998). The time series and 

its transform can be considered to be two representations of the same mathematical 

entity. 

 

The very name wavelet originates from the requirement that they should integrate to 

zero, “waving" above and below the x-axis (Vidakovic and Mueller, 1991). A DWT is 

any wavelet transform for which the wavelets are discretely sampled and is an 

orthornormal transform. As with other wavelet transforms, a key advantage it has over 

Fourier transforms is temporal resolution: it captures both frequency and location 

information (location in time).  

 

McLeod et al., (2012) provide a very good description of Discrete Wavelet Transform. 

A time series of dyadic length is considered 𝑧𝑡,t= 1,......n, where n = 2J. The discrete 

wavelet transformation (DWT) decomposes the time series into J wavelet coefficients 

vectors, 𝑊𝑖,𝑗= 0,......,J-1 each of length 𝑛𝑗= 2J-j, j= 1,......,J plus a scaling coefficient 𝑉𝐽. 

Each wavelet coefficient is constructed as a difference of two weighted averages each 

of length λj= 2j-1. Similarly to Discrete Fourier Transformation, the DWT provides an 

orthonormal decomposition, W= WZ, where W΄= (W΄1,…,W΄J-1, V΄J-1), Z= 

(𝑧1,......,𝑧𝑛)΄. 

 

There are two functions that play a primary role in wavelet analysis, the scaling function 

(father wavelet) and the wavelet (mother wavelet). The simplest wavelet analysis is 

based on Haar scaling function, (Haar Wavelet Transform), (Struzik and Siebes, 1999). 

The Haar wavelet is a sequence of rescaled "square-shaped" functions which together 

form a wavelet family or basis. The Haar sequence is recognised as the first known 

wavelet basis and it was proposed in 1909 by Alfréd Haar (Haar, 1910).  

  

The Haar scaling function φ(x) is defined as: 

 

φ(𝑥) = {
1, 0 ≤ 𝑥 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (Eq. 1) 

 

The Haar Wavelet’s mother function is then defined as ψ(x)= φ(2x)-φ(2x-1) 
 

𝜓(𝑥) = {
1, 0 ≤ 𝑥 < 1 2⁄

−1, 1 2 ≤⁄ 𝑥 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

       (Eq. 2) 

 



Figure 1 that follows, illustrates an example of a graphical representation of a Haar 

Wavelet Transform, which is the simplest DWT (Zhao, 2012). Figure 2 shows another 

graphical example of a Haar Wavelet extracted from Vidakovic and Mueller, (1991). 

 

 
 

Figure 1: A graphical representation of a simple Haar Wavelet Transform. Source: 

Zhao, 2012. 

 

 
Figure 2: A Haar Wavelet. Vidakovic and Mueller, 1991. 

 

2.2 Support vector machines 

 

Traditional statistical modelling has been widely used for transportation data analysis. 

However, such approach contains some limitations, for example modelling 

assumptions that may not always be true. Non-parametric and artificial intelligent 

methods could then be applied to overcome such limitations.  

 

Support Vector Machines (SVMs), constitute a relatively new modelling technique, 

which is useful for classification problems (Keckman, 2005). In transportation science, 

the studies having used SVMs are relatively rare (Li et al., 2008; Li et al., 2012), 

especially in real-time crash risk evaluation (Yu and Abdel-Aty, 2013b and 2014). 

 



SVMs have originated from statistical learning theory (Vapnik, 1998), and have been 

developed by Cortes and Vapnik (1995) mainly for binary classification. Basically, 

when building a SVM model, the aim is the optimal separating hyperplane between two 

classes by maximizing the margin between the classes’ closest points (Meyer, 2001). 

Therefore, different classes are separated by the hyperplane: 

  

〈𝑤, 𝛷(𝑥)〉 + 𝑏 = 0         (Eq. 3)  

 

which corresponds to the decision function  

 

𝑓(𝑥) =  𝑠𝑖𝑔𝑛(〈𝛷(𝑥𝑖 ), 𝑤〉 + 𝑏)      (Eq. 4) 

 

The points lying on the boundaries are the support vectors, while the middle of the 

margin is the optimum separating hyperplane. Figure 3 provides a graphical illustration 

of a linear separable example of SVMs (Meyer, 2001). 

 

 
Figure 3: Graphical illustration of SVM classification (linear separable example). 

Source: Meyer, 2001. 

 

In addition, SVMs can be enhanced to tackle nonlinear classification problems, 

regression and outlier detection. The major limitation of SVMs is that the models 

cannot be directly used to identify the relationships between the dependent and the 

independent variables. Therefore, SVMs can be considered as a “black box” technique. 

The reader is encouraged to refer to Karatzoglou et al. (2006), where a very detailed 

description of SVM model formulation is provided for R language. 

 

From all the available kernel-based algorithms (kernels) (e.g. linear, polynomial, 

Gaussian Radial-basis function and sigmoid), the Gaussian Radial-basis function kernel 

was considered in this paper (Karatzoglou et al., 2005):  

 

Radial-basis function kernel (RBF):  

 

K(𝑥𝑖 , 𝑥𝑗)= exp(-γ)||𝑥𝑖, 𝑥𝑗||2), γ>0      (Eq. 5) 



 

where, γ is the kernel parameter.  

 

Moreover, with the Gaussian Radial-basis kernel function, the SVM model has two 

parameters (C, γ) which need to be determined. The cost parameter C controls the 

penalty for misclassifying a training point and consequently the complexity of the 

prediction function (Karatzoglou et al., 2006). A high cost value C, will result in a 

complex prediction function in order to misclassify as few training cases as possible. 

On the other hand, a low cost parameter C, results in simpler prediction functions. Thus, 

this type of SVM model is called C-SVM (Karatzoglou et al., 2006).                  

 

Karatzoglou et al. (2006), provide the primal form of the bound constraint C-SVM 

formulation: 

 

minimize   t(w, ξ)= (
1

2
)||w||2+(

1

2
)β2+(

C

m
) ∑ 𝜉𝑚

𝑖=1
𝑖
    (Eq. 6)  

 

subject to  yi(〈𝛷(𝑥𝑖 ), 𝑤〉 + 𝑏)≥ 1-𝜉𝑖       

 

where,  i= 1,……m     

 

and 𝜉𝑖 ≥ 0, where i= 1,……m. 

 

The dual form of the bound constraint C-SVM formulation (Karatzoglou et al., 2006) 

is: 

maximize  W(α)= ∑ 𝑎𝑖
𝑚
𝑖=1 -

1

2
∑ 𝑎𝑖𝑎𝑗(𝑦𝑖𝑦𝑗 + 𝑘(𝑥𝑖, 𝑥𝑗))𝑚

𝑖,𝑗=1    (Eq. 7) 

 

subject to  0≤ai≤
𝐶

𝑚
,  where i= 1,……m       

 

and   ∑ 𝑎𝑖𝑦𝑖
𝑚
𝑖=1 = 0.        

 

  

3. Data preparation 

 

The urban roads that were chosen were the Kifisias and Mesogeion avenues in Athens, 

Greece, mainly due to the fact that they had very similar characteristics. The required 

accident data were collected from the Greek accident database SANTRA, which is 

provided by the Department of Transportation Planning and Engineering of the 

National Technical University of Athens. A 6-year period was considered for the 

analyses of the present thesis, namely 2006-2011. 

 

Traffic data were extracted from the Traffic Management Centre (TMC) of Athens, 

which operates on a daily basis from July 2004 covering various major arterials in the 

city of Athens. In order to apply the SVM models, a number of different datasets had 

to be prepared. Having known the time and location for each accident, the 3-hour time 

series of traffic flow, occupancy and speed (in 5-minutes intervals ending at the time of 



the accident) from the closest upstream as well as the closest downstream loop detector 

were utilized. For example, if an accident occurred in Kifisias Avenue on Wednesday 

12 August 2009 at 13:00, then traffic data from Wednesday 12 August 2009 10:00 to 

13:00 are extracted from the closest upstream and downstream loop detector measured 

in 5-min intervals. There were rare cases when loop detectors suffered from problems 

that might have resulted in unreasonable values for speed, volume, and occupancy. 

Such unrealistic values (e.g. occupancy>100%, speed>200 km/h or speed>0 along with 

flow=0) were discarded from the database. Accidents with traffic data unavailability 

were also discarded. 

 

Thus, each dataset contains one of the following time series: traffic flow upstream, 

traffic flow downstream, speed upstream, speed downstream, occupancy upstream, 

occupancy downstream. Then, by following the Discrete Wavelet Transform (DWT) 

procedure described earlier all datasets are then transformed. Consequently, for each 

dataset containing the original time series data a duplicate dataset is created with the 

transformed time series data.  

 

Then for each dataset, the SVM models were applied in order to predict: 

  

 a) PTW accident involvement and 

 b) PTW accident type.  

 

In order to enhance the classification performance of SVMs, PTW accident type was 

classified as a binary outcome, namely single and multi-vehicle accidents, transforming 

the classification problem to a two-category classification. This approach was followed, 

because literature indicates that typical multi-classification problems have been very 

commonly observed when methods such as SVMs, Artificial Neural Networks (ANN) 

or classification trees are applied (Li et al., 2012; Delen et al., 2006). For example, Li 

et al. (2012), developed SVMs to model injury severity and the SVM model ignored 

severity categories with small proportions (namely fatal and incapacitating injuries) to 

improve the overall classification accuracy.  

 

The final datasets consist of 527 accidents, where the PTWs were involved in 326 of 

them (61.9%). Regarding PTW accident type, PTWs were involved in 107 single-

vehicle accidents (32.8%) and 219 multi-vehicle accidents (67.1%). 

 

 

4. Results 

 

The DWT procedure was conducted with the use of the package wavelets (Aldrich, 

2010) in R software (R, 2015), and all SVM models were developed through the 

package e1071 (Dimitriadou et al., 2011) in R software. It is noted that when building 

a SVM model, a training and a testing set have to be defined. For each dependent 

variable; PTW accident involvement and PTW accident type, respectively.  

 



When building a SVM model, a training and a testing dataset have to be defined. The 

models are calibrated on the training set and then are used for prediction of the 

dependent variable on the testing set. Two different training and testing sets have to be 

prepared in order to further compare the results and to reduce the bias that arises when 

the accident database is randomly separated as Li et al. (2008) propose. In this paper, a 

10-fold cross validation technique was applied on each dataset, in order to have a 

measure of the overall classification performance of the SVM models. Generally, in k-

fold cross-validation, the original sample is randomly divided into k equal sized 

subsamples. Of the k subsamples, a single subsample is used as the validation dataset 

for testing the prediction performance of the model while the remaining k−1 

subsamples are used as training data to calibrate the model. The cross-validation 

process is then repeated k times (the folds), with each of the k subsamples used exactly 

once as the validation data (Kohavi, 1995). Consequently, 10 subsamples were created. 

The total accuracy of SVM models was calculated with this simple equation: 

 

Accuracy = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
    (Eq. 8) 

 

Moreover, different parameters of C and γ were tested each time in order to improve 

the performance of SVMs. The need for an investigation of SVMs performance by 

applying different values of C and γ was emphasized by Yu and Abdel-Aty (2013b), 

being another step further made by this paper. 

   

4.1 PTW accident involvement prediction 

 

In general, the SVM models of this paper showed relatively good classification 

accuracy compared to other similar studies (Li et al., 2012). However, it is noted that 

this is the first attempt to incorporate real-time traffic time series in SVMs. The 

development of the models showed that by modifying the two parameters, C and γ 

accordingly, the classification accuracy can be substantially influenced. A detailed 

presentation of SVM models’ performance follows. Table 1 illustrates the total 

classification accuracy of SVM models regarding PTW accident involvement. In 

general, the original time series approach produced better results than the DWT 

approach. Overall, in regard with the parameters C and γ, the models performed better 

when the Cost parameter C had taken the value of 10 or 100, while the parameter γ 

values ranged from 0.001 to 0.01. 

 
Total SVM performance Speed downstream Speed upstream Flow downstream Flow upstream Occupancy downstream Occupancy upstream

Original Time series

10-fold cross validation 

mean accurracy %

62.17% 65.64% 61.90% 64.15% 60.72% 65.38%

(C, γ) (100, 0.002) (10, 0.01) (100, 0.001) (100, 0.001) (100, 0.0001) (100, 0.001)

DWT Time series

10-fold cross validation 

mean accurracy %

60.65% 58.38% 60.82% 61.39% 59.20% 61.54%

(C, γ) (10, 0.001) (100, 0.01) (100, 0.002) (100, 0.0001) (100, 0.01) (100, 0.0001)

Table 1: Total classification accuracy of SVM models to predict PTW accident 

involvement.  

 



When the original time series are considered, the best performance is consistently 

higher than 60%. The best accuracy is achieved when the speed upstream (65.64%) and 

occupancy upstream (65.38%) are considered. On the other hand, the time series of 

occupancy downstream of the accident location, were the worse predictors of PTW 

accident involvement (60.72%). When the DWT time series are considered, the total 

classification accuracy was generally around 60%. Speed upstream and occupancy 

downstream had the lowest accuracies (58.38% and 59.20% respectively).  

 

The lower difference between original and DWT time series accuracy, was observed in 

speed downstream (1.52%) and occupancy downstream (1.52%). On the contrary, the 

highest difference was observed in speed upstream time series (7.26%). In all 

aforementioned situations, the DWT performed worse. The lower prediction 

performance of the transformed time series in predicting PTW accident involvement, 

may imply that there may be not necessary to extract features from time series but use 

the original time series instead. Alternatively, a different transformation could be 

applied as mentioned earlier. 

 

4.2 PTW accident type prediction 

 

Table 2 illustrates the total classification accuracy of SVM models regarding PTW 

accident type. As a first remark, neither of the two approaches (original or DWT time 

series) clearly outperformed the other, as the classification accuracies were similar. In 

regard with the parameters C and γ, the models performed better when the Cost 

parameter C had taken the value of 10 or 100, while the parameter γ values ranged from 

0.000001 to 0.01. 

 
Total SVM performance Speed downstream Speed upstream Flow downstream Flow upstream Occupancy downstream Occupancy upstream

Original Time series

10-fold cross validation 

mean accurracy %

65.20% 66.76% 65.64% 66.57% 66.56% 66.67%

(C, γ) (100, 0.01) (100, 0.0001) (10, 0.01) (100, 0.0001) (100, 0.0001) (100, 0.0001)

Wavelet transformation

10-fold cross validation 

mean accurracy %

63.63% 66.46% 66.26% 66.67% 65.31% 65.77%

(C, γ) (100, 0.01) (10, 0.001) (100, 0.0001) (10, 0.000001) (10, 0.001) (10, 0.001)

Table 2: Total classification accuracy of SVM models using to predict PTW accident 

type. 

 

Overall, the models perform better in accident type prediction than in PTW accident 

involvement. When the original time series are considered, the best performance is 

consistently higher than about 65%. The best accuracy is achieved when the speed 

upstream (66.74%) is utilized. On the other hand, the utilization of time series of traffic 

flow downstream of the accident location, provided the lowest prediction of PTW 

accident involvement (65.64%). When the DWT time series are considered, the total 

classification accuracy was generally around 63-66%. Speed downstream had the 

lowest accuracy (63.63%), whilst flow upstream had the best accuracy (66.67%).  

 

Moreover, when predicting PTW accident type, it is observed that both approaches 

provided similar results. Original time series performed better that DWT, when speed 



downstream and occupancy (both in upstream and downstream) are utilized. On the 

other hand, DWT performed slightly better for flow downstream. For speed upstream 

and for flow upstream, the SVM models showed similar results for original and DWT 

time series. Therefore, it may be suggested that both approaches are appropriately 

adequate for predicting PTW accident type. 

 

The next two figures (Figures 4 and 5), demonstrate the relative performance of the 

SVM models when predicting PTW accident involvement and PTW accident type, by 

utilizing original and DWT time series. 

 

 
Figure 4: Graphical illustration of SVM models performance when analysing PTW 

accident involvement. 

 



 
Figure 5: Graphical illustration of SVM models performance when analysing PTW 

accident type. 

 

5. Conclusions  

 

This paper has presented the prediction results from the Support Vector Machine 

(SVM) models, which were applied on the original time series and on the Discrete 

Wavelet Transformed (DWT) time series of flow, speed and occupancy upstream and 

downstream of the accident location. This methodological approach, was a first attempt 

to incorporate time-series data when analysing road safety with real-time traffic data. 

Moreover, the opportunity of applying of a relatively new and scientifically strong 

classification technique such as Support Vector Machines, in road safety with real-time 

traffic data was only recently been explored.  

 

The prediction of whether a PTW is involved in an accident, given that the accident has 

occurred, is two-category classification problem. Overall, the original time series data 

performed better than the DWT time series. However, in a few cases, the difference 

between original time series and DWT time series was very low. Consequently, original 

time series are preferred for predicting PTW accident involvement. 

 

This combined approach proposed by this paper, is considered promising when 

investigating the accident type of Powered-Two-Wheelers (PTW) that occur in urban 

roads. The dependent variable (single and multi-vehicle accident) is considered as a 

two-category classification problem as well. In this case, both original time series and 

DWT time series performed well. Neither of the two approaches clearly outperformed 

the other. Therefore, both type of time series could be utilized and produce good 

prediction.  

 



In general, it is observed that this combined approach provides better results when 

accident type is aimed to be predicted. Moreover, when original time series are utilized, 

upstream speed had consistently the best accuracy both for PTW accident involvement 

and PTW accident type. 

 

Summing up, this methodological approach showed promising results, having produced 

a number of adequately high correct classification percentages in some cases. The main 

conclusion of this paper is that the combination of SVM models and time-series data 

can be used for road safety purposes especially by utilizing high resolution traffic data. 

Clearly, this direction has to be exploited further. It is interesting though, that despite 

the fact that Zhao (2012) suggests to extract features from time-series when perform 

time series data-mining, the performance of SVMs on the DWT data did not generally 

outperformed original time series. This means that the transformation applied in the 

paper is not always necessary, but alternatively, a different transformation could be 

applied, such as Singular Value Decomposition (SVD), Discrete Fourier Transform, 

Piecewise Aggregate Approximation, Perpetually Important Points and so on. 
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