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Abstract 

The aim of this paper is to explore driving behaviour during mobile phone use on the basis of 

detailed driving analytics collected by smartphone sensors. The data came from a sample of 

one hundred drivers (18,850 trips) during a naturalistic driving experiment over four months. 

A specially developed smartphone application was used, through which driving exposure and 

behaviour metrics are captured by the smartphone sensors and transmitted to a back-end 

platform. The data are processed by Machine Learning algorithms yielding exposure (e.g. 

distance travelled per road type and time of day) and behaviour indicators (e.g. speeding, speed 

and acceleration variations, harsh braking, harsh manoeuvring, use of mobile phone etc.). 

Mixed binary logistic regression models were developed to investigate whether mobile phone 

use during a trip is correlated with other driving metrics, and can be accurately “detected” based 

on them. A model for all trips was developed, as well as models for trips on different road types 

(urban, rural, highway). Exposure metrics found to be significantly associated with the 

probability of mobile phone use are trip length, and driving off-morning rush. Exceeding the 

speed limits and the number of harsh events (particularly harsh cornering), are all negatively 

associated with the probability of mobile phone use. A general pattern of less speeding and 

smoother driving appears indicative of mobile phone use, in line with known assumptions of 

driver compensatory behaviour. The results suggest that mobile phone use while driving may 

be accurately predicted by the model in more than 70% of cases. 

 

Keywords: distraction, mobile phone use, smartphone sensors data, driver behaviour, road 

safety.  

 

1. Introduction 

 

1.1. Background 

 

Mobile phone use while driving is persistently shown in the literature to have significant 

detrimental effects on driver behaviour and safety, due to the higher level of workload involved 

in such multi-tasking, regardless of the conversation difficulty level (Haque, 2015). Mobile 

phone use results in higher speed variation (Haque, 2015) and difficulties in maintaining 

vehicle lateral position (Horrey & Wickens, 2006). Lower driving speed is observed, and as a 

result increased vehicle headways, revealing a possible risk compensation behaviour. 

Nevertheless, drivers' reaction times increase significantly when using a mobile phone 
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(Consiglio et al., 2003), and little or no benefit of hands-free over handheld mobile phone has 

been validated (Caird et al., 2008; Törnros & Bolling, 2006). Overall, there is a statistically 

significant increase in crash risk when using a mobile phone while driving, namely almost three 

times the crash risk when a mobile phone is not used (Elvik, 2011; Backer-Grøndahl et al., 

2011, Klauer et al., 2014).  

 

The most common methodologies applied for the assessment of risks related to mobile phone 

use while driving are: (i) driving simulator experiments (Papantoniou et al., 2014), (ii) 

naturalistic driving experiments (e.g. Fitch et al., 2014; Hickman & Hanowski, 2012), and (iii) 

contributory factors analysis of actual crash records (Consiglio et al., 2003; Elvik, 2011; 

Backer-Grøndahl et al., 2011). Each method presents different advantages and limitations, 

however results are fairly consistent regardless of the study method. However, naturalistic 

driving studies tending to indicate higher benefits from hands-free mobile phone use 

(Ziakopoulos et al. 2018).  

 

Naturalistic driving experiments provide a wide perspective of understanding normal 

microscopic travel and driving behaviour in normal conditions. A naturalistic study (Regan et 

al., 2012) can help to: a) estimate accident risk, b) study the interaction between road/ traffic 

conditions and driver’s behaviour, c) understand the interaction between car drivers and 

vulnerable road users, d) specify the relationship between driving patterns and vehicle 

emissions or fuel consumption, and many other aspects of traffic participation.  

 

There are numerous naturalistic driving studies dealing with mobile phone use and driver 

distraction. For instance, Fitch et al. (2015) analysed data from a naturalistic driving study that 

recorded 204 drivers using video cameras and vehicle sensors for an average of 31 days, and 

identified tasks associated with increased eyes-off-the-road behaviour. Klauer et al. (2014) 

used instrumented vehicles to analyse the crash or near-crash risk of novice drivers at the 

presence of secondary tasks, including the use of mobile phone. Dingus et al. (2016) used a 

naturalistic driving dataset comprising 905 injury and property damage crash events, and 

calculated a risk two times higher when mobile phone is used. Simmons et al. (2016) used 7 

sets of naturalistic driver data to assess the effects of distracting behaviors in a random-effects 

meta-analysis including car drivers, non-commercial drivers of light vehicles, and commercial 

drivers of trucks and buses. 

 

In the recent years, emerging methods for monitoring drivers on the basis of in-vehicle sensors 

are exploited for the collection of naturalistic data within everyday driving (Horrey et al. 2012; 

Vaezipour et al., 2015). The advantage of these sensors, compared to traditional “heavy” 

vehicle instrumentation of earlier naturalistic driving experiments, is the lighter and relatively 

low-cost equipment, combined with the new possibilities offered by information and 

communication technologies for data transmission and processing.  

 

An initial relevant method of monitoring driving concerned OBD (On Board Diagnostics) 

recorders that are connected with the car engine. This was tested for a number of emerging 

telematics applications, including traffic management, accident detection and emergency 

response, monitoring of fuel consumption and emissions, monitoring of hybrid electric 

vehicles, monitoring of professional drivers etc. (Zaldivar J., et al. 2011; Yang et al., 2013). It 

is also used in innovative insurance schemes (UBI - User Based Insurance) on pricing on the 

basis of distance travelled or driving behaviour metrics provided by the OBD unit (Tselentis et 

al., 2017), as well as in other social gamification schemes of monitoring and ‘rewarding’ 
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drivers for safe or environment-friendly driving (Musicant & Lotan, 2016; Munoz-Organero 

& Corcoba Magana, 2014).  

 

More recently, smartphone sensors are tested as in-vehicle sources of driving behaviour 

metrics; indicatively, technology sensors that are integrated in contemporary smartphones are 

the accelerometer, the gyroscope, the magnetometer and the GPS. The data recorded by these 

sensors can be processed to yield meaningful driving metrics. These can be used to draw the 

profile of the driver (Araujo et al., 2012; Toledo et al., 2008; Johnson et al., 2011; Hong et al., 

2014) and further to communicate this profile to the driver, in order to eventually improve road 

safety levels by increasing self-awareness and motivation (Toledo et al., 2008), often through 

the application of premiums based on driving behaviour (Tselentis et al., 2017).  

 

Several existing studies have shown promising results as regards the analysis of certain risk 

factors i.e. speeding, aggressiveness etc. (Vlahogianni & Barmpounakis, 2017) through 

smartphone data collection and processing. However, to the best of the authors’ knowledge, 

this is the first attempt to understand behaviours and risks related to the use of the mobile phone 

while driving, on the basis of data collected from smartphone sensors.  

 

1.2. Objectives and Methods 

 

The objective of this research is to explore driving behaviour during mobile phone use on the 

basis of detailed driving analytics collected by means of smartphone sensors. For that purpose, 

this research uses data collected from a naturalistic driving experiment with a sample of one 

hundred drivers. Using driving metrics calculated from the smartphone sensors data, a 

statistical analysis is carried out for correlating the use of mobile phone with other driving 

behaviour indicators, namely by means of mixed effects binary logistic regression. A general 

model was developed for all trips, as well as separate models for trips on different types of 

roads (urban, rural, highway).  

 

2. Data collection 

 

2.1. Overview 

 

The data were collected through an innovative data collection scheme, developed by the 

OSeven Telematics Company (www.oseven.io), which records personalized driving behaviour 

analytics in real time, using smartphone sensors. An integrated system is used for the recording, 

collection, storage, evaluation and visualization of driving behaviour data, using smartphone 

applications and advanced Machine Learning (ML) algorithms. The system includes specially 

developed smartphone applications (apps) for data collection and transmission, as well as for 

providing feedback to the participants on their driving behaviour. The steps described below 

for data processing are exclusively performed by OSeven Telematics and do not constitute part 

of this study. More details on the data processing steps and cannot be provided since they are 

intellectual property of the company. However, the main features of the system are outlined 

below.  

 

The data are stored in the OSeven backend system using advanced encryption and data security 

techniques, in compliance with the national laws and EU Directives for the protection of 

personal data. The APIs (Application Programming Interfaces) used support user 

authentication and encryption to prevent unauthorized data access. The data used in this 

research were derived from the OSeven database and provided by the company for the purposes 

http://www.oseven.io/
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of this study. The dataset concerns an anonymous sample of one hundred drivers in Athens, 

Greece, during a 4-months timeframe, including several thousands of trips. 

 

2.2. Platform 
 

A smartphone app is developed to record driver behaviour using the hardware sensors of the 

smartphone device, and a variety of APIs is exploited to read sensor data and temporarily store 

them to the smartphone’s database before transmitting them to the central (backend) database.  

 

The data recording is initiated automatically in the smartphone app when a driving status is 

recognized, and again it stops automatically when a non-driving status is recognized. The 

frequency of the data recording varies depending on the type of the sensor, with a minimum 

value of 1Hz. Trip recording also continues if the vehicle is idled for five minutes, to consider 

the case that the driver resumes a trip after a few minutes stop. All extra information collected 

after the end of driving is discarded. The basic operating frame of the data flow is shown in 

Figure 1. 

 

***Figure 1 to be inserted here*** 

 

The recorded data come from various smartphone sensors and data fusion algorithms provided 

by Android (Google) and iOS (Apple). Indicatively, technology sensors integrated in the 

mobile phone are the Accelerometer*, the Gyroscope*, the Magnetometer and the GPS (speed, 

course, longitude, latitude). Fusion Data provided by iOS and Android include yaw, pitch, roll, 

linear acceleration* and gravity* (elements marked with an asterisk “*” sign refer to x, y, z 

components). After the end of each trip, the application is transmitting all data recorded to the 

central database of the OSeven backend office via an appropriate communication channel, such 

as a Wi-Fi network or cellular network (upon user’s selection) e.g. 3G/4G (online options). The 

total volume of data transmitted for an average driver is estimated at around 50Mb / month.  

 

The data collected are highly disaggregated in space and time. Once stored in the backend 

cloud server, they are converted into meaningful driving behaviour and safety indicators, using 

signal processing, Machine Learning (ML) algorithms, Data fusion, Big Data algorithms. 

Machine learning methods (filtering, clustering and classification methods) are mainly used to 

clean the data from noise and errors, and to identify repeated patterns within the data (see 

Figure 2). It is highlighted that all data are received from OSeven in an anonymized form. 

 

***Figure 2 to be inserted here*** 

 

The main steps of the calculation procedure in the OSeven Platform are presented below: 

i. Data filtering and outlier detection (all data that cannot be considered reliable are 

discarded) 

ii. Data smoothening for the parameters that it is required (when abnormal outlier values 

are observed) 

iii. Identification of speeding regions (duration of speeding, exceedance of speed limit - 

calculated on the basis of speed limit data from map providers e.g. Google, OSM, etc.) 

iv. Identification of Harsh Acceleration/ Braking/ Cornering events 

v. Identification of Mobile Usage (talking, texting, internet navigation) using only the 

smartphone sensors without any access to the user’s activity 

vi. Identification of Risky Hours Driving (distance travelled between 12am and 5am) 

vii. Determination if the user is the driver or the passenger during the trip 
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viii. Calculation of the driving scores. 

 

Α variety of different metadata are eventually calculated, including the following exposure 

indicators:  

 Total distance (mileage) 

 Driving duration 

 Type(s) of the road network used (given by GPS position and integration with map 

providers e.g. Google, OSM) 

 Time of the day driving (Rush hours, Risky hours) 

 Weather conditions (under development, on the basis of integration with weather data 

providers) 

 Trip purpose (set by the driver himself by using the smartphone app) 

The driving behaviour indicators that are also calculated from the data include: 

 Speeding (duration of speeding, speed limit exceedance etc.) 

 Number and severity of harsh events 

 Harsh braking (longitudinal acceleration) 

 Harsh acceleration (longitudinal acceleration) 

 Harsh cornering (angular speed, lateral acceleration, course) 

 Driving aggressiveness (e.g. braking, acceleration) 

 Distraction from mobile phone use (Mobile use is considered to be any smartphone 

usage by the driver e.g. talking, texting etc.). 

 

These indicators along with other data (e.g. from map providers) can be subsequently exploited 

to calculate individual driver statistics, on all road networks (urban, rural, highway, etc.) and 

under various driving conditions, enabling the creation of a large database of individual trip / 

driver characteristics. Driving behaviour information and feedback can be potentially 

communicated back to drivers by means of a dedicated smartphone app as the one shown in 

Figure 3. 

 

***Figure 3 to be inserted here*** 

 

3. Analysis method 

 

The variable of interest in the present analysis is the use of mobile phone while driving. This 

was available either as a share of trip time during which mobile phone was used, or as a binary 

variable for the entire trip (yes / no). The latter case was selected for modelling in the present 

research. 

 

Typically, a binary logistic regression estimates the probability that a characteristic is present 

(e.g. estimated probability of "success") given the values of explanatory variables; π = Pr (y = 

1|X = x). It leads to the development of a mathematical model that gives the odds of this event 

occurring, depending on factors that affect it. The odds are expressed by the logit link function 

as follows: 

ii0
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   (1a) 

 

And the related outcome (event occurrence): 

i0ii0i exy      (1b) 
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In the present dataset, however, there are repeated measurements (trips) over the same units 

(drivers). Due to these repeated measurements, the observations are no longer independent, as 

required by the assumptions of logistic regression. Unless accounted for, this dependency may 

affect the accuracy of the modelling results. In fact, it is necessary to account for random 

heterogeneity due to differences between drivers, so as to make sure that the effects identified 

in the model are true effects of the independent variables on the dependent, and do not reflect 

unobserved differences between drivers. A mixed model (or random effects model, or multi-

level model) is a standard technique to be used in this context, i.e. through a statistical model 

containing both fixed effects and random effects. The formulation of the mixed effects model, 

assuming a random intercept reflecting the repeated measurements (i) over drivers (j), is as 

follows: 

ij0ijij0ij exy      (2a) 

 

jj u000        (2b) 

 

It is noted that the intercept in the outcome equation (2b) consists of two terms: a fixed 

component β0 and a driver-specific component, i.e. the random effect u0j which is assumed to 

be normally distributed. The trip specific error term e0ij in equation (2a) is assumed to follow a 

logistic distribution. 

 
4. Results 

 

4.1. Descriptive Analysis 

 

For the purposes of this research, driving exposure and behaviour indicators on a trip basis 

were used, from a database of 18,850 trips from a sample of 100 drivers. For each trip, the 

share travelled on different road networks (urban, rural or highway) are also provided, and the 

vast majority of indicators are available separately for each type of road network within a trip. 

 

The key indicator of interest for the purpose of this research is the use of mobile phone during 

the trip. Additional basic indicators (i.e. possibly suggesting risky or reckless behaviour) are: 

exceeding the speed limit (share of time / distance over the speed limit, share of speed over the 

speed limit), and harsh manoeuvres / events (including harsh accelerations, harsh braking, 

harsh cornering). On the basis of the literature review results, it is assumed that the use of 

mobile phone while driving is correlated with drivers’ speeding behaviour and harsh events, 

and may thus be explained by changes in those variables. 

 

Exploratory descriptive analysis of the data reveals some potentially interesting patterns. For 

example, the share of mobile phone use is found to be more frequent on urban roads (6.9 %), 

less so on rural roads (5.1 %) and very low on highways (0.9 %), which is not surprising as 

trips on highways are usually much longer ones. Figure 4 presents the total number of harsh 

events (including accelerations, braking and cornering) per trip distance, against the share of 

mobile phone use during the trip. Overall, the total number of harsh events per trip distance 

ranges around 0.4 and reaches a maximum value equal to 0.45 when the share of mobile phone 

use raises to 50-60% of the trip duration. It is noted that, the shorter the length of the trip, the 

higher the share of use of the mobile phone, possibly because longer journeys are more likely 

to be made on rural roads / highways. Harsh events are slightly less frequent when mobile 

phone is used either for a small share of the trip, or for the largest share of the trip. A possible 

interpretation is that small duration mobile phone conversations may be less likely to result in 

https://en.wikipedia.org/wiki/Repeated_measures_design
https://en.wikipedia.org/wiki/Statistical_unit
https://en.wikipedia.org/wiki/Longitudinal_study
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Fixed_effect
https://en.wikipedia.org/wiki/Random_effect
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harsh events. As conversation duration increases, it is more likely that the driver will make a 

harsh manoeuvre due to multi-tasking. For very long conversations, however, it is possible that 

a successful behavioural adaptation to multi-tasking eventually takes place. 

 

***Figure 4 to be inserted here*** 

 

A nonlinear relationship appears to exist between the share of mobile phone use per trip and 

the speeding behaviour of drivers. Figure 5 shows that the share of mobile phone use per trip 

is somewhat higher on trips with average speed between 60 and 90 km/h (peaking between 80 

and 90 km/h), and lower on trips with average speed lower than 60 km/h. This is an unexpected 

result since lower speeds are generally observed in urban areas, where mobile phone use is 

more frequent. It is possible, however, that mobile phone use in urban areas mostly takes place 

e.g. on urban arterials, where speed limits and speeds are higher, and less so on secondary / 

residential roads where the road environment is more complex (e.g. more junctions, more 

traffic signs, higher presence of pedestrians). In any case, this finding needs some further 

investigation. 

 

The share of mobile phone use is much lower for average trip speed higher than 90 km/h, as is 

the case for main rural roads and highways. 

 

***Figure 5 to be inserted here*** 

 

The exploratory analysis of the data suggested that the share of mobile phone use is indeed 

correlated with road characteristics, as well as with other driving behaviour metrics, namely 

speeding and harsh events. The extent to which mobile phone use (yes / no) can be associated 

with / predicted on the basis of such driving metrics, is investigated through the models 

developed. 

 

4.2. Models development 

 

The categorical dependent variable is the use or no use of mobile phone while driving, whereas 

the explanatory variables are the driving behaviour and exposure metrics described previously. 

The fixed effects are attributed to the explanatory variables and the random effect is attributed 

to the model intercept. A global model is developed for all road types, as well as separate 

models for each road type: urban, rural and highway. 

 

The best performing model in each case was defined as follows: first, univariate effects were 

tested (i.e. each explanatory variable separately); for the statistically significant variables, 

correlation tests were performed, to avoid entering in the model any strongly correlated pair of 

explanatory variables. The selection of the optimal model took into account the statistical 

significance of variables and the overall fit of the model. The final models are presented in 

Table 1(a). The sign of “-“ in the table indicates that the specific variable was not used in the 

particular model. In all models, the variance of the random intercept is statistically significant, 

indicating that part of the variation is indeed due to unobserved differences between drivers. 

 

***Table 1 to be inserted here*** 

 

The modelling results (Table 1) reveal the following as regards the correlation of driving 

exposure on mobile phone use: 
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 Driving during morning rush hours increases the odds of mobile phone use during the 

trip, possibly because drivers may make / receive more calls during morning rush hours 

(e.g. work related calls); the effect appears to be higher in urban areas and highways 

than in rural areas, as the respective parameters (B) are 0.233, 0.373 and 0.110, 

corresponding to odds ratios exp(B) of 1.26, 1.45, and 1.12. These values show the 

increase in log-odds of mobile phone use during the morning rush compared to the rest 

of the day. In other words, 1.26 is the odds ratio of the odds of mobile phone use during 

morning rush over the odds of mobile phone use during all other periods of the day 

except morning rush. 

 Accordingly, driving during afternoon rush hours reduces the odds of mobile phone use 

during the trip. In contrast to morning rush, the effect of afternoon rush appears to be 

higher in rural areas than the other areas examined. 

 The length of the trip (driving time) was not found to affect the odds of mobile phone 

use in the model for all road types. However, in all three separate models, a higher 

duration of the trip (urban roads and highways, both having odds ratio exp(B=-0.001) 

equal to 0.999 or a higher share of trip duration on the specific road type (rural roads 

with an odds ratio exp(B=-2.784) of 0.062) is associated with lower odds of mobile 

phone use during the trip. 

 

Moreover, the following are found as regards the association of driving behaviour metrics 

with mobile phone use: 

 Average speed per trip was found to be negatively associated with the odds of mobile 

phone use on all road types (odds ratio exp(B=-0.004) is equal to 0.996), confirming 

existing studies. The effect is significant only in the global model of all road types. 

 The effect of exceeding the speed limit was found to be more sensitive than that of 

average speed. The average percentage exceedance of speed limits reduces the odds of 

mobile phone use; in general, drivers who are speeding more, are less likely to use their 

mobile phone during the trip, especially on highways (odds ratio exp(B=-2.512) equals 

0.081). An exception is the urban road environment, where a relatively low positive 

relationship is found between higher exceedance of speed limit and the odds of mobile 

phone use. 

 The higher the number of harsh events per trip distance, the lower the odds of mobile 

phone use (parameter B is negative for all road types except for highways); the literature 

suggests that drivers reduce speed while distracted, and therefore are less prone to harsh 

events. Again, there is an exception, namely while driving on highways, where a higher 

number of harsh events is associated with higher odds of mobile phone use. This may 

be interpreted by the higher speeds on highways, which may not be easily compensated. 

 The variable average angular speed (measured in ο/s) reflects the smoothness of 

cornering manoeuvres during the trip. This particular type of harsh event was found 

statistically significant in the global model, suggesting that the higher the angular speed, 

the lower the odds of mobile phone use (odds ratio exp(B=-0.058) equals to 0.94). 

 

Table 1(b) presents the classification of outcomes as per the final model for all road types. It 

can be seen that more than 70% of actual cases where mobile phone was used during a trip are 

correctly identified by the model. “False positives”, i.e. cases falsely classified as mobile phone 

used are 28.6%. However, classifications are less successful in the separate models; the true 

cases of mobile phone use are correctly predicted by 58%, 43% and 29% on urban roads, on 

rural roads and on highways respectively. It is noted that the “false positives” are minor shares 

of the classified cases in all three separate models, suggesting that the driving metrics found to 
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be statistically significant may accurately predict cases of “not using mobile phone”, but not 

so accurately “using mobile phone” cases.  

 

 

5. Discussion 

 

The results from the interpretation of the estimated parameters of the models can be 

summarized as follows: Exposure metrics significantly associated with the odds of mobile 

phone use while driving are the trip length and the driving off-morning rush. Exceeding speed 

limits, the total number of harsh events, and the harsh cornering in particular, are all associated 

with the odds of someone using the mobile phone, with a general patterns of less speeding and 

smoother driving being indicative of mobile phone use.  

 

These results refer to the use of mobile phone as a binary variable (yes/no) at the trip level. It 

is interesting to note, however, that descriptive analysis using the share of mobile phone use 

over the trip duration, revealed that longer conversations may be related to an increase in harsh 

events. Future statistical analysis will also consider the share of mobile phone use as dependent 

variable, for further insights into distracted driving behaviour. 

 

Overall, it appears that mobile phone use can be “detected” in the absence of other risky or 

reckless behaviours, and not at their presence, which is in line with the findings of previous 

studies. The detection of the use of mobile phone while driving on the basis of other driving 

metrics can be made quite accurately when all trips are examined together, as well as for trips 

in urban areas. There are some specific patterns identified that differentiate between urban, 

rural and highway driving while using mobile phone, but the overall model is considered more 

reliable than the road type specific models. 

 

The current lack of data on driver characteristics (e.g. age, gender, etc.) certainly limits the 

potential of further explanation and more correct detection of distracted driving, as existing 

studies suggest that these variables would be important additional predictors. Nevertheless, the 

proposed general model may classify correctly a fair share of distracted driving cases, even 

though these “predictions” are based solely on driving exposure and behaviour metrics and no 

individual driver characteristics. It is important to highlight that there is little or no previous 

experience on analysing and predicting mobile phone use through microscopic driving 

behaviour metrics collected from such a portable in-vehicle device, and therefore the results of 

the present research cannot be directly compared to those of existing literature. 

 

The present analysis has some other limitations as well. The use of relatively aggregate data 

(e.g. average metrics per trip) may have compromised the identification of more detailed 

patterns corresponding to distracted driving. The more disaggregate data available after the 

cleaning and first processing of the raw data may allow for more detailed analysis; however, 

in this case completely different Big Data analysis methods are required, mostly non parametric 

methods. The present paper applied a relatively “traditional” modelling technique and the 

results are promising that more disaggregate analysis would provide further insights. 

 

Moreover, the analysis focuses on mobile phone conversation in handheld mode, as no data 

could be made available at the time of the research on hands-free conversation, texting, 

browsing etc., but this will be pursued in the near future. 
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As regards the data collection system, a number of observations can be made: the use of 

smartphone sensors alone has some limitations compared to full vehicle instrumentation in 

naturalistic driving experiments, most importantly the lack of data on vehicle headways, driver 

reaction time (e.g. brake response) or video data (e.g. eye-glances behaviour). The main 

purpose of the models developed is the analysis and potential detection of mobile phone use 

through other driving metrics. In this context, the metrics collected appear to provide insights 

on a number of additional and more detailed driving behaviour factors associated with mobile 

phone use, making this “lighter” approach quite promising. It is possible that rapid 

developments in smartphone technologies (e.g. dual cameras) may boost the possibilities for 

additional driving behaviour metrics and additional analyses. 

 

6. Conclusions 

 

This paper aimed to investigate the potential of analysing driving offences on the basis of driver 

exposure and behaviour metrics collected by smartphone sensors, focusing on the case of 

mobile phone use while driving. The question is particularly important as mobile phone use 

while driving is known as a major and persistent risk factor (alongside speeding, alcohol, etc.). 

Given that the penetration and use of mobile phones is expected to further increase, together 

with their numerous emerging functionalities and apps, driving risks may also increase. 

 

The main implication of the findings are the following: First, the results reveal correlations of 

mobile phone use while driving with specific driving behaviour and exposure metrics, at a more 

detailed level than existing studies (e.g. exceeding speed limit, harsh cornering). Second, the 

findings suggest that, by means of driving behaviour metrics, one may potentially “detect” 

phone use. The driving metrics of interest can be collected by means of a variety of sensors: 

the smartphone itself, an OBD device etc. Therefore, further research should focus on the 

investigation and validation of this potential. Eventually, real-time detection of mobile phone 

use may support the implementation of innovative enforcement and awareness raising schemes, 

through driver notification and alert (either in real-time or post-trip) aiming to reduce the use 

of mobile phone while driving.  

 

At a more general level, the expected increase in the use of modern smartphones, and the rapid 

digitalization of so many every day activities, may be seen as an opportunity to exploit the 

wealth of data that can be made available by smartphone sensors, and the new possibilities for 

data transmission and processing, in order to identify new ways of tackling and mitigating the 

prominent risk factors and improve road safety. 

 

For instance, by identifying the key risk factors while driving, vehicle manufacturers may be 

able to develop new systems that will directly improve the safety of vehicle occupants and 

other road users through primary and secondary safety features. One specific application area 

for the industry relates to the development of targeted advanced automatic driver distraction 

recognition and prevention systems. Moreover, vehicle insurance companies may exploit 

smartphone data within their UBI schemes and reward cautious drivers with reduced premiums. 

Telematics and IT groups may develop new smartphone apps and social gamification schemes 

for road safety targeted directly to the individual drivers. 

 

The present research contributes a preliminary example of explaining and detecting mobile 

phone use while driving on the basis of a relatively small number of driver exposure and 

behaviour metrics. Despite some limitations, the results suggest that such analysis is feasible, 

and further research should focus on the improvement of the accuracy of the models, by 
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exploring more variables and alternative modelling techniques. An intuitive next step of this 

research is the validation of the models with a new dataset and a simulation-based estimation 

of model predictions, and this will be pursued in the near future. 
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Figure 1. The OSeven data flow system 
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Figure 2. Driving pattern recognition by means of Machine Learning algorithms on Yaw, 

Pitch & Roll data 
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Figure 3. Driving behaviour indicators and OSeven driver feedback app  
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Figure 4. Total number of harsh events per trip distance in relation to the share of mobile phone 

use during the trip 
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Figure 5. Share of mobile phone use per trip in relation to average speed 
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Table 1. (a) Parameter estimates of the mixed binary logistic models for all road types, and 

separately for urban roads, rural roads and highways - (b) Outcomes Classification Table for 

all road types 

 

(a) 

Parameter 

estimates 
All road types Urban roads Rural roads Highways 

Fixed effects B P-value B P-value B P-value B P-value 

Constant 1.094 <0.001 1.488 <0.001 2.443 <0.001 4.138 <0.001 

Morning rush  0.130 0.006 0.233 <0.001 0.110 0.044 0.373 0.002 

Afternoon rush  -0.262 <0.001 -0.111 0.008 -0.206 <0.001 -0.161 <0.001 

Average 

percentage of 

speed over the 

speed limit 

-0.334 0.027  0.395 <0.001  -0.938 <0.001  -2.512 <0.001 

Average speed -0.004 0.001  - - - - - - 

Average angular 

speed 
-0.058 <0.001 - - - - - - 

Total Harsh 

events 
-0.064 <0.001 -0.034 <0.001 -0.084 <0.001  0.148 <0.001 

Time driving  - - -0.001 <0.001 - -  -0.001 - 

Percentage of 

time driving in 

road type 

- - - - -2.784 <0.001 - - 

Random effect 

(variance of 

random intercept) 

1.261 <0.001 1.346 <0.001 1.153 <0.001 1.429 <0.001 

Number of 

observations 

(trips) 

18,853 18,853 18,853 18,853 

Number of 

drivers 
100 100 100 100 

AIC* 86,301 88,375 93,315 142,526 

*Akaike Information Criterion 

 

(b) 
Mobile Phone 

use 

Predicted (%) 

Observed  No Yes 

No 71.4 28.6 

Yes 29.9 70.1 

 

 

 


