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A B S T R A C T

Considerable efforts have been made from researchers and policy makers in order to explain road crash oc-
currence and improve road safety performance of highways. However, there are cases when crashes are so few
that they could be considered as rare events. In such cases, the binary dependent variable is characterized by
dozens to thousands of times fewer events (crashes) than non-events (non-crashes). This paper attempts to add to
the current knowledge by investigating crash likelihood by utilizing real-time traffic data and by proposing a
framework driven by appropriate statistical models (Bias Correction and Firth method) in order to overcome the
problems that arise when the number of crashes is very low. Under this approach instead of using traditional
logistic regression methods, crashes are considered as rare events In order to demonstrate this approach, traffic
data were collected from three random loop detectors in the Attica Tollway (“Attiki Odos”) located in Greater
Athens Area in Greece for the 2008–2011 period. The traffic dataset consists of hourly aggregated traffic data
such as flow, occupancy, mean time speed and percentage of trucks in traffic. This study demonstrates the
application and findings of our approach and revealed a negative relationship between crash occurrence and
speed in crash locations. The method and findings of the study attempt to provide insights on the mechanism of
crash occurrence and also to overcome data considerations for the first time in safety evaluation of motorways.

1. Introduction

Crashes impose serious problems to society in terms of human costs,
economic costs, property damage costs and medical costs.
Understanding the various factors that influence crash occurrence is of
particular concern to decision makers and researchers. Most of the
existing studies that aimed to link traffic parameters and road safety
used aggregate traffic data1 and other traffic proxies for congestion
(Ceder 1982; Caliendo et al., 2007; Martin 2002; Dickerson et al. 2000;
Chang 2005; Anastasopoulos and Mannering, 2009; Noland and
Quddus 2005; Wang et al. 2009; Lord et al. 2005; Kononov et al. 2012).
However, aggregated traffic parameters such as AADT (Annual Average
Daily Traffic) may be too aggregated to be directly linked with crashes.

Other studies used micro-simulation (specified or calibrated traffic
models) or video analyses (experiments through observational vehicle
tracking data) in order to obtain crash prone parameters. Safety per-
formance is affected by various factors (behavioral, road character-
istics, vehicle attributes, traffic parameters, environmental conditions)
(Elvik et al. 2009; Evans, 1991; Guido et al. 2011). These two sources of

data are very important in road safety research as they can capture pre-
crash conditions, however they are not in the scope of the present
paper. For more details the reader is encouraged to refer to Guido et al.
(2011) who provide a detailed comparison between safety performance
measures from micro-simulation and observational data.

Recently, the incorporation of real-time traffic and weather data in
freeways has proven to be a promising approach, since an increasing
number of researchers use disaggregate traffic and weather data (i.e. in
5-min intervals) to analyze crash occurrences in freeways. Ahmed et al.
(2012a) found that increased speed variation at any given crash seg-
ment combined with a decrease in average speed in the respective
downstream segment can lead to increased likelihood of rear-end crash
occurrence. Ahmed and Abdel-Aty (2012) found that the probability of
a crash increases when the variation in speed increases and the average
speed decreases at the crash segment 5–10min prior to crash occur-
rence. On the other hand, Kockelman and Ma (2007) have indicated
that 30-sec speed changes are not correlated with risk of crashes.

Studies investigating crash occurrence often include real-time traffic
as well as real-time weather characteristics. Ahmed et al. (2012b)
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investigated the impact of geometrical, traffic and weather variables on
crash occurrence in freeways. In winter, it was found that low visibility,
high precipitation and speed variation seem to increase the likelihood
of crashes. Surprisingly, dry season, low average speeds and low visi-
bility increase the odds of a crash. Xu et al. (2013a) developed separate
models for clear, rainy and low visibility weather and found that speed
difference between upstream and downstream detectors increased crash
risk for low visibility and/or rainy weather. Rainfall intensity and oc-
cupancy variations from the closest downstream detector were also
found to be positively correlated with crash risk during adverse
weather. During good weather conditions, the standard deviation of
speed was the main risk factor. Similarly, Xu et al. (2013b) state that
various traffic parameters, such as traffic density upstream, speed
variance upstream and/or downstream, traffic volume difference be-
tween upstream and downstream station and occupancy difference
between upstream and downstream stations are positively correlated
with crash risk.

Zheng et al. (2010) investigated the impact of stop and go driving
(traffic oscillations) on crash occurrence. It was found that the standard
deviation of speed increased the likelihood of rear-end crashes. Yu et al.
(2013) found that the 5-min average speed of the crash segment
5–10min prior to the crash time to significantly influenced crash risk. It
is interesting that the authors suggest a negative correlation, which
means that crash occurrence likelihood increases as the average speed
decreases. Xu et al. (2012) developed crash risk models for different
traffic states. Traffic flow parameters were found to have different ef-
fects on safety for every traffic state. For instance, the average down-
stream occupancy seemed to reduce crash risk in two traffic states (in
congested traffic as well as in transition from free flow to congested
flow) but caused an increase in the overall model.

Hossain and Muromachi (2013) aimed to identify crash predictors
on urban expressways. One essential contribution is that crash risk in
freeway segments and ramp vicinities were analyzed separately. The
findings suggest that crash mechanisms are not the same for basic
freeway segments and ramps. Wang et al. (2015) developed real-time
crash prediction models for expressway weaving segments. The authors
concluded that the mainline speed at the beginning of the weaving
segments, the speed difference between the beginning and the end of
weaving segment and the logarithm of traffic volume all have a sig-
nificant influence on crash risk.

In terms of methodology when dealing with real-time crash like-
lihood models, disaggregate data are used and crash occurrence is
analyzed as a binary variable having two outcomes, namely crash and
non-crash (Abdel-Aty and Pande, 2005; Abdel-Aty et al., 2007; Ahmed
and Abdel-Aty, 2012; Yu and Abdel-Aty, 2013). As a consequence,
binary logistic models are usually applied (Ahmed et al. 2012a and
2012b; Theofilatos 2017; Xu et al., 2012; Xu et al. 2013a and 2013b; Yu
and Abdel-Aty, 2013). The model specification is frequently Bayesian or
random effects. Other non-traditional approaches have also been fol-
lowed. For instance, Yu and Abdel-Aty (2013) applied Support Vector
Machine (SVM) models, whilst Pande and Abdel-Aty, 2006a, 2006b)
applied Neural Networks (NN). These models usually performed very
well but they are “black box” techniques (i.e. it is difficult to obtain
relationships between the dependent and the independent variables).

Under this methodological framework, the case-control ratio usually
varies from 1:1 to 1:5 (Roshandel et al., 2015). In other words, for each
crash case, 1–5 non-crash cases were selected. For instance, Yu and Abdel-
Aty (2013) and Zheng et al. (2010) used a 1:4 ratio, while Ahmed et al.
(2012b) analyzed 301 crash cases and 880 non-crash cases (a roughly 1:3
ratio). Larger crash to non-crash ratios are also used but only rarely. Wang
et al (2015) used a dataset including 125 crash and 1250 randomly se-
lected non-crash cases (1:10 ratio). Xu et al. (2013a) also utilized a 1:10
ratio, while Xu et al. (2013b) used 794 crash cases and 15,880 non-crash
cases (1:20 ratio). Roshandel et al. (2015) illustrate a discussion of the
case-control design problems in real-time crash occurrence evaluation. In
that context, the case-control design methods may result in loss of valuable

information. This happens because in reality the number of non-crash
cases greatly is much higher than crash cases and crashes might be con-
sidered as very rare events, as stated previously. In addition, when crash
risk is investigated in specific segments or freeway exits or in rural areas
and specific minor roads, a very low number of crashes is likely to exist.
Therefore, when the number of crashes is particularly low, the traditional
control-case-design and the traditional statistical methods may not be
appropriate. Consequently, alternative data collection methods and sta-
tistical approaches should be explored2.

For that reason, the aim of this study is add to the current knowledge
by extending the investigation of crash occurrence with real-time traffic
characteristics when the number of crashes is so low that they can be
considered as rare events. Moreover, to the best of the authors’ knowledge,
this one of the very first times that the case of rare events is examined in
real-time safety evaluation of freeways, as only one study has applied a
rare events approach in workzones (Yang et al., 2015). The selected ap-
proach deals explicitly with the prevailing traffic conditions at the time
and location of each recorded crash and non-crash case. Validity is im-
proved by avoiding the use of a random sample of non-crash cases as
controls and losing valuable information. Thus, alternative methods which
are directly linked to data sampling are utilized. More specifically, our
approach improves data collection and analysis methods by proposing: a)
a collection of a 1:10 ratio of crashes to non-crash cases through stratified
sampling and applying the bias correction method or b) the Firth method
application when all the existing crash and non-crash cases are available.
Therefore, this approach is considered novel and adds to current knowl-
edge as it offers a holistic method on how to deal with the case of rare
events in crash likelihood modeling.

The paper is structured as follows: In Section 2, the proposed fra-
mework with alternative statistical methods to deal with rare events is
demonstrated, namely, the bias correction method and the Firth
method (also known as penalized likelihood estimation method). Sec-
tion 3 presents the data collection and data preparation for the case
study of Attica Tollway, which is a modern urban freeway in the area of
Athens. Section 4 presents the main findings of the study. The last
section is dedicated to conclusions.

2. Methodology

2.1. Overview of the problem

The issues of data preparation and model development when dealing
with real-time safety evaluation and crash likelihood modeling have re-
ceived increasing attention by researchers (Imprialou et al., 2016a;
Roshandel et al., 2015). Roshandel et al. (2015) mention the problems
arising from the case–control design, in which the case–control ratio varies
from 1:1 to 1:5. Authors state that “using a 1:1 case–control design will bias
false positive rates to be really low, because in practice there are far more ‘real’
controls then the one used in the study”. It is also mentioned that there is an
absence of reporting this bias from the relevant literature. Therefore, there
is a need to resort to different data collection strategies in order to set up a
case-control study design. However, the selected data collection strategies
will largely affect model development.

In reality, most significant events are rare events. They occur very
rarely-meaning there are dozens to thousands of times fewer events (e.g.
wars, volcano explosions) than non-events. Leitgöb (2013) suggested that
in the case of rare events, maximum likelihood estimates of logistic re-
gression may be biased. The authors compared three common methods
dealing with rare events, namely Bias Correction method, Penalized
Maximum Likelihood Estimation (also called Firth method) and Exact
logistic regression. Exact logistic regression only works when the number
of events is very low (<200). Moreover, independent variables should be

2 Similar methods exist when modeling count data and there is an excessive number of
zeros (e.g. zero inflated Poisson or zero inflated Negative binomial models).
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restricted to low numbers and also be dichotomous or discrete. Another
drawback is that this method is computationally expensive.

As stated earlier, the choice of the most appropriate statistical
method depends heavily on the sampling of the study. If the researcher
is able to gather the entire sample of non-events, then the Firth or Exact
logistic regression methods are considered to be the most appropriate.
On the other hand, the Bias Correction method applies a number of
mathematical corrections in the model and thus enables the researcher
to gather the total sample of all events (i.e. crashes) but only a sample
of non-events. Consequently, valuable time and effort are saved. For
these reasons, only the Bias Correction and the Firth method are pre-
sented and applied in this paper under the assumption that crashes in
the Attica Tollway are rare events, and that the term “event” corre-
sponds to an occurrence of a crash. The next two subsections provide a
theoretical background of these two methods.

2.2. Bias correction method

King and Zeng (2001a) identified two major causes for problems when
analyzing rare events. Firstly, the fact that traditional statistical procedures
underestimate the probability of rare events, and secondly the inefficient
data-collection strategies, because too much time and effort are needed to
record all non-events. Furthermore, serious problems arise due to the fact
that maximum likelihood estimation of the logistic model suffers from
small-sample bias, with the degree of bias being strongly dependent on the
number of cases in the less frequent of the two categories of the dependent
variable y. For example, even with a sample size of 100,000 cases, if there
are only 20 events in the sample, substantial bias exists. Consequently,
scholars cannot confidently rely on logit coefficients. To solve these pro-
blems, King and Zeng (2001a,b) proposed an adapted version of the lo-
gistic regression, the so-called Bias Correction method. This approach
applies a number of corrections. The first suggested correction concerns
data collection. King and Zeng (2001a,b) propose a case-control sampling
design, based on stratified sampling, where it is recommended to include
all events and a random selection of non-events. Then, in order to account
for the biased estimation of constant term due to the case-control design, a
prior correction has to be applied to the constant term. The next equation
applies the correction:
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where α0 is the new corrected constant, α̂ is the uncorrected constant, τ is
the proportion of events in the population and γ is the proportion of events
in the sample. Another method proposed for correction is the “weighting”
method, which was not used in this study and thus not described here.
Moreover, the underestimation of probabilities when using the corrected
intercept α0 needs a similar correction. For that reason, a correction factor
Ci is added to the estimated probability pi. If we assume the corrected logit
form based on the corrected constant term:
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where Ci is calculated according to King and Zeng (2001b):

= − − ′C p p p x V β x(0.5 )* *(1 )* * ( )*i i i i 0 0 (4)

where pi is the probability of an event estimated using the corrected es-
timated coefficient a0, x0 is the 1× (m+1)3 vector of values for each
independent variable, V(β) is the variance-covariance matrix, and lastly ′x0
is the x0 transposed.

2.3. Penalized maximum likelihood estimation (firth method)

In order to reduce bias in generalized linear models, Firth (1993)
suggested a modification of the score equations. The principle is to
extend the elements of the score vector by a penalization term. It is
therefore suggested to maximize the penalized log likelihood:

= +LogL β LogL β I β( ) ( ) 1
2

* log ( )*

(5)

where, I(β) is the Fisher information matrix. Extending this to logistic
regression, the score function U(β) is replaced by the new modified
score function:

= +U β U β a( ) ( )* (6)

where, α has rth entry:
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and r= 1,…,k. The explicit formulas can be found in Heinze and
Schemper (2002). For more details the reader is referred to Heinze and
Ploner (2003) and Heinze et al. (2015) who provide detailed descrip-
tions of the Firth method.

3. Data collection and preparation

In this study, the required crash and traffic data were extracted from
Attica Tollway (“Attiki Odos”) located in Greater Athens Area in Greece
in order to demonstrate the applications of the statistical methods for
rare events.

Attica Tollway is a modern motorway extending along 65.2 km
(Fig. 1). It constitutes the ring road of the greater metropolitan area of
Athens and the backbone of the road network of the whole Attica
Prefecture. It is essentially a closed toll motorway, within a me-
tropolitan capital, where the problem of traffic congestion is acute.
Entry to the freeway is through 39 toll plazas with 195 toll lanes. In-
ductive loop detectors are placed every 500m inside the asphalt pa-
vement of the open sections of the motorway and every 60 meters in-
side tunnels, providing information regarding the volume, speed and
density of traffic.

Two datasets were prepared for the need of the analysis; one dataset
with crash data and one with traffic data. The required crash data for
Attica Tollway were extracted from the Greek crash database SANTRA
provided by the Department of Transportation Planning and
Engineering of the National Technical University of Athens.

Traffic data for the Attica Tollway were extracted after a close
collaboration with the Traffic Management and Motorway
Maintenance, which is located in Paiania and operates on a 24-hour
basis. The complete traffic time series measured in 1-hour intervals
from 2008–2011 in three random loop detectors in BFS areas with the
same number of lanes (3 lanes per direction) were considered. The aim
was to demonstrate the validity of the approach when there are very
few crashes. Consequently, if a wider range of data was explored, tra-
ditional methods would apply and there would be no need for this al-
ternative framework; for instance, if there were 200 crashes, a tradi-
tional logistic regression method would be applicable.

Traffic variables were measured in 1-hour intervals (flow, speed,
occupancy and truck proportion). Traffic flow is defined as the total
number of vehicles on a 1 h basis and is measured in vehicles per hour
(veh/h). On the other hand, speed (km/h), occupancy (%) and truck
proportion (%) are the averaged values of 5-min interval measurement,
which were automatically aggregated in 1-hour intervals.

Crash occurrence was defined as a binary variable taking the values
of 0 (non-crash) and 1 (crash). Therefore, in each 1-h time interval it
represents the information of whether a crash has occurred or not. In
order to avoid post-crash traffic conditions where low mean speeds may3 It is noted that m is the number of independent variables
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prevail due to the crash itself, traffic time series before crash cases had
to be checked. The idea was to identify potential sudden drops in mean
speeds which would lead to erroneous estimates of the effect of traffic
variables. In such cases, the crash is assigned to the previous 1-hour
time interval. Sudden drops in speeds are usually used for detection of
the time of a crash occurrence (Lee et al., 2003). Our approach is in line
with the previous literature in the field and is similar to applying a time
lag (Pande et al., 2011; Lee et al., 2011). More specifically, a time lag is
often considered in order to avoid the impact of the crash itself on the
traffic variables. Similar time lags have been applied in other real-time
data analyses. For example, Christoforou et al. (2010), used a 12min
time lag. Quddus et al. (2009), used a more macroscopic approach for
M25 motorway outside London and used a 30min time lag. Moreover,
Abdel-Aty and Pande (2005)and Zheng et al. (2010) utilized traffic flow
data to detect abrupt and dramatic changes in traffic conditions at the
upstream and downstream detectors. Since our dataset consisted of 1 h
time intervals it was not possible to use such a microscopic time lag, as
each time slice indicated if a crash had occurred or not. Therefore, if a
sudden drop was detected on a time interval that a crash was assigned,
it is considered high likely that this sudden drop in speed was caused by
the crash itself.

The final dataset consists of 17 crash cases (occurred nearby these
three loop detectors) as well as 91,118 non-crash cases. All types of
crashes were considered regardless of the severity level. It is noted that

in order to apply the Firth method, the entire dataset is utilized. On the
other hand, the Bias Correction method supposes a stratified sampling,
consequently all crash cases and a random sample of non-crashes cases
are selected.

4. Results

4.1. Preliminary data analysis

Table 1 provides the summary descriptive statistics of the selected
variables included in the final models.

Figs. 2–5 illustrate the kernel density estimation regarding non-
crash and crash cases in respect to each independent traffic variable at a
time: traffic flow, speed, occupancy and truck proportion. The kernel
density estimation (KDE), which is a non-parametric way to estimate
the probability density function of a variable, was used here to provide
a first visual inspection of the data. It is noted that the y-axes are
unitless as they represent the probability density.

4.2. Bias correction method

As stated previously, this procedure offers the option to correct the
coefficients β in order to account for the rare events bias. This is the
first time that crash probability in motorways was explored with the
application of the Bias Correction method. The model results presented
in this study are a first trial and an attempt to observe whether this
methodological approach creates promising results and thus may be
potentially considered fruitful.

One potential drawback of the Bias Correction logistic regression is
the dependency of results on the stratified sampling. As a result, three
trials were conducted and results are compared. For the stratified
sampling, a proportion of 1:10 for the ratio of events (crashes) to non-
events (non-crashes) was used in each sample. As suggested by King and
Zeng (2001a,b) all crash cases were retained in each sample. Therefore,
in each trial, there were 17 crash cases and 170 non-crash cases.

All candidate variables were checked for potential correlation

Fig. 1. Map of Attika Tollway.

Table 1
Summary statistics of independent variables descriptive statistics for Attica Tollway data
(complete dataset).

Variables Description Mean Standard
Deviation

Flow Average Flow (in veh/h) 1885.08 1244.60
Speed Average Speed (in km/h) 107.61 7.58
Occupancy Average Occupancy (in %) 3.12 2.32
Truck Proportion Average Truck Proportion (in

%)
4.22 2.68
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before entered in the model in order to avoid multicollinearity pro-
blems. Consequently, it was not possible to include all explanatory
variables in the models. For that reason, several tests had to be per-
formed in order to find the best combination of independent variables.
In order to illustrate the model but also to highlight which variables are
consistently significant, non-significant variables are also included in
the final models.

Tables 2, 3 and 4 present the results of the Bias Correction method
for the tree trials, each of them having a different sample of non-crash
cases. The results include the logistic coefficients β, the z-test values as
well as the p-values for the explanatory variables. The standard error of
β is presented as well, in order to further compare the models of the tree
trials. All the models include the “prior correction”, where τ is the
proportion of events in the population (17/91,118= 0.00019) and γ is
the proportion of events in the sample (17/170=0.1).

The goodness-of-fit of the three models is reasonable. The values of
McFadden-R2 may be considered adequate, since it is suggested that
values between 0.2 and 0.4 indicate a very good fit. It is interesting that
all three models showed very similar fit in terms of the McFadden R2.
Furthermore, the change in the log-likelihood is significant in all three
models.

For the Attica Tollway data, when the regression coefficient esti-
mates, their standard errors and the significance levels for the ex-
planatory variables are compared, a number of trends between the
three proposed models can be observed. The three models showed a

consistent negative effect of the logarithm of average speed, while
average truck proportion was not found to affect crash occurrence.
Moreover, the constant term was significant in all three models having
a positive sign.

The constant term had the highest variation in the three models. The
percentage of trucks in the traffic (Truck.Prop.) does not have the same
sign across the models but the values of the beta coefficient (β) are
similar ranging from −0.0444 to 0.0157. This can be attributed to the
fact that all the beta coefficients are very close to zero. However, this
parameter is not statistically significant in any of the models. It can be
considered that the core trends in crash occurrence were successfully
detected. Although it seems interesting that the number of trucks in
traffic does not impact crash risk, Fig. 5 does not show any major dif-
ferences between crash cases and non-crash cases in regard to truck
percentage in traffic. Moreover, the fact that low speeds are associated
with increased crash risk indicates that crashes seem to be caused by
increased congestion rather than the number of trucks in traffic.

The only statistically significant explanatory variable was found to
be speed, through its logarithmic transformation. The consistent nega-
tive sign of the beta coefficient of logarithm of average speed in all the
models may seem counterintuitive, however is consistent with similar
past studies (Ahmed et al., 2011, 2012b; Yu et al., 2013). For example,
Ahmed et al. (2012b), found that low average speeds increase crash
occurrence on freeways under clear weather. Therefore, considering the
prevalence of good weather conditions in the Greater Athens Area, this

Fig. 2. Probability density of 1-hour average traffic flow for crash and
non-crash cases.

Fig. 3. Probability density of 1-hour average occupancy for crash and
non-crash cases.
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negative effect of low speeds on crash occurrence may be considered
consistent with the aforementioned study. Moreover, this finding may
indicate that crashes in Attica Tollway are more likely to occur in more
dense traffic conditions with lower mean speeds or under adverse
weather conditions which forced drivers to adapt their driving speeds.

4.3. Penalized maximum likelihood estimation (firth method)

In order to apply the Firth method the entire sample of crash and
non-crash cases is considered which includes 17 crash and 91,118 non-
crash cases. For considering all variables, each one is tested for its
statistical significance to the target variable. Statistical tests for po-
tential correlations among the independent variables had to be carried
out before variables were entered in the models. Table 5 illustrates the
modeling estimation results.

The likelihood ratio test is significant for this model as well, al-
though the overall fit is lower than the fit of the Bias Correction models
(McFadden R2= 0.07). A number of similarities and differences with
Bias Correction models can be further observed from the results of
Table 5. The proposed model includes the absolute value of average

speed and not the logarithm of speed as in the previous analysis.
However, the sign of the beta coefficient of average speed is negative
here as well. The effect of the proportion of trucks in the traffic
(Truck.Prop.) is non-significant here as well.

Table 6 illustrates a summary overview of the proposed statistical
methods included in this framework. As per the aim of this research,
both methods work well when the number of crashes is very low (rare
events). It can also be observed that even if they utilize different sam-
pling frames, the core findings of the two modeling approaches are

Fig. 4. Probability density of 1-hour average speed for crash and non-
crash cases.

Fig. 5. Probability density of 1-hour average truck proportion for
crash and non-crash cases.

Table 2
Summary of the Bias Correction method for trial 1.

Trial 1 β S.E. z value p value

Constant term 26.4158 11.3706 2.3232 0.0212
Truck. Prop. −0.0394 0.1072 −0.3684 0.7129
log(Speed) −7.4700 2.4369 −3.0653 0.0025
Log-likelihood at zero −113.9
Final log-likelihood −100.9
Likelihood ratio test 26.0
McFadden R2 0.1141
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similar as both methods were able to capture the effect of the candidate
variables on real-time crash risk. More specifically, decreased speeds
were found to be positively associated with crash risk, while truck
proportion had no impact. However, the magnitude of the effects is not
exactly the same. The fact that the two models have not produced the
exact same results could be expected, since they utilize: a) different data
samples and b) different correction approaches for correcting bias.
Overall, both models provide good insight when crashes are considered
as rare-events, however one should take into account the time, effort
and cost to collect and process all cases and controls before applying the
Firth method. On the other hand, the Bias correction method will save
time and effort to researchers, although sensitive to stratified sampling.

5. Conclusions

The aim of the present study is to investigate crash occurrence in
motorways by utilizing real-time traffic data when the number of cra-
shes is particularly low. In the proposed approach, crashes are con-
sidered as rare events. From a methodological point of view, this study
adds to the current knowledge by utilizing appropriate logistic regres-
sion models specifically designed for rare events. In this way potential
biases are overcome. To the best of our knowledge, this is one of the
very first times that such models are applied in transport safety. It is
noted that similar models have been applied for crash frequency pur-
poses so far (e.g. zero-inflated models), but not for dichotomous de-
pendent variables (e.g. crash vs no crash).

Furthermore, another research gap is addressed when exploring
crash likelihood with real-time traffic data. More specifically, the pro-
posed approach enables the development of crash likelihood models in
specific segments or locations with a very low number of crashes. So
far, the impact of real-time traffic and weather parameters on urban
and rural areas is not deeply explored (Theofilatos and Yannis, 2014;
Yannis et al., 2014; Wang et al., 2013). For example, the number of
crashes on a rural road or on a specific road segment might be too low
in comparison with urban segments. Therefore, in order to examine the
effect of traffic parameters on crash likelihood, existing approaches are
not appropriate and either the Bias correction or the Firth methods
should be used to handle the problem. Additionally, Powered-Two-
Wheeler (PTW) safety is underrepresented (Theofilatos and Yannis
2014, 2015). Therefore, future studies could potentially explore PTW
crash likelihood by utilizing real-time data and by applying the pro-
posed approach of this study.

In terms of model estimation results, it was found that the main risk
factor for crash occurrence was average speed, indicating that lower
speeds were positively associated with crash risk. This may be attrib-
uted to the fact that lower operating speeds in motorways may imply a)
congested traffic conditions and/or b) adverse weather (since speed
drops from crash occurrence were excluded). Particularly, adverse
weather in the region of Athens does not frequently occur; when it does
drivers lower their speeds to compensate. This finding can be con-
sidered consistent with relevant past studies which examined crash
occurrence by using real-time traffic data. Moreover, another study by
Imprialou et al. (2016b), showed that slight injury multiple-vehicle
crashes are not related to high speeds with congested traffic. Conse-
quently, proactive management of motorways could potentially rely on
such findings.

The application of the Bias Correction and the Firth model and the
produced results are considered promising, since the risk factors as well
as insignificant parameters were identified. The beta coefficients of the
independent variables were not found to be totally consistent across the
models, probably due to different sampling of the Bias Correction

Table 3
Summary of the Bias Correction method for trial 2.

Trial 2 β S.E. z value p value

Constant term 33.2999 14.3741 2.3117 0.0216
Truck.Prop. 0.0157 0.0981 0.1597 0.8733
log(Speed) −9.0004 3.0874 −2.9152 0.0039
Log-likelihood at zero −113.9
Final log-likelihood −100.6
Likelihood ratio test 26.6
McFadden R2 0.1168

Table 4
Summary of the Bias Correction method for trial 3.

Trial 3 β S.E. z value p value

Constant term 29.8363 12.6321 2.3619 0.0192
Truck.Prop. −0.0444 0.0964 −0.4600 0.6460
log(Speed) −8.2035 2.7063 −3.0311 0.0028
Log-likelihood at zero −113.9
Final log-likelihood −100.8
Likelihood ratio test 26.2
McFadden R2 0.1150

Table 5
Summary of the Firth method.

Model β S.E. Chi-square p value

Constant term −3.1819 1.0930 13.9363 0.0002
Speed −0.0512 0.0106 11.4104 0.0007
Truck.Prop. 0.0071 0.0861 0.0056 0.9402
Log-likelihood at zero −162.98
Final log-likelihood −151.566
Likelihood ratio test 22.828
McFadden R2 0.07

Table 6
Overview of the proposed methods and results.

Method Case-control
ratio

Advantages Disadvantages Candidate parameters that
affect crash risk in freeway

Effect of parameters affecting
crash risk in freeway

Bias correction 10:1 • Saves time and effort to researchers.

• No need to collect all cases and controls.

• Specific location with low number of crashes
(< 200) can be efficiently studied.

• Sensitive to stratified
sampling.

• Speed.

• Truck proportion.
• Increased mean speed

(logarithm) reduces crash
risk.

• Truck proportion has no
effect.

Firth logistic All cases and
controls

• Can capture the "real" relationship between
the dependent variables and the predictors,
without losing information due to random
sampling.

• Specific location with low number of crashes
(< 200) can be efficiently studied.

• Time consuming and
expensive to collect all
cases and controls.

• Speed.

• Truck proportion.
• Increased mean speed

reduces crash risk.

• Truck proportion has no
effect.
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model and Firth model. However, the core trends were successfully
detected. The R-square values of the models are not considered high,
however this study can be considered as a first trial. The rarity of cra-
shes in our approach has also to be considered. Moreover, only a few
variables were used in our study due to data limitations. If more traffic
parameters were available and added in the models, the statistical fit of
the models would be improved. Consequently future studies should
utilize more information regarding traffic parameters.

Furthermore, due to weather data unavailability, only traffic para-
meters were considered. Weather effects should be included in these
models in future research, especially for countries such as Greece where
the weather effects are of particular interest but not so straightforward
as past studies indicate (Antoniou et al., 2013; Bergel-Hayat et al.,
2013).

The two methods have different advantages and disadvantages,
therefore the choice of the most appropriate method depends on several
criteria. For example, the Firth method may be more detailed, as the
entire sample of non-crash cases are involved (i.e. all time slices for all
loop detectors for all segments). In the era of big data the processing of
huge datasets is becoming easier, so thousands to millions of non-crash
cases can be included. In that context, more disaggregate traffic and
weather data, such as in 5min or even 1min intervals could be used.
Nevertheless, relevant research is still at an early stage (Vlahogianni,
2015; Shi and Abdel-Aty, 2015). The utilization of more microscopic
traffic data could have likely led to different results. From a methodo-
logical point of view, the results of the Firth method could perhaps
change, since many more non-crash cases would be included in the
model, however the results of the Bias correction method would not
change respectively, because that method relies on a 10:1 non-crashes
to crashes random sampling and correcting. From a data point of view,
since the traffic data aggregation would be 5min intervals, results
would be more microscopic. Therefore, the 5min traffic flow could
have a different effect than the 1 h traffic flow.

However, the Bias Correction method saves time and effort because
it requires all crash cases but only a sample of non-crash cases (pre-
ferably a ratio of 1:10).A possible limitation is that the Bias Correction
method is potentially sensitive to stratified sampling. More efforts are
needed in order to overcome this limitation and improve similar
models. For example, logit models with replications could be poten-
tially used, as a few studies have shown (Guns and Vanacker, 2012).
Summing up, the methods applied in the paper are promising and
should be considered when the number of crashes is less than 200.

Overall, our paper approach: a) provides a complete methodological
guidance and also methodological alternatives, b) is directly applicable
in any case when crashes crashes are considered as rare-events c) im-
proves data collection because the most appropriate control-case ratio
is collected in order to apply the bias correction method (1:10 ratio),
and d) provides insight on the important issue of real-time crash like-
lihood modeling and relevant critical risk factors.
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