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Abstract  

 

Spatial analyses of crashes have been adopted in road safety for decades in order to 

determine how crashes are affected by neighboring locations, how the influence of 

parameters varies spatially and which locations warrant interventions more urgently. 

The aim of the present research is to critically review the existing literature on different 

spatial approaches through which researchers handle the dimension of space in its 

various aspects in their studies and analyses. Specifically, the use of different areal 

unit levels in spatial road safety studies is investigated, different modelling approaches 

are discussed, and the corresponding study design characteristics are summarized in 

respective tables including traffic, road environment and area parameters and spatial 

aggregation approaches. Developments in famous issues in spatial analysis such as 

the boundary problem, the modifiable areal unit problem and spatial proximity 

structures are also discussed. Studies focusing on spatially analyzing vulnerable road 

users are reviewed as well. Regarding spatial models, the application, advantages and 

disadvantages of various functional/econometric approaches, Bayesian models and 

machine learning methods are discussed. Based on the reviewed studies, present 

challenges and future research directions are determined.  
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1. Introduction 

 

Road safety has been a major issue in contemporary societies, with road crashes 

incurring major human and material costs annually worldwide. Traffic and road safety 

practices have been implemented to save lives by halting the increase of road traffic 

fatalities against an ever-rising population (WHO, 2015), though it appears that the 

global target of halving road traffic deaths by 2020 will not be met (WHO, 2018). 

 

The still occurring and plateauing crash casualties suggest a lot of untapped potential 

and margins for safety improvements that can be exploited if the occurrence of crashes 

can be predicted more accurately. Road safety scientists have invested considerable 

efforts in studying the impacts of several risk factors (e.g. Theofilatos & Yannis, 2014; 

Papadimitriou et al., 2019) and road safety measures (e.g. Elvik et al., 2009) and have 

developed or adopted a number of mathematical methodologies to approach crash 

prediction problems (e.g. Lord & Mannering, 2010) or road safety site prioritization 

problems (e.g. Lee & Abdel-Aty, 2018). 

 

Since road transport involves distances by nature, it stands to reason that spatial 

analyses would be considered by researchers. Spatial analyses in road safety typically 

involve the examination of crashes while taking their absolute or relative locations into 

account. Crashes face the typical issues of all point data: spatial dependence and 

spatial heterogeneity. 

 

In simple terms, spatial dependence essentially refers to events at a location being 

highly influenced by events at neighboring locations. It is usually measured via spatial 

autocorrelation metrics. In turn, autocorrelation refers to the influence of variable 

values of given points on variable values of adjacent points (spatially or temporally). 

Spatial heterogeneity occurs in the modelled relationships as the coefficients between 

random parameters and observed events are not fixed spatially. 

 

Therefore, researchers have discovered several caveats and merits in conducting 

spatial analysis. Road crashes are subject to both spatial and temporal variations (Loo 

& Anderson, 2015), intuitively suggesting spatial analyses as informative. By 

accounting for spatial dependence and heterogeneity in the estimates, spatial 

analyses describe how regions affect and are affected by the road safety attributes of 

their neighbors, and how the influence of explanatory parameters varies across space 

as well.  

 

As a more specific example, when considering spatial correlation in crash models, 

estimates are effectively "pooling strength" from neighboring locations, thus improving 

the produced estimations (Aguero-Valverde & Jovanis, 2008). Road crashes are a 

complex phenomenon, and their analysis requires assumptions and merging of the 

examined parameters for a feasible approach, which unavoidably leads to some 

degree of loss of information or even misrepresentation of the actual conditions (Xu & 

Huang, 2015). Spatial analyses can counterbalance this loss by providing predictions 

of counts of crashes (and of similar incidents, such as near-misses) that vary across 

different units of analyses, thus capturing all the unobserved trends and particularities 

of each area. Thus not only is better theoretical understanding provided for crash 
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occurrence across space, but the identification of high-risk sites (known as hotspots) 

becomes more accurate (El-Basyouny & Sayed, 2009; Aguero-Valverde, 2014).  

 

The mathematic particulars of spatial analyses have been examined in several 

published studies, for instance in Bivand et al. (2009) for Global and Local Moran's I 

and in Ver Hoef et al. (2018) for conditional autoregressive priors (CAR) models or 

simultaneous autoregressive priors (SAR) models. The reader is also referred to Yao 

et al. (2016), for a review of major advancements of spatial crash analysis using 

applied GIS tools since 1976.  

 

The aim of this paper is to provide a review of the scientific literature regarding spatial 

approaches and spatial analyses in road safety. The present study is an endeavor to 

investigate how road safety researchers handle the dimension of space in its various 

aspects in their studies, whether that regards modelling of spatial events, selecting the 

scale of areal units or proximity structures, tackling boundary problems or other specific 

issues (such as vulnerable road users – VRUs). In order to achieve the aim of the 

current research, published scientific studies (in English) are critically examined. The 

selected studies were intended to be representative of a wide array of countries and 

adopted methodologies, in order to provide a well-rounded summary of the state-of-

the art in road safety spatial analyses. Emphasis was given to more recent studies, 

with some seminal endeavors being included as well for completeness.  

 

The main focus of the current study is on study characteristics, modelling approaches 

and methodological issues. It should be noted that this research only includes studies 

that conducted explicit and dedicated spatial or spatio-temporal analyses, as opposed 

to studies that examine different areas for purposes of cross-sectional or case-control 

studies (and as such do not examine the spatial aspect of road safety incidents). The 

second category of studies has its own merits and has been extensively implemented 

in road safety research, but falls out of the scope of this review. 

 

This paper is organized as follows. Section 2 includes an examination of the different 

spatial units of analyses, together with famous boundary and zonal problems, as well 

as the issues of proximity structures. Section 3 outlines various modelling approaches, 

while Section 4 discusses issues in spatial analyses of VRUs. Finally, a discussion of 

overall findings from the review process and future research directions are provided in 

Section 5. 

 

2. Examination of spatial units  

 

Spatial analyses in road safety fundamentally involve the examination of road safety 

indicators (crash counts or rates, injury severity rates etc.) across spatial units of 

analyses. The manner in which researchers select and define these spatial units 

directly influences the scope of the study, as well as the interpretability of results, while 

this can apply to data preparation as well (Imprialou et al., 2016). There is a structural 

difference, for instance, in examining spatial distribution of road safety indicators in 

consequent road segments that feed traffic flow seamlessly into each other compared 

to examining junction clusters with several inflows and outflows for the distributions of 

the same indicators.  
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Different spatial units are discussed in the following section, and study characteristics 

for each spatial unit level are summarized on Tables 1-4. It was decided to include 

study characteristics initially considered by researchers on the Tables of this review, 

even if they were not found significant in the respective final models, to better 

showcase the scope of each research. The examined crash categories are denoted 

with the following acronyms with respect to the involved road users: Total Crashes 

(TC), Motorcycle crashes (MC), Single Vehicle crashes (V), Vehicle-vehicle crashes 

(V-V), Bicycle-vehicle crashes (B-V) and Pedestrian-vehicle crashes (P-V). When 

crash category details are not given about the examined crashes in a study, they are 

noted as TC. Additional details, such as the analysis of a specific crash type are noted 

as well. 

 

2.1. Road segment and intersection approaches 

Initial approaches of spatial analyses involved the more intuitive examination of road 

safety indicators across singular or multiple road sections, such as straight road 

segments and intersections. Earlier approaches involve the depiction and analysis of 

spatial distribution of crashes on (state) highways, in an attempt to perceive visual 

patterns of heightened concentration and possible correlation with touristic areas 

(Page & Meyer, 1996), albeit with a small sample. Furthermore, examination of the 

impact of the length of segments on crash counts and density which were found to 

follow Poisson distribution in the smaller segment scales growing from more 

intermediate distributions to normal distributions as segments increased, as shown by 

a study by Thomas (1996) that also first touched on the modifiable areal unit problem 

in road safety (discussed in section 2.6).  

 

It has been determined that local environment and road infrastructure are critical 

factors of crash occurrence (Flahaut, 2004; Wang et al., 2016a). A traditional division 

when examining straight road segments is road type; highways with divided traffic 

directions display different road safety mechanisms than undivided two-lane 

expressways and for decades have been analyzed separately, a practice that is 

continued in segment-based spatial analyses. 

 

The environment of road segments has been traditionally examined separately in the 

literature, with researchers distinguishing between urban and rural segments and often 

producing comparative analyses between different types of segments. A spatial 

analysis by Flahaut (2004) determined 2-lane configurations as the most unsafe 

configuration for rural roads. For urban roads, it has been found that increases in the 

number of crosswalks and the densities of unsignalized intersections both increase 

crash occurrence (Barua et al., 2014). Furthermore, local and non-local drivers are 

found to cluster along road segments, and segments with adverse safety interactions 

between these two groups are estimated to transfer these effects spatially to 

neighboring segments (Wang et al., 2016a). 

 

In spatial analyses, researchers examine intersections either in groups (Guo et al., 

2010; El-Basyouny & Sayed, 2011) or in aggregation (Miaou & Lord, 2003; Wang & 

Abdel-Aty, 2006). Intersection geometry, location and traffic parameters are important 

within the context of spatial analyses. The size of intersection, the traffic conditions by 

turning movement, and the coordination of signal phase have significant impacts on 
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the number of crashes at intersections (Guo et al., 2010). Xie et al. (2013) have shown 

intersections on segments with lower mean speeds were associated with fewer 

crashes than those with higher speeds, and that intersections on two-way roads, under 

elevated roads, and in close proximity to each other, tended to have higher crash 

frequencies as well. A seminal result of a study by Abdel-Aty & Wang (2006) shows 

that overall, three-legged intersections tend to exhibit lower crash rates than four-

legged intersections, and that they exhibit different road safety mechanisms. 

Furthermore, effectiveness of implemented road safety treatments can vary between 

locations when considering injury severity levels (El-Basyouny & Sayed, 2011). 

 

When proximal segments are considered, with the layout of a simple road network, it 

is important to note that there are spatial correlations between intersections and their 

adjacent segments, which have been found to be significant in the literature (Abdel-

Aty and Wang, 2006; Quddus, 2008; Aguero-Valverde & Jovanis, 2010; Dong et al., 

2014; Dong et al., 2015; Wang & Huang, 2016). Spatial correlation is also found in 

crashes of intersections along the same corridor, due to similar traffic flow patterns, 

presence of traffic signals and geographic characteristics (Guo et al., 2010), an issue 

which ought to be properly addressed with proper modelling tools (Xie et al., 2014). 

Additionally, several studies have integrated corridor-level characteristics into 

segment-level or intersection-level analysis in an effort to capture factors explaining 

heterogeneity (Abdel-Aty and Wang, 2006; Guo et al., 2010; Xie et al., 2014).  

 

A different effort was made by Zeng & Huang (2014), who endeavored to model crash 

counts on road segments and intersections simultaneously. They used Bayesian 

spatial joint models to account for spatial correlations between adjacent road segments 

and intersections that were found to be more accurate than simple Poisson and 

negative binomial models. The joint model integrated junctions and segments to the 

basic link function. An indicator variable which denoted whether a segment or 

intersection was examined was utilized. The authors highlight that the spatial 

correlations between intersections and their connected segments were more 

significant than those found between intersections or between segments only, 

presumably due to common unobserved parameters such as speed. The approach of 

joint simultaneous modelling of intersections and segments was further advanced by 

Alarifi et al. (2017) who developed four multi-level Bayesian joint models for that 

purpose. Specifically, the reasoning was to complement the intersection/segment 

examination by including corridor-level characteristics in the models. Because corridor 

characteristics vary along their length, random forest models were used to divide 

corridors into-sub corridors of fixed-value characteristics. Ultimately there were 

statistically significant variables at the segment level, at the intersection level and at 

the corridor/sub-corridor level; the importance of median opening density for crash 

occurrence was underlined from the results. However, spatial autocorrelation of 

adjacent road entities was not examined in that study. Moreover, Alarifi et al. (2018) 

(discussed in Section 2.7) also conducted analyses including intersection-, road 

segment- and corridor-level parameters, in an attempt to explore that research 

question.  

 

Reviewed studies that primarily focus on spatial analyses at the individual road 

segment/intersection level are shown on Table 1.  
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[Table 1 to be inserted here] 

 

2.2. Zonal approaches 

A number of zonal units have been adopted by researchers, from smaller to larger 

ones. Their boundaries can be census-based, administrative-based or traffic-based, 

and are dependent on the country or environment of study. Studies in the UK might 

utilize enumeration districts, namely areas averaging circa 200 households (Noland & 

Quddus, 2005) or census wards, which include about 2000 households (Noland & 

Quddus, 2004; Quddus, 2008). Similarly, studies from other countries have used 

locally available spatial units, such as the Australian ABS structure units (Statistical 

areas 1,2 (SA1,2), state electoral divisions (SED)) used by Amoh-Gyimah et al. (2017). 

 

Many studies originate from the US and have utilized units that are used there: Census 

Blocks (CBs) are the smallest unit, averaging 85 people and are expanded to Census 

Block Groups (CBGs), averaging 39 blocks with about 1500 people (Lee et al., 2017a). 

CBGs have been utilized by road safety researchers to some extent (Levine et al., 

1995; Abdel-Aty et al., 2013). 

 

Traffic Analysis Zones (TAZs) are created primarily in the US with the explicit purpose 

of collecting trip and traffic statistics and data, though they have been implemented in 

other countries as well (Ng et al., 2002; Gomes et al., 2017). From traditional zonal 

approaches, TAZs are the only traffic-related zone system (Lee et al., 2017a), which 

might explain their popularity for utilization in spatial analyses (e.g. Ng et al., 2002; 

Hadayeghi et al., 2003; Ladrón de Guevara et al., 2004; Lovegrove & Sayed, 2006; 

Lovegrove & Sayed, 2007; Hadayeghi et al., 2010; Naderan & Shahi, 2010; Abdel-Aty 

et al., 2011; Abdel-Aty et al., 2013; Dong et al., 2014; Lee et al., 2014b; Dong et al., 

2015; Lee et al., 2015a; Xu & Huang, 2015; Dong et al., 2016; Nashad et al., 2016; Xu 

et al., 2017a, 2017b;  Bao et al., 2017; Gomes et al., 2017). TAZs can be also 

expanded for road safety assessment purposes by aggregating TAZs groups with 

similar crash rates, thus creating Traffic Safety Analysis Zones (TSAZs), (Lee et al., 

2014b; Abdel-Aty et al., 2016). 

 

Census Tracts (CTs, or census output areas) are larger units containing about 4000 

people of comparable socio-economic statuses in the US (or about 2500 people in the 

UK). They too have been adequately explored in road safety spatial analyses in the 

literature (e.g. LaScala et al., 2000; Loukaitou-Sideris et al., 2007; Delmelle & Thill, 

2008; Wier et al., 2009; Cottrill & Thakuriah, 2010; Ukkusuri et al., 2011; 

Narayanamoorthy et al., 2013). 

 

Similar to TAZs, Traffic Analysis Districts (TADs) are newly created, larger geographic 

traffic related units used for transport analyses. A few recent studies have utilized 

TADs as basis for analysis (e.g. Abdel-Aty et al., 2016, Cai et al., 2017b; Lee et al., 

2017a). Other zonal areas have been used as well by exploiting existing utility systems, 

such as postal-ZIP codes (e.g. Lee et al., 2014a; Bao et al., 2018) and urban/rural 

areas defined by healthcare authorities (e.g. MacNab, 2004; Bu et al., 2018).  

 

Reviewed studies that primarily focus on spatial analyses at zonal levels are shown on 

Table 2. 
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[Table 2 to be inserted here] 

 

TAZ approaches can conceptually include elements of segment approaches nested in 

them. An example is the study of Yasmin & Eluru (2016) that employed latent 

segmentation count models where TAZs are allocated probabilistically to different 

segments. This was in order to limit external factor impact and to classify segments 

within a TAZ to high- and low- risk based on empirical expected crash means. Studies 

have also developed models on several zonal systems for comparison purposes 

between them. Abdel-Aty et al. (2013) claimed that while TAZs and CBGs are equally 

desirable for spatial analysis, TAZs allow the examination of more transport-related 

factors, and thus are easier to integrate in transport contexts. Furthermore, the 

aggregation of TAZs into TSAZs with a rate of about 1:2 was found to be preferable 

for macroscopic safety modeling (Lee et al., 2014b). Cai et al. (2017a) conducted 

comparative Poisson lognormal models for three crash types with and without 

considering spatial autocorrelation effects, and recommended that CTs are better used 

for socio-demographic data collection, TAZs are used for transportation demand 

forecasting and TADs are used for transportation safety planning. Different zonal levels 

have also been used in conjunction for simultaneous aggregate and disaggregate 

modelling; it has been shown that aggregate models using ZIP codes were more 

volatile in parameter values and significance levels, while disaggregate CT models 

provided more consistent results (Ukkusuri et al., 2012). Lastly, it has been determined 

that separate considerations for crashes near TAZ boundaries revealed unique 

predictor variables (Siddiqui & Abdel-Aty, 2012), a finding worthy of examination in all 

spatial units.  

 

2.3. Regional approaches 

Regional areas (counties, cities, metropolitan areas, states) that are larger than the 

zonal ones examined above have also been implemented in the literature. Regional 

areas are administrative units, with often different governance laws and frameworks 

than their neighboring areas, as is often the case in US states. In the US, entire 

Metropolitan Statistical Areas (MSAs) have been used for the National Household 

Travel Survey, which has provided data for pedestrian trips (Lee et al., 2019a). The 

benefit of using regional units can lie in the interpretation of model results and possible 

evaluation of risk factors or road safety interventions, such as legislation changes. For 

instance, a study by Song et al. (2006) applied Bayesian multivariate spatial models in 

county-level data in Texas, and results indicated that eastern Texas counties had 

higher crash risks than western Texas counties, with less safe sites being near large 

city conglomerations. Studies have examined road safety indicators at the level of 

geographic units formed from communities (LaScala et al., 2001; 2004), at the city 

level (Moeinaddini et al., 2014), at the metropolitan area level (Bu et al., 2018), at the 

county level (Noland & Oh, 2004; Song et al., 2006; Erdogan, 2009; Huang et al., 2010; 

Li et al., 2013) or similarly at the state level (Atubi, 2012).  

 

Regional-wide crash modification factors (CMFs) have also been developed for a 

single change affecting the traffic environment uniformly, e.g. for legal changes in 

some U.S. States or across the entire country (Lee et al., 2017b; 2018a), however this 

approach does not take spatial effects explicitly into account. As the area size 
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increases, it is important to remember that unobserved heterogeneity is more difficult 

to capture, due to multiple unobserved parameters being introduced in the occurrence 

of events; as Wang et al. (2016b) state, it becomes more difficult to capture spatial 

trends and problems in a larger area. If differences in comparable units between 

remote areas such as different countries are taken into account, it is reasonable to 

assume that transferability of results for macroscopic spatial analysis is far from 

seamless. In a study seeking to examine transferability of results across regions of 

different countries (from US counties to Italian provincias) Lee et al. (2019b) employed 

negative binomial models using data from both countries and calculated the respective 

transferability indexes and calibration factors. Models for total crashes and bicycle 

crashes were transferable from Italy to the US; the opposite, however, was found to 

be untrue for most study areas. In addition, no model for pedestrian crashes was found 

to be transferrable between the two countries. It is important to note that this statistical 

disagreement emerged even while several significant variables were common across 

the two countries, and without accounting for spatial effects in the models of the study.  

 

Reviewed studies that primarily focus on spatial analyses at the zonal level are shown 

on Table 3. 

 

[Table 3 to be inserted here] 

 

2.4. Conditional approaches  

Apart from defined zones, conditional approaches have been adopted. As conditional 

is hereby defined any approach that does not utilize any of the previous segment, zonal 

or regional approaches but a more rigid ruleset set by researchers. An example is fix-

distance grid structures, such as 0.1 square mile grids (Kim et al., 2006), 1 square mile 

grids (Ossenbruggen et al., 2009) and multiple grid sizes from 1 to 100 square miles 

(Cai et al., 2017a). While the impacts of grid-based characteristics on crash counts 

have been proven to be statistically significant, a grid of a particular size might be 

improper for certain areas, depending on spatial distributions of safety-related 

parameters (Kim et al., 2006). 

 

An example of approaches that are conditional not by area, but by crash circumstance, 

are link-based approaches that utilize crash-mapping algorithms and assign crashes 

to each road segment, and assuming that the crashes happening on the same link 

have the same underlying conditions, which might not always be the case. Link-based 

approaches can be problematic in providing interpretable results, however. 

Conversely, crashes can also be grouped by pre-crash conditions, regardless of their 

actual location, for the purposes of spatial analyses. Pre-crash conditional approaches 

have appeared to be more transferable overall (Imprialou et al., 2016).  

 

Reviewed studies that primarily focus on conditional spatial analyses are shown on 

Table 4. 

 

[Table 4 to be inserted here] 

 

2.5. Integration of different areal units 
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The aforementioned integration of characteristics of the corridor level to road segment 

or intersection level analysis by several studies (Zeng and Huang, 2014; Alarifi et al., 

2017; 2018) is a considerable achievement in road safety. In these studies, the levels 

of analysis can be considered to be close in geographical characteristics (i.e. a 

segment is similar to a corridor). There have been other endeavors, however, to 

integrate factors from units of more different scales in spatial analyses, such as zonal-

level characteristics to segment-level analysis. 

 

As stated before, the zonal level has become a promising medium during the more 

recent years for the exploration of new approaches of spatial analyses. Zonal factors, 

such as Vehicle Miles Traveled (VMT), are considered to be shared by segments of 

both segments and intersections of the same zone. It has been hypothesized that both 

observed and unobserved heterogeneity at the zonal level would influence crash 

frequency at both segments and intersections inside these zones. Cai et al. (2018) 

investigated crashes at the TAD level across three counties to determine the influence 

of any observed and unobserved zonal factors. Results indicate that including zonal 

factors improve model performance for both segment and intersection crash frequency 

prediction.  

 

Another concept is incorporating macro-level variables into micro-level safety analysis. 

This has been attempted by Lee et al. (2017a) across seven areal units of varying 

sizes for intersection crashes. They determined that accounting for macro-level 

variables and introducing macro-level random-effects leads to models of better 

performance than the baseline, though performance varies when using data of 

different areal unit size. Additionally, there have been endeavors to link crash counts 

of micro- and macro-levels through their spatial interaction (Cai et al., 2019a). A spatial 

interaction matrix was created based on whether a road segment (micro-level) was 

inside a zone (macro level), and an adjustment factor was introduced to bridge the 

different estimates of expected crashes that would occur for the two levels. Once 

again, following an integrated approach increased model performance; moreover, the 

determination of both macro- and micro-level risk factors that influenced crashes were 

possible, as well as crash hotspots on both levels.  

 

Conversely, road-level factors have been shown to influence safety by varying effects 

across regions, and can be considered to be correlated with unobserved 

heterogeneity, to an extent. To demonstrate this, a dedicated study examined 

specifically urban two-lane roadway segments in 34 counties in Florida, US. 

Regression coefficients of Poisson lognormal models and hierarchical models were 

found to fluctuate considerably for crash counts across the examined counties (Han et 

al., 2018). However, neither factors at the regional level nor spatial correlations at the 

microscopic level were taken into account in that particular study.  

 

Huang et al. (2016) investigated a possible bridging of the macro- and micro-level 

approaches for an integrated crash prediction and hotspot identification approach. 

Crashes were analyzed both jointly at the micro-level (road segment/intersection level) 

and at the macro-level (TAZ level). The authors developed both a micro-level Bayesian 

spatial joint model and a macro-level Bayesian spatial model; as expected, the models 

included different statistically significant variables. Results reaffirmed the known model 



10 
 

merits: micro-level modelling provided more informative and precise insights for 

directly improving road safety, while macro-level modelling allows for incorporating 

safety improvements in long term transportation planning. The authors acknowledge 

that TAZs may have unobserved scale and zonal effects and further, the boundary 

issue – explained in the following – needs to be accounted for. 

 

2.6. Boundary problem and Modifiable areal unit problem 

Apart from conducting studies across many different areal levels and bridging aspects 

and attributes of different spatial levels, researchers have also shown interest on how 

to define areas and areal units and how to treat events on their boundaries. The 

boundary problem, or boundary effect, refers to the manner in which crashes recorded 

on (or very close to) the borders of neighboring study areas are allocated and treated 

in statistical analyses. Fotheringham & Wegner (1999) claimed that neighboring zones 

influence crashes close to the borders of areal units. Since then, several studies have 

explored the problem, each proposing a solution. Delmelle and Thill (2008) mention 

simple solutions such as (1) assigning the locations as they were assigned by police 

records, (2) double-counting boundary crashes or (3) apportioning crashes, dividing 

the counts per neighboring zones. 

 

Separate predictor sets have been prepared for boundary and interior pedestrian 

crashes per TAZ, introducing buffer zones around 2-D borders. This mutually exclusive 

separation and modelling within a hierarchical Bayesian framework has led to 

increased model fit. However, this approach was adopted due to the limited distance 

travelled by pedestrians, and accounting for additional road user types might differ due 

to higher amounts of areal units that are typically crossed (Siddiqui and Abdel-Aty, 

2012). Instead of using a fixed buffer zone, Cui et al. (2015) introduced an entropy-

based method applied on histogram thresholding, to obtain a variable buffer zone size. 

The crash density probability distribution was then calculated, and boundary crashes 

were aggregated into neighborhoods. The case study resulted in 6m and 9m buffer 

zones for central areas and south areas in Edmonton, Canada, respectively. The 

authors concluded that the entropy-based method was precise when compared to 

ground truth data, though more variables are required to verify this finding; especially 

traffic-related variables such as speed and traffic volume. 

 

An alternative was proposed by Zhai et al. (2018), who adopted an iterative data 

aggregation approach to compensate for the boundary effect. The reasoning behind 

this method was the division of each zone into boundary and interior, the development 

of a crash prediction model for each zone based on interior crashes only, the 

aggregation of crashes based on crash model predictions, the assignment of boundary 

crashes to each zone based on the proportions of expected interior crashes, and, as 

a last step, re-run the prediction model until convergence. The crash assignment based 

using the CAR Poisson Lognormal Bayesian Spatial Model. It is notable that the impact 

of several independent variables were found to be influenced by the boundary effect 

in the case study in Florida, US. Both Cui et al. (2015) and Zhai et al. (2018) 

demonstrated that certain analytical approaches outperform conventional rules such 

as the various ratio methods that split boundary crashes based on numerical rules or 

exposure parameters). It is also worth noting that certain Bayesian statistical models 
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can express the interaction of neighboring zones on crashes close to zone boundaries 

via the utilization of corresponding spatial weights (e.g. Wang et al., 2016b). 

  

The modifiable areal unit problem (MAUP) occurs when boundaries are changed 

inside the study areas, causing possible influences on the statistical models and 

resulting inferences (Openshaw, 1984). The issue is particularly present in road safety 

when area boundaries are arbitrary or malleable, without any hard geographical 

borders, such as administrative areas or grids. Two studies did experiment with the 

discrepancies caused by MAUP on different aggregation levels (Ukkusuri et al., 2012; 

Abdel-Aty et al., 2013). While the areas which provided more accurate predictions were 

determined, no uniform solutions were proposed. When outlining MAUP, Xu et al. 

(2018) outlined four potential solutions. These were: (1) using disaggregate data as 

possible (2) capturing the spatial non-stationarity, which refers to capturing local space 

variation for each explanatory variable, (3) designing optimal zoning systems, an 

approach which presents its own limitations and (4) conduct sensitivity analysis for 

MAUP effects specifically.  

 

A recent study has empirically highlighted the important effects of MAUP on four 

different zonal configurations using an identical dataset (Zhai et al., 2019a). It was 

determined that the impact of MAUP was significant on parameter estimates, model 

assessment and hotspot identification. Larger zones, such as CTs and ZIP codes led 

to models of higher predictive accuracy in that study. It has also been considered that 

the zonal systems may have inherent limitations by Lee et al. (2014b), who developed 

ten new zonal systems to tackle both the boundary and the MAUP problems. The 

Brown-Forsythe homogeneity of variance test was implemented to obtain the optimal 

zonal scale, which was found to be at the custom TSAZ level, as zones cannot be 

scaled up indefinitely to reduce boundary crash percentages. However, the authors 

state that the boundary issue still needs to be accounted for in TSAZs, and that further 

research on additional crash types such as non-motorized (VRU) crashes is needed. 

 

2.7. Examination of spatial proximity structures 

A critical point that attracts researcher interest is the creation of different spatial 

proximity structures and the examination of the effects these structures have on model 

performance and fit. Various spatial proximity structures have been formulated both at 

the microscopic and macroscopic levels. Regarding the microscopic level, Aguero-

Valverde & Jovanis (2010) concluded that by including route information in the 

neighboring structure, especially in a simple neighboring structure (direct adjacency), 

model performance is improved. 

 

Regarding the macroscopic level, Dong et al. (2014) evaluated crash prediction 

models at the TAZ level using four different types of spatial proximity structures (0–1 

first-order adjacency, common-boundary length, geometry-centroid distance, and 

crash-weighted centroid distance). The best model fit was provided when weighting 

the common-boundary length of neighboring TAZs, though cross-zonal spatial 

correlations was identified as present in crash occurrence for all four different 

configurations. The authors comment that the inclusion of all possible spatial 

correlations increases model complexity, thus resulting in decreased prediction 

performance. 



12 
 

 

Moreover, Alarifi et al. (2018) sought to investigate spatial weights configuration for a 

hierarchical spatial proximity structure, including intersection-, road segment- and 

corridor-level parameters. The authors examined four different types of 

conceptualization of spatial relationships and calibrated 13 Bayesian hierarchical 

Poisson-lognormal joint model with spatial effects. The adjacency-based first-order 

model (where directly adjacent road entities and feeding road entities are considered 

for each segment) was among the best performing models and once again significant 

variables were found in all configurations for all unit levels. The authors suggest that 

the sensitivity of AADT in the models is a matter for further investigation. 

 

Another sophisticated approach was the utilization of the space syntax technique for 

modelling street patterns. Space syntax acknowledges the configuration of the urban 

grid itself is responsible for generation of movement patterns (Hillier et al., 1993), 

though its exact use for deriving certain route choices has been challenged in the past 

(Ratti, 2004). Guo et al. (2017) considered simple geographical proximity as 

inadequate to properly describe spatial relationships of crashes. Rather, they sought 

to integrate road network characteristics in a zonal level examination. They used space 

syntax to quantify road network structures in Hong Kong through three main 

parameters on the TAZ level: (1) connectivity, (2) local integration and (3) global 

integration. After calculating global integration for three road network patterns (grid, 

deformed grid and irregular), it was determined that global integration was positively 

related with increased pedestrian-vehicle crashes. Furthermore, the more structured 

patterns featured the highest global integration values, thus irregular patterns were 

found to be the safest, followed by deformed grids and lastly (regular) grids.  

 

2.8. Further topics of areal unit analysis  

In spatial analysis, study designs sometimes appear to be data-driven, conducted 

where there is availability of information instead of intuition or previous experience. 

Availability of data does not necessarily imply its fitness for use in studies. As an 

indication, weather data measured from stations may or may not describe the situation 

at crash sites accurately. A study was conducted to evaluate the effectiveness of 

coverage of weather stations for use in spatially analyzing traffic crashes (Chung et 

al., 2018). Hourly data which are observed from land-based stations was contrasted 

with data from fatal crash databases. Through categorical analysis, sensitivity, positive 

predictive value, and Cohen's Kappa were examined, and it was determined that there 

were agreements of data in rain and snow weather conditions but not in fog, which 

displayed a 91% rate of false alarm. The authors suggest that fog may present higher 

spatio-temporal sensitivity as a parameter. While the weather station data was found 

adequate overall for use in crash analyses, the finding regarding the fog parameter 

ought to make researchers carefully consider possible data sources for their studies. 

 

Furthermore, instead of analyzing crashes collectively in each areal unit, or treating 

them as separate variables, different crash categories can be examined while taking 

their interactions into account. A study by Lee et al. (2018b) analyzed the proportions 

of crashes of each vehicle type at the TAZ level, using a fractional split multinomial 

model. The fractional approach ensures the summation of crash proportions of all 

categories to 100%, thus forcing interactions between each category. Findings showed 
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considerable differences as to which variables were statistically significant for each 

vehicle type. Moreover, the spatial distribution of hot zones varied considerably per 

vehicle type considered. On that matter, hotspots have also been found to vary 

temporally. Soltani and Askari (2017) conducted a spatial autocorrelation analysis of 

crashes and hotspots at the TAZ-level in Iran. Moran’s I and Getis-Ord Gi* methods 

were used, and were found to provide significant clustering. The authors examined 

crashes based on location, time of day and injury severity, which is a very rare 

combination of parameters. This time, hotspots were found to vary considerably across 

the various times of day. Another important finding is that zones located at 

intersections connecting other zones were identified as clusters with high crash rates. 

Despite the hotspot identification, however, no other explanatory characteristics were 

introduced in the analysis. It appears thus reasonable to assume that the identified 

hotspots may vary considerably if certain elements are introduced to a study or omitted 

from it.  

 

3. Modelling approaches  

 

This section provides a brief overview of the various modelling approaches 

implemented so far in the literature of spatial analysis in road safety. A multitude of 

tools have been developed that endeavor to predict road safety indicators (Lord & 

Mannering, 2010; Mannering & Bhat, 2014) and explain spatial correlation and 

unobserved heterogeneity and to incorporate the effects of various spatial 

characteristics that are difficult to be represented individually. Several studies have 

been testing various advanced models against simpler ones for performance 

assessment (e.g. Miaou & Song, 2005; Chiou et al., 2014; Dong et al., 2016; Aguero-

Valverde et al., 2016; Cai et al., 2019b).  

 

Multivariate models are found to have better goodness-of-fit and precision due to 

correlation between dependent variables, such as crashes of different severity levels 

while accounting for spatial correlation (Barua et al., 2014) or simultaneous crash 

frequency and severity examination (Chiou et al., 2014). The benefits of multi-level 

data have been discussed in spatial analyses, for instance the multilevel structural 

hierarchy proposed by Huang & Abdel-Aty (2010) combining driver-level and site-level 

data with geographic region characteristics.  

 

Spatial analyses often test for spatial autocorrelation or heterogeneity of events, and 

also consider size and structure for the various research areas and spatial units of 

analysis in the adopted approaches. For the precise examination of autocorrelation 

phenomena, various geo-spatial statistics have been adopted by scientists for 

decades, such as Moran's I, Local Moran's I, and Getis-Ord-Gi* statistics.  

 

Generalized Linear Models (GLMs) have been used extensively in the road safety 

literature for decades, since they assume crashes are independent, random and 

sporadic countable events (Hauer et al., 1988; El-Basyouny & Sayed, 2009). Their 

intricacies and limitations have been covered in past studies (e.g. Lord & Mannering, 

2010). While GLMs in their basic form are aspatial, they can be extended to incorporate 

spatial effects in their structure, eventually becoming quite advanced. An example is 

the EMGP model by Chiou & Fu (2013), further advanced by Chiou et al. (2014), which 
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originated as an extension of the multinomial-Poisson regression model with added 

error components, to which spatial correlation effects were also added. Better 

predictions have been obtained from GLMs including random effects rather from fixed 

effects, and from GLMs including zonal factors as opposed to those not including them 

(Cai et al., 2018). 

 

3.1. Geographically Weighted Regression  

A method that accounts for spatial variation is the simultaneous development of 

several localized models using Geographically Weighted Regression (GWR). First 

proposed by Fotheringham et al. (2002), these models extend the traditional 

regression framework to allow for a continuous surface of parameter values, with 

measurements at points that indicate the spatial variability of such a surface. A number 

of road safety GWR analyses have been published (Hadayeghi et al., 2003, 2010; 

Pirdavani et al., 2014a; 2014b; Rhee et al., 2016; Gomes et al., 2017; Liu et al., 2017). 

As Pirdavani et al. (2014b) note, GWR models offer explanatory and descriptive power 

and provide intuitive results that enable researchers and stakeholders to investigate 

varying effects of explanatory variables on crash occurrence throughout the study 

areas.  

 

Gomes et al. (2017) compared the performance of GWR extended in a GLM context 

and highlight that Geographically Weighted Negative Binomial Regression (GWNBR) 

is appropriate for spatially analyzing crash data while accounting for their over-

dispersion. Additionally, GWNBR models significantly reduced the spatial dependence 

of model residuals. GWNBR models were also utilized by Liu et al. (2017) to produce 

localized models at the roadway segment level, without restrictions by jurisdiction 

boundaries. The variation of three calculated parameters (intercept, AADT and 

segment length) was found to be substantial in highway segments across Virginia, US, 

though the effects of several factors remain to be examined. Additionally, the 

introduced parameter of segment length is present in spatial structures, which might 

introduce bias to GWNBR estimations. The authors comment that GWNBR models are 

highly localized, thus the transferability of their predictions is limited and need to be 

reapplied to each area. 

 

Xu & Huang (2015) extended GWR to semiparametric GWR (S-GWR), which 

combines geographically varying parameters with geographically constant 

parameters. Although their composite approach outperformed a random parameter 

negative binomial (RPNB) model, the authors claimed that S-GWR models are not 

transferable spatially, and that each region would need to develop separate S-GWR 

models (a common conclusion with the GWNBR method). S-GWR was compared 

again with RPNB by a study conducting crash analysis across six spatial units and 

three injury severity levels (Amoh-Gyimah et al., 2017). Again, results indicated that S-

GWR performed better than the RPNB overall, based on mean absolute deviation 

(MAD) and Akaike information criterion (AIC) metrics, and had increased prediction 

accuracy. On the other hand, RPNB displayed increased sensitivity when examining 

the effect of variation of spatial units on unobserved heterogeneity compared to S-

GWR. It should be noted that the latter study did not examine any geometrical 

characteristics such as segment length or intersection density.  
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S-GWR has also been employed to investigate possible correlations between jobs-

housing balance and road safety, since disruptions in that balance have been found to 

lead to reduced road network efficiency (Xu et al., 2017b). The authors converted jobs-

housing ratio to a categorical variable and then applied S-GWR models at the TAZ 

level. Considerable spatial variations were discovered for different jobs-housing ratio 

categories, through elasticity analysis of the model results for each jobs-housing ratio 

category. However, the study did not compare the S-GWR results with those of another 

baseline model.  

 

3.2. Autoregressive prior models  

A common problem in geographical studies with spatial dataset can be the selection 

of the appropriate size and scale units for analyses. This has a direct impact on results, 

as experience suggests that increasing granularity (i.e. spatial resolution) can weaken 

correlations between output areas and introduce spatial autocorrelation issues (Loo & 

Anderson, 2015). To counter this, studies have introduced spatial autocorrelation 

effects (e.g. Aguero-Valverde & Jovanis, 2006, 2008; Guo et al., 2010; Flask & 

Schneider, 2013; Chiou et al., 2014) or temporal autocorrelation effects in crash count 

models (e.g. Wang & Abdel-Aty, 2006). The respective models often use CAR or SAR  

with the former being more frequently implemented in road safety spatial analyses. A 

seminal study by Besag et al. (1991) presented a normal distribution for spatial 

autocorrelation effects using a CAR prior, which has been implemented in many 

studies since (e.g. Huang et al., 2016; Cai et al., 2018; Zhai et al., 2018; Wen et al., 

2019). 

 

CAR models have been found to perform better than Poisson models and Multiple 

Membership models (where higher level units are formed by each unit and its adjacent 

neighbors), by explaining a high degree of spatial heterogeneity and by being more 

lenient in spatial variable omission (El-Basyouny & Sayed, 2009). However, Yasmin & 

Eluru (2016) note that considering spatial autocorrelation effects and latent 

segmentation simultaneously can be analytically challenging. Autoregressive models 

can also be developed within a Bayesian Framework as shown in Aguero-Valverde et 

al. (2016); CAR models have been found to be convenient to compute while using a 

Gibbs sampler in the Bayesian inference (Huang et al., 2010). Bayesian CAR models 

have been shown as capable to function with a variety of customizable spatial weights 

(Aguero-Valverde & Jovanis, 2010; Alarifi et al., 2018). These weights can be 

calculated based on several different bases (e.g. by geometric distance of zone 

centroids or by land use type). Of these weight sets, it is natural that some will 

outperform others for a specific study configuration, though not always in the expected 

manner, as shown by Wang et al. (2016b), where a simple 0-1 configuration based on 

proximity outperformed land use type- and intensity-based weights for pedestrian 

crash prediction (population was used as exposure parameter for pedestrians only, 

without a corresponding parameter for vehicles).  

 

3.3. Bayesian modelling 

The process of Bayesian inference has led to the development of several interesting 

methodologies during more recent years. Bayesian hierarchical joint models have 

been developed in various complexities using regression and regression methods for 

parameter estimation, possibly with regression splines, as shown in an early Bayesian 
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approach by MacNab (2004). Moreover, multivariate Bayesian models are capable of 

estimating excess crash frequencies at different severity levels in the same spatial 

analysis unit (Aguero-Valverde, 2013). Bayesian hierarchical joint models have been 

shown to highlight significant variables at both micro and macro levels while accounting 

for spatial correlations between entities (e.g. in Cai et al., 2019a). Such an application 

by Wang & Huang (2016) determined higher AADT, more lanes and accesses for 

segments on the micro level, signal control, more intersection legs, and higher speed 

limit for segments for intersections on the micro level and higher road network and trip 

generation densities as significant risk factors, among others. 

 

As studies often report, models with Bayesian approaches have been found to perform 

consistently better than their non-Bayesian counterparts (e.g. Miaou & Song, 2005; 

Siddiqui et al., 2012; Wang & Huang, 2016). Bayesian models with CAR effects have 

been shown to simultaneously account the spatial correlation and uncorrelated 

heterogeneity present in aggregated crash count data, and to reveal more significant 

variables with the same signs as frequentist modelling (Quddus, 2008). However, 

Bayesian models are not without drawbacks, as a main strength of their applications 

is reduced in cases without any solid basis of prior knowledge (uninformed priors). 

Furthermore, they require a considerable amount of calibration cases (sometimes 

mentioned as burn-outs) which leads to some loss of information and might require 

considerable computational time and power to obtain. 

 

A noteworthy development is the recent investigation of spatiotemporal heterogeneity 

using multivariate hierarchical Bayesian models across injury severity categories. 

Relevant studies have endeavored to capture data heterogeneity with spatial and 

temporal effects, with the hierarchical framework serving to predict crash counts of 

different severities simultaneously. Spatial and temporal components are specified 

with several structured and unstructured components, and random effects can be 

inserted in the models to address the underlying data structure. Specifically, Ma et al. 

(2017) aggregated crash counts from 100 homogenous US highway segments into 

injury/no injury crash categories using high temporal resolution (daily intervals). They 

identified vehicle-distance travelled and some geometric characteristics as significant 

crash predictors, as well as variables that are more sensitive temporally, such as wet 

pavement and average speed.  

 

In a recent study by Liu and Sharma (2018) examining injury crashes, both spatial and 

temporal effects were bound to be important in approximately the same magnitude 

across spatial, temporal and spatio-temporal structures. Crash frequencies showed 

significant spatial, but not temporal, autocorrelations. Similarly, Li et al. (2019) 

mentioned the issues of spatio-temporal instability in crash data, apart from the typical 

unobserved heterogeneity that is inherent to data collection. They calibrated Bayesian 

random parameters models (with both structured and unstructured spatio-temporal 

effects) which show that daily VMT, proportion of males, unemployment rate and 

education are found to positively increase crash frequency and are normally distributed 

across crash severities for crashes related to substance consumption. 

 

3.4. Empirical Bayes and Full Bayes analyses 
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Since several decades, Empirical Bayes (EB) methods have been implemented in road 

safety by contrasting crash counts of a road segment with sites with comparable true 

crash risk, which are the reference population. EB estimations have displayed better 

predicting capabilities and eliminate regression to the mean issues than Naive before-

after comparisons (Hauer, 1997; Geurts, & Wets, 2003). EB methods have been also 

used in a before-after study in complementarity to a before-after study with a 

comparison group in order to obtain more reliable CMFs (Lee et al., 2017b). 

 

Further to that direction, Full Bayes (FB) extended models can be used to account for 

heterogeneity due to unobserved road geometric characteristics, traffic characteristics, 

environmental factors and driver behavior (El-Basyouny & Sayed, 2011; Ma et al., 

2017). The FB approach has also been shown to be more reliable empirically in hotspot 

identification compared to EB (Huang, 2009). The advantage of FB over EB is that it 

takes into account that model parameter estimates include an amount of uncertainty 

and can provide a quantitative measure of said uncertainty (Miaou & Lord, 2003). The 

FB approach is the basis of several recent developments discussed in the following. 

 

3.5. Spatial spillover effects 

An emerging aspect of spatial analyses is the examination of spatial spillover effects. 

Spatial spillover effects are the effects that exogenous observed variables have on the 

dependent variable at both the target and the neighboring locations. Spatial spillover 

effects differ from spatial autocorrelation (or error correlation) effects, which entail 

unobserved exogenous variables at one location affecting dependent variables at the 

targeted and neighboring locations (Narayanamoorthy et al., 2013; Cai et al., 2016; 

Lee et al., 2018b).  

 

Past studies have utilized spatial lag regression models in an effort to capture spillover 

effects. LaScala et al. (2000) and Quddus (2008) converted count variables into 

continuous approximations for their analyses. They then used an explanatory variable 

in the expression of a spatially lagged dependent variable to form a spatial 

autoregressive (SAR or spatial lag) model.  

 

Cai et al. (2016) included spatial spillover effects in the examination of pedestrian and 

bicyclist crashes. Via the application of dual-state GLMs, it was determined that taking 

observed spatial spillover effects into consideration results to models with better 

performance consistently. The zero-inflated negative binomial models were found to 

have the best fit for pedestrian and bicycle crashes, though unobserved spatial 

autocorrelation effects were not simultaneously examined in the study. To evaluate the 

impacts of significant factors, marginal effects were calculated as well. 

 

In addition, Wen et al. (2019) aimed to capture both spatial autocorrelation and 

spillover effects using a hybrid model. The hybrid model featured the traditional 

Poisson-lognormal basis. The authors expressed spatial autocorrelation effects as the 

CAR prior and spillover effects as exogenous variables of neighboring road segments. 

Homogeneous highway segments were used for the analysis. Both of spatial 

autocorrelation and spatial spillover effects were found to be significantly correlated 

with the respective crash data. This hybrid approach yielded better estimates than both 

of its individual components, with coefficients that showed lower standard deviations. 
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The authors suggest that accounting for spatial heterogeneity may further refine the 

model, but a much more complex structure would be required. 

 

3.6. Alternative Prior Distributions 

Apart from the widely used CAR model, other approaches can be implemented to 

account for spatial effects in models through different prior distributions. Mitra (2009) 

adopted a hierarchical Full Bayes spatial model to investigate the presence of possible 

influences of spatially structured factors on injury crashes at intersections. The 

reasoning behind such an approach is an attempt to capture both heterogeneity from 

spatial effects (implying a common global structure) and excess heterogeneity 

(originating from spatially unstructured effects). The first level of the hierarchy is a 

Poisson-lognormal specification. The Poisson rate then included the typical intercept 

and covariates, and also two separate effect terms, spatially structured and 

unstructured, to capture spatial and excess heterogeneity respectively. The spatially 

structured effects used a multivariate normal joint prior. Results indicated considerable 

spatial autocorrelation effects at the intersection level, while a comparison with aspatial 

Negative Binomial regression revealed similar coefficient estimates but increased 

model precision.  

 

A similar jointly-specified approach was adopted by Aguero-Valverde (2014), to 

determine the effective range after which no lingering correlation is found at the road 

segment level. The Poisson rate function featured one parameter for heterogeneity 

among segments, using a normal distribution, and one for spatially correlated random 

effects per segment, using a jointly specified prior. Additionally, a temporal indicator 

for the evolution of crashes in years in covariate values and predicted crash counts 

was included. Ultimately, the joint prior model outperformed a random-effects model 

and a CAR prior model and the effective range was determined (at about 168m). The 

author states that the manner in which distance is measured (e.g. Euclidean distance, 

ground route distance or any other way) also has an impact on model predictions. 

 

A different form is the Full Bayes Multiple Membership (MM) spatial model proposed 

by El-Basyouny & Sayed (2009). The approach includes similar spatially structured 

and unstructured effects as the previous studies. In addition, MM models consider 

each site as a member of a higher-level unit that contains its nearest neighbors. They 

also include a parameter measuring the strength of association between structured 

and unstructured spatial effects. The authors further extended MM models by adding 

an additional component to allow for variance in the values of crash risks and 

characteristics between mutually exclusive corridors. When tested, the extended MM 

model slightly outperformed a CAR model, which in turn outperformed a basic MM 

model, though the overall DIC metrics showed quite close values.  

 

Xu et al. (2017a) introduced another methodological alternative in the form of a very 

detailed Bayesian spatially varying coefficients approach, based on the hierarchy 

proposed by Huang and Abdel-Aty (2010). The process again started with a Poisson 

function in a Full Bayesian framework, and the parameters were modelled using a CAR 

prior. The innovation of the study lied in the utilization of a single set of random effects 

ranging from purely unstructured to purely spatially structured effects; this 
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simultaneous process is considered superior by the authors, however it features a 

mathematical structure that is quite complicated.  

 

3.7. Machine learning & Deep learning approaches 

Given their popularity as a powerful, data-driven family of prediction tools, machine 

learning (ML) methods have been implemented for spatial and spatio-temporal road 

safety analyses. Indicative methods used in road safety spatial analyses are outlined 

below. ML methods can operate with increased degrees of freedom without requiring 

traditional assumptions as regression models do, and are more resilient to data 

outliers. They are methods typically used in conjunction with big data in transport and 

road safety. 

 

Random forest (RF) models are collections of numerous superimposed decision trees 

that emerge from a selection and validation process, as described in Chang and Wang 

(2006). RF models have been used in road safety studies by researchers. For instance 

in Jiang et al. (2016) the feasibility of RF models for ranking hot-zones on a TAZ level 

and identifying critical parameters for crash occurrence when utilizing big data was 

investigated. Road network distribution (density) and socio-economic features such as 

school enrollment and car ownership percentages were found as the most statistically 

significant variables for crash occurrence. The study concludes that RF models provide 

classification with about 80% accuracy in hotspot identification.  

 

Support Vector Algorithms (SVM) have been successfully implemented as alternatives 

to traditional statistical-regression modelling. In a relevant study, SVMs were employed 

together with a coactive neuro-fuzzy inference system (CANFIS) algorithm (Effati et 

al., 2015). SVMs were found to be considerably better performing when examining 

crash injury severity, especially when utilizing a radial basis kernel function (RBF). The 

researchers propose the enhancement of spatial analyses with machine learning 

algorithms as the key to unveiling significant factors affecting crash injury severity while 

accounting for spatial correlation and heterogeneity effects. The study of Dong et al. 

(2015) implemented SVMs as a tool for handling big and complex data structures. They 

examined zone-level crash prediction while taking spatial autocorrelation into account, 

and SVMs were found to perform better when including a spatial weight feature with 

an RBF kernel as opposed to SVM models. SVMs have been also used in conjunction 

with Bayesian methods, though, to the authors' knowledge, not yet in a spatial analysis 

framework; for instance, Wang et al. (2019) used Bayesian logistic regression to detect 

factors contributing to highway ramp crashes.   

 

Latest technological progressions make neural network implementation much more 

feasible than past years. Bao et al. (2019) utilized a deep learning approach for short-

term crash risk prediction for crash risk on an urban level. They augmented a 

convolutional neural network (CNNs) with a long short-term memory network in order 

to examine variables that varied spatially, temporally or spatio-temporally, proposed 

by earlier research for traffic speed and congestion prediction (Ma et al. 2015a; b). 

Weekly, daily and hourly prediction models with varying spatial grids were produced 

as a result. The authors mention that prediction performance of the proposed model 

decreases as the spatiotemporal prediction outcome resolution increases towards the 

hourly level. It is noteworthy that machine learning models exhibited better 



20 
 

performance on the daily level, while benchmark econometric models generally 

performed better on the weekly level, suggesting that neither approach is clearly 

superior. Another interesting application is described in Zhu et al. (2018); the CNNs 

developed in the study take into account spatio-temporal network and traffic structure. 

However, they are used for traffic incident detection/identification, and not road safety 

prediction or causation analysis.  

 

Cai et al. (2019b) explored that research direction by applying CNNs for road safety 

prediction by collecting and utilizing high-resolution data: 3mile x 3mile grids with crash 

counts and data, each grid containing 100×100 cells with width and height of 158.4 

feet, examined in 17 layers of data matrices. By feeding data of a higher resolution into 

a CNN, the authors allowed variables to fluctuate across locations more freely, thus 

increasing the model accuracy. It was stated that the hierarchical structure enables 

better understanding of the circumstances of crash occurrence. While the authors 

demonstrated a viable approach for crash prediction, it is obvious that extra effort is 

required for the creation of this high-resolution grid and the complementing database. 

Some variables might be readily available for calculation in high-resolution or inferred 

via the existing road geometry (such as segment lengths), while others may be harder 

to obtain in case of missing data (such as land uses). Approaches such as CNNs might 

require custom, tailor-made data collection frameworks in order to provide their full 

potential, as the authors suggest. Furthermore, no specific framework is established 

for assigning the values of required hyperparameters during the CNN training phase. 

 

3.8. Kernel Density Estimation 

Another crash and hotspot analysis method is kernel density estimation (KDE), which 

allows the generalization of incident locations to an entire area. It should be noted that 

this is not a direct analytical method, but rather an interpolation technique (Anderson, 

2007) mainly used for the identification of clustering patterns of traffic collisions. KDE 

can be advantageous in predicting the spread of crash risks, though the kernel radius 

has been a matter of debate in several scientific fields (e.g. Raykar & Duraiswami, 

2006; Hart & Zandbergen, 2014). It appears that bandwidth determination influences 

the outcome of the hotspots (Fotheringham et al., 2000; Anderson, 2009; Loo & 

Anderson, 2015). Furthermore, the fact that KDE treats discrete events as a 

continuous area effect can be presented as a limitation (Anderson, 2009). Erdogan et 

al. (2008) conducted an analysis of hotspot clusters in a province of Turkey and utilized 

KDE together with a repeatability analysis of hotspot crashes for a decade. The authors 

reported considerable overlap of the outcomes, though KDE determined less hotspot 

locations overall. An interesting approach by Mountrakis & Gunson (2009) investigated 

the development of KDE spatially (determining varying density peaks among roads) 

and temporally (determining an exponentially increasing trend with annual periodicity 

and a seasonal cyclic component) for animal-related crash hotspots in Vermont, US. 

 

Kernels are projected over 2-D spaces, while road crashes usually occur in a 1-D linear 

area, which most road environments approach, as Xie and Yan (2008) note. In order 

to overcome this discrepancy, KDE has been expanded to network KDE approaches, 

in which the network is represented as fundamental units of equal network length 

(termed lixels). Xie and Yan (2008) investigated this method and how fundamental 

lengths and regular kernel bandwidth affect its performance for road crash prediction. 
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They conclude that network KDE describes crash densities and network borders more 

precisely than regular KDE, and that lixel length appears more important than Kernel 

function selection. However, Loo et al. (2011) implemented network KDE in areas of 

varying land use and found that kernel bandwidth critically affects the spatial 

distribution of resulting density estimates. Furthermore, wider bandwidths appeared to 

be more appropriate for non-urban areas where crash density is lower.  

 

Similarly, Mohaymany et al. (2013) applied network KDE to a rural road in order to 

determine hazardous segments; apart from static spatial autocorrelation of crashes 

they also investigated its temporal evolution through a three-year period. Bíl et al. 

(2013) also used KDE in a 1-D area by separating the network into sections. They 

explored an alternative venue for better refining KDE results by providing a method to 

test their statistical significance. The proposed method utilized relative spatial positions 

of crashes and roadway length to calculate kernel strength, which allows detection and 

prioritization of the most hazardous locations, which included classifying clusters with 

values above the 95th percentile of the kernel density function as hazardous. 

 

4. Vulnerable Road Users 

 

In road safety, vulnerable road users (VRUs) include pedestrians, bicyclists and other 

road users who are often children, elderly, people with impairments and disabilities. 

Due to their vulnerability to injuries or fatalities compared to vehicle users, VRUs have 

increased safety needs. The use of spatial analyses, or approaches in a spatial 

context, to examine aspects of road safety concerning VRUs warrants specific 

examination. A notable example is the study of Tasic et al. (2017) which investigated 

crashes involving vehicles and VRUs by using models that accounted for spatial 

correlation effects. Data was aggregated on a CT level for a large array of about a 

hundred variables for vehicle-only, pedestrian and bicycle crashes. The data were 

analyzed using an extension of GLMs, Generalized Additive Models (GAMs), which 

included a two-dimensional smooth function to account for spatial correlation. A 

remarkable finding was that the expected pedestrian or bicyclist crashes increased 

less than proportionally with the exposure variables of vehicle, pedestrian or bicyclist 

trips, confirming the safety-in-numbers effect on a macroscopic level while accounting 

for spatial correlation effects.  

 

Analyzing pedestrians' walking exposure and crashes in an integrated manner was 

proposed in a dedicated study on the MSA level (Lee et al., 2019a). For estimating 

exposure, multiple linear regression models were calibrated, followed by a Poisson-

lognormal regression model for fatality estimation using the estimated exposure as 

input. Walking hours was determined as the best performing exposure variable. The 

proposed integrated model outperforming the non-integrated ones. Spatial correlation 

of trips was not investigated in the study, however, and pedestrian safety features were 

not examined either. VRU exposure, in the form of trips, has also been estimated at a 

macroscopic level in an integrated manner. These trip numbers were used to calibrate 

VRU crash prediction models in a study across 23 Metropolitan areas, and it was found 

that estimated exposure (VRU trips) led to models with calibrated performance 

compared to observed exposure for both pedestrians and cyclists (Lee et al., 2018c). 
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Pedestrian crash hotspots have been examined through spatial processing of their 

respective costs using big data from multiple sources such as taxi trips and social 

media (Xie et al., 2017) by employing a grid structure divided in higher resolution cells, 

similar to Cai et al. (2019b). Crash costs were assigned to cells using a kernel density 

estimation function, and sites were identified using tobit models with potential safety 

improvements (PSIs) and ranked as potential hotspots based on the potential of 

pedestrian crash cost reduction. The authors claim that their method can be transferred 

to less populated regions by adjusting kernel bandwidths. 

 

Pedestrian crashes do not necessarily occur in the zone of residence of the 

pedestrians involved; Lee et al. (2015b) sought to identify zones where pedestrian 

crashes occur, and zones where pedestrian crashes originated from. Using different 

exposure variables, a variation of a Bayesian lognormal model with Poisson structure 

was applied. The occurrence of crashes with pedestrian involvement was revealed to 

be significantly affected by more location-related factors, while pedestrian origin was 

revealed to be significantly affected by more demographic-related factors. A similar 

concept of investigating both ZIP codes of crash locations for bicyclists and the number 

of crash-involved bicyclists in their ZIP of residence was explored in a study by Lee & 

Abdel-Aty (2018). Bayesian Poisson lognormal CAR models were used to examine 

bicycle crashes, and the contributing factors were not identical in each case. For 

instance, increases in the number of schools per mi2 were only found to lead to 

increases in bicycle crashes in the crash location ZIP. Conversely, lower income areas 

were found to be a contributing factor overall through the significance of many related 

variables. Again, PSI was used to identify VRU crash hotspots in both studies. 

 

A noteworthy finding is that of Siddiqui et al. (2012), who produced Bayesian models 

for pedestrian and bicyclist crashes at the TAZ level, noting the necessity of accounting 

for spatial correlation while examining VRU crashes at the macroscopic level, which is 

also corroborated by Guo et al. (2017). In addition, spatial spillover effects have also 

been examined in a VRU context, as mentioned before (Cai et al., 2016).  

 

Apart from methodological and modelling approaches, the influence of parameters for 

pedestrian crashes have also been examined in high resolution. Specifically, the 

effects of weather conditions have been investigated using GIS within a spatial context 

(Zhai et al., 2019b). Binary and mixed logit models were used in the study, in a basic 

form and in a more advanced form including terms of interaction between weather 

conditions and risk factor variables. Both high temperatures and precipitation were 

found to be associated with pedestrian crashes of increased severity. Hotter weather 

and the presence of rain were also found to exacerbate the effect of risk factors, such 

as jaywalking or unsafe driver behavior. 

 

5. Discussion 

 

5.1. Findings from reviewed studies 

The examination of the studies that was carried out in this research has led to some 

noteworthy conclusions for spatial analyses in road safety. It appears that a multitude 

of different approaches and modelling methodologies has been adopted in the 

literature, with a trend towards advanced Bayesian models and methods in the past 
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decade. This has led to the development of powerful tools that provide accurate 

predictions for crash counts per area with increasingly complex model configurations. 

However these approaches also lead to a lack of a common established methodology 

or framework to compare results of spatial analyses. Additionally, this finding does not 

imply that more traditional functional/econometrics methods, such as GLM models or 

GWR are not found useful still, at least for benchmarking purposes. Functional models 

appear to be more straightforward in their interpretation and assessment of results. In 

both cases, results of spatial studies have also been reported to have limited 

transferability as well.  

 

Recently, machine learning approaches have come to challenge the dominance of 

Bayesian models by being implemented alongside or instead of them. It should be 

noted that these are mostly data-driven approaches, which have also been reported 

as containing inherently biased samples, especially when examining big data (e.g. Bao 

et al., 2017; 2019). While the aforementioned transferability issues are mostly solved 

with machine learning methods, there are often difficulties in the interpretation of 

results: A commonly cited example is the hidden layers of neural networks and the 

meaning of each contributing factor. Approaches such as SVM are subpar in 

determining the significance of revealed patterns in the data they examine or the utility 

each variable offers in prediction tasks.   

 

Further on the results of spatial studies, another important finding is the revelation of 

sensitivity of hotspot locations. Researchers have shown that hotspots are radically 

different across users of different vehicles and ages, and that hotspots display 

significant variation throughout the time of day. It can be reasonably surmised that 

many elements that are introduced to an analysis radically change the hotspot map. 

Naturally, the employed methodologies also affect the final outcome of spatial studies. 

Researchers should be vigilant and try to convert unobserved factors into observed 

ones, in order to receive more substantial and precise hotspot maps.  

 

Though studies have been published internationally, spatial analyses have been more 

common in more modernized and developed countries (especially USA), while 

developing countries are considerably less represented. The use of different sizes of 

spatial units as basis for spatial analyses has been examined extensively, and it 

appears that apart from information and data availability, spatial areas of each size 

have different advantages and disadvantages. Several studies include exposure 

parameters in order to establish a common baseline for crash risk comparisons 

between models (Imprialou et al., 2016). When exposure parameters such as road 

length, AADT and vehicle distance travelled are examined, they are found to increase 

crash risk overall, as expected, however there are particular cases where these results 

might not apply or even be reversed (e.g. Dong et al., 2014). 

 

It has been demonstrated that the parametrization of the spatial correlation term, 

namely, its inclusion as a variable in models, can aid in situations where data is scarce 

or difficult to obtain. Its use can be further expanded, however, as a complementary 

feature to even variable-rich models, in order to explain parts of variation in the data.  
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That being said, data availability remains a critical issue, and lack of consistent data 

across a respectable duration of time can be a critical obstacle in conducting spatial 

and spatio-temporal analysis. Spatial analyses in road safety appear data-driven most 

of the time, stemming from the drive of researchers to prove or test a concept. There 

are variables that have not been extensively tested due to lack of data, for instance 

pavement condition. Similarly, there are study areas that merit more attention, such as 

extensive urban network environments formed by roads of lower categories.  

 

Traffic speed does not appear to be as frequently used as in past decades, though 

speed limits are taken into account as network characteristics, rather than traffic 

characteristics. Moreover, it can be observed that certain geometrical features seem 

to be used less frequently, such as road gradient, curvature and lane width. As an 

indication, the 'gradient' column on Table 2 was blank at the end of the reviewing 

process and was thus removed. This decline in use can be attributed to missing data 

for many study areas, or to difficulty in data acquisition. Another reason may be the 

lower prioritization of geometrical features from researchers: studies often seek to 

include crash data, traffic data, socio-economic data, demographic data and land-use 

data. Therefore traditional road geometry data is receiving less attention in comparison 

to past decades.  

 

5.2. Future research directions 

This section outlines research directions that do not appear to be adequately 

investigated from the present literature of road safety spatial analyses and can 

constitute meaningful future research endeavors. An important aspect that was does 

not appear to be adequately investigated is that of micro-level road safety and event 

analysis with spatial modelling considerations. A small number of studies has been 

found to explore concepts such as automated conflict extraction via trajectory analyses 

using automated data (Saunier and Sayed, 2007; St-Aubin et al., 2015). The inclusion 

of spatial effects in such design concepts would be very interesting for the 

determination of the influence of spatial effects at a small-unit level.  

 

While crash counts have been examined extensively, their distributions over several 

categories have received less focus within a spatial context. The recent fractional 

approach by Lee et al. (2018b) that examines crash distribution across vehicle types 

is an example towards that direction, as is the examination per crash type proposed 

by Aguero-Valverde et al. (2016). Nonetheless, more research is needed on the 

manner in which various categories of crashes occur across study areas. The 

distribution of exact crash proportions and the factors that affect them needs to be 

researched within a spatial context. For instance, injury severity distributions have not 

been investigated as frequently as crash counts; rather, they have mostly been used 

as a categorization mechanism. By jointly examining crash severities and occurrence 

while taking spatial effects into account, more informative results can be reached for 

practitioners. Similar potential exists for studies aiming to examine casualty rates. In 

addition to the previous, it would be interesting to spatially analyze other road safety 

indicators, such as those related to driver behavior: conflicts, near-misses, harsh 

events and traffic law violations. These can aid in determining high crash 

concentrations and locations of poor road safety performance (hotspots).  
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Hotspot detection, or problematic region identification in greater scales, is a crucial 

advantage typically provided by spatial analyses for locating problems. Therefore, the 

determination of the spatial impacts of implemented road safety measures would also 

be very beneficial. Before-after studies within a spatial context (or even a 

spatiotemporal context, if a dedicated data collection scheme can be set) would allow 

observation of crash reductions due to targeted observations from the initial analyses. 

Such study designs would also allow the examination of the variation of spatial 

autocorrelation of events (and whether any exists) before and after interventions, and 

would offer interesting insights in any possible crash mitigation phenomena. Another 

promising research direction is the transfer and application of more focused spatial 

analysis methods for the examination of segments of a contiguous road network, 

similar to network KDE approaches, so that segments are assessed instead of areal 

units, but in the form of an extended and complex road network, as an expansion of 

the segment analysis approaches mentioned in section 2.1. 

 

Some spatial issues, while proven to exist, need to be further analyzed to increase 

comprehensiveness. The specific effective range of spatial correlation among analysis 

units, as studied by Aguero-Valverde (2014) and Wang et al. (2016b) needs to be 

expanded upon. Again, there is a need for results for different road environments, road 

users, crash types and injury severities in order to obtain measures of the extent that 

spatial dependency needs to be accounted for. In addition, different countries are 

expected to produce varying results, possibly due to differences in driving culture or 

other unobserved factors. 

 

Another direction that would increase the low transferability of results of spatial 

analysis is the creation of common frameworks for the two famous problems (boundary 

and MAUP), preferably on the international scale. The establishment of an acceptable 

boundary value in order to address boundary issues under different conditions, as 

suggested by Zhai et al. (2018b), is such an example. More effort is needed to be 

devoted to understanding the impacts of both the boundary issue and MAUP across 

areal unit sizes as well, especially if different contributor variables are found in 

boundaries. Similarly, methods to obtain more homogeneous road segments or areal 

units need to be developed, in an effort to reduce heterogeneity. They would have to 

be comprehensible and straightforward in order to be more widely accepted and 

applied by practitioners worldwide. 

 

Yet another finding from the reviewed studies is that built environment is not very 

strictly defined in the sense that every study selects some of its characteristics to 

examine. In a dedicated study, Ukkusuri et al. (2012) include in the term built 

environment factors such as land use patterns, population characteristics such as age 

profiles and professional driver percentages, road infrastructure and transit 

characteristics. This review has not exhausted all built environment parameters, and 

the investigation of more specific variables such as the presence of refuge islands or 

crosswalks or proximity to health or education buildings merit additional investigation, 

and can be a future direction of targeted road safety spatial analyses. 

 

These endeavors can all be further augmented by new technological developments, 

such as transport applications of big data, cloud computing and connected & 
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autonomous vehicle technologies that can be used to provide a more connected spatial 

environment (e.g. as in Bao et al., 2018). For instance, it has been found that 

smartphone technology sampling can provide a vast amount of driving data in real 

conditions, including risk factors such as distraction and speeding (Papadimitriou et 

al., 2018), while achieving a seamless transition from data collection to data analysis 

(Yannis et al., 2017). This framework could enable not only a collection of a wealth of 

real-time information across several spatial unit levels, but also allow for easier 

calibration of spatial models without the doubt of transferability that is often present in 

spatial analyses.  
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Abdel-Aty & Wang 2006 United States TC ●    ● ●     ●   ● ● ○ ●   Intersections  
Negative Binomial Regression with and without Generalized estimating 
equations | Cluster analysis 

Aguero-Valverde 2014 United States TC ●     ●     ●   ● ○  ●   Rural road segments 
Full Bayes hierarchical Poisson model (1) with normal priors for spatial 
random effects | (2) with CAR priors for spatial random effects | (3) with 
a joint distribution  

Aguero-Valverde & 
Jovanis  

2010 United States TC ●     ●     ● ● ● ● ○  ●   
Rural & Urban road 
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Full Bayes hierarchical Poisson model with CAR priors for spatial 
random effects 

Aguero-Valverde & 
Jovanis  
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Aguero-Valverde et 
al. 

2016 United States 
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Full Bayes Poisson Regressions (Univariate, Univariate Spatial, 
Multivariate, Multivariate Spatial) 

Alarifi et al. 2018 United States TC ●     ●    ● ●    ● ● ●   
Intersections | Road 
segments 

13 Bayesian hierarchical Poisson-lognormal joint spatial models with 
adjacency-based, adjacency-route, distance-order, and distance-based 
spatial weight features 

Alarifi et al. 2017 United States TC ●     ●    ● ●    ● ● ●   
Intersections | Road 
segments  
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parameters  
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for spatial heterogeneity (3) with both 
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and spatial exogenous) 

Effati et al. 2015 Iran TC   ●      ●    ● ●  ● ●   Highway segments 
Support Vector Machine Algorithms (SVMs) | Coactive neuro-fuzzy 
inference system 

El-Basyouny & 
Sayed  

2011 Canada TC ●  ○   ●          ○    Intersections  
Univariate and Multivariate Poisson Lognormal Regressions | Full 
Bayes estimations  
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El-Basyouny & 
Sayed  

2009 Canada TC ●     ●         ● ● ●   Urban road segments 
Full Bayesian Multivariate Poisson Lognormal with and without CAR 
Prior | Full Bayesian Multiple Membership model | Full Bayesian 
Extended Multiple Membership model 

Guo et al. 2010 United States TC ●     ○     ●    ○  ○   Intersections  
Fixed effects Bayesian Poisson Regression | Fixed and Mixed effects 
Bayesian Negative Binomial Regression | Spatial CAR Prior extended 
Poisson/Negative Binomial models 

Huang et al.  2017 China 
TC |  

V/V-V  
P-V | B-V 

●     ●   ● ○ ●     ○    Intersections  
Poisson Regression  (Univariate, Multivariate Lognormal & Spatial 
random effects models) 

Huang et al.  2016 United States TC ●     ● ● ● ●  ●    ● ● ●  TAZ 
Intersections | Road 
segments 

Bayesian spatial model with CAR prior (macroscopic) | Bayesian 
spatial joint models with CAR prior (microscopic) 

Flahaut  2004 Belgium TC ●  ○   ●     ●  ○  ● ○ ○   
Rural & Highway 
segments 

Logistic regression with and without spatial autocorrelation 

Liu et al. 2017 United States TC ●     ●    ● ●      ●   Highway segments 
Geographically Weighted Negative Binomial Regression | Negative 
Binomial Regression 

Ma et al.  2017 United States TC ●  ○  ●  ●      ●  ●     Highway segments 
Hierarchical Bayesian random parameters models (structured and 
unstructured spatio-temporal effects) 

Miaou & Lord 2003 Canada TC  ●    ●     ○     ○    Intersections  Full Bayes | Empirical Bayes  

Miaou & Song  2005 
Canada | 
United States 

TC ● ● ●   ● ●    ○    ○  ●   Intersections | Rural 
segments 

Multivariate spatial Bayesian generalized linear mixed models with and 
without CAR Prior 

Mitra 2009 United States TC ●  ●   ●              Intersections 
Hierarchical Full Bayes Jointly specified spatial model | Negative 
Binomial Regression | Local Moran's I 

Mountrakis & 
Gunson 

2009 United States V-A ●                ○   Rural segments 
Spatial, Temporal & Spatiotemporal kernel estimation | Ripley’s K-
function 

Page & Meyer 1996 New Zealand  TC ●  ○              ○ 
National 
Parks 

 Highway segments Percentage descriptive statistics 

Thomas  1996 Belgium TC ●  ○   ○           ●   Highway segments Univariate and bivariate descriptive statistics, chi^2 and W tests 

Wang & Abdel-Aty  2006 United States 
V-V (rear-
end only) 

●     ●     ●    ● ○    Intersections  Generalized Estimating Equations with Negative Binomial link function 

Wang & Huang 2016 United States TC ●     ●  ●   ●    ● ● ●  TAZ 
Intersections | Urban 
segments 

Bayesian hierarchical joint Poisson Regression | Bayesian joint 
Poisson Regression | Negative Binomial Regression  

Wang et al. (a) 2016 United States TC ●  ●   ●     ● ● ●   ● ●   Highway segments Multivariate Poisson Lognormal regression with CAR Prior  
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Regional 
level 

Zonal 
level 

Link/ segment/ 
intersection level 

Wang et al. 2009 
United 
Kingdom 

TC ●  ○  ● ●      ● ●  ●  ●   Highway segments 
Bayesian Multivariate Poisson Lognormal | Negative Binomial 
Regression | Poisson Models with CAR priors (with first/second order 
neighbors) 

Wen et al. 2019 China TC ●      ●     ● ●       Highway segments 
(1) Poisson Lognormal regression with CAR Prior | (2) Poisson 
Lognormal regression with spillover effects | (3) Hybrid of (1) and (2) 

Xie et al. 2014 China TC ●    ● ●         ● ○ ●   
Intersections | Urban 
segments 

Bayesian Negative Binomial regression (basic, random effect,  random 
parameter, hierarchical, hierarchical CAR) 

Xie et al. 2013 China TC ●    ● ●         ● ○ ●   Intersections | Urban 
segments  

Bayesian Negative Binomial regression (basic, random parameter, 
hierarchical) 

Zeng & Huang 2014 United States TC ●    ●      ●    ● ● ●   
Intersections | Urban 
segments 

Poisson Regression | Negative Binomial Regression | Bayesian spatial 
model with CAR prior | Bayesian spatial joint models with CAR prior 

 ● Considered in the study design, ○ considered in the study process as filter/defining characteristic 
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Table 2: Studies with road safety spatial analyses primarily on the zonal level 

Study Characteristics  
Dependent 
variables 

Independent variables – parameters  

Spatial aggregation approach 

Analysis - Modelling approach 

Traffic  Road environment  
Demograp

hic 

Socio-
econo

mic 

Land 
Use 

Author(s) Year Country of study 
Crash type 
analyzed 

C
ra

sh
 c

ou
nt

/fr
eq

ue
nc

y 

C
ra

sh
 r

at
e 

 

In
ju

ry
 S

ev
er

ity
 

C
as

ua
lty

 r
at

e 
 

S
pe

ed
 

T
ra

ffi
c 

vo
lu

m
e 

V
eh

ic
le

 d
is

ta
nc

e 
tr

av
el

ed
  

N
um

be
r 

of
 T

rip
s 

- 
O

D
 

S
pe

ed
 L

im
it 

C
ur

va
tu

re
 

La
ne

 w
id

th
 

La
ne

 n
um

be
r 

In
te

rs
ec

tio
n 

nr
./d

en
si

ty
 

R
oa

dw
ay

 le
ng

th
 

P
op

ul
at

io
n 

nu
m

be
r/

de
ns

ity
 

R
oa

d 
us

er
/P

op
ul

at
io

n 
ag

e
 

M
od

al
 d

is
tin

ct
io

n 

H
ou

se
ho

ld
/ P

er
so

na
l i

nc
om

e
 

E
m

pl
oy

m
en

t p
er

ce
nt

ag
e/

de
ns

ity
 

 
La

nd
 u

se
 fa

ct
or

(s
) 

R
eg

io
na

l l
ev

el
 

Z
on

al
 le

ve
l 

Li
nk

/ s
eg

m
en

t/ 
 

in
te

rs
ec

tio
n 

le
ve

l 

Abdel-Aty et al. 2013 United States TC ●  ○    ● ● ●    ● ● ● ●  ●  ●  TAZ | CT | BG  Bayesian Multivariate Poisson Lognormal Regression 

Abdel-Aty et al.  2011 United States TC ●  ○  ○   ● ●    ● ●   ○     TAZ  Negative Binomial Regression  

Amoh-Gyimah et 
al.  

2017 Australia TC ●  ○    ●  ●      ● ● ● ●  ●  
SA1 | SA2 | TAZ | 

SED | ZIP 
 

Random parameter negative binomial model | Semi-parametric 
Poisson GWR (also on custom grid cells) 

Anderson 2007 United Kingdom TC ●  ○                   CT 
Urban road 
segments 

Kernel density estimation | Network analysis | Census Output Area 
estimation 

Anderson 2009 United Kingdom 
TC |  

P-V | B-V 
●  ○          ○ ●   ●   ●  Hotspot clusters  Kernel density estimation | K-means clustering 

Bao et al. 2018 United States TC ●  ○    ● ● ○    ● ● ● ●  ● ●   ZIP  Poisson GWR | Latent Dirichlet Allocation 

Bao et al. 2017 United States 
TC |  

V-V | P-V 
●     ●  ●     ● ● ● ● ○ ● ●   TAZ  Geographically Weighted Regression (GWR) 

Cai et al. (a) 2019 United States TC ●      ●     ● ● ● ● ●  ●  ●  TAD  
Bayesian Poisson Lognormal Regression: (1) at macro- level;  
(2) at micro- level; (3) integrated at macro- and micro- levels 

Cai et al. 2018 United States TC ●     ●      ● ● ● ● ●  ●  ○ County TAD  

Poisson-lognormal models: (1) Fixed param. univariate model; (2) 
Grouped random param. univ. spatial model;  
(3) Grouped random param. univ. spatial model with zonal factors;  
(4) Grouped random param. multiv. spatial model with zonal factors 

Cai et al. (b) 2017 United States 
TC |  

P-V | B-V 
●      ●      ● ● ● ● ● ● ●   TAD  Bayesian Negative Binomial regression | Bayesian Logit regression 

model | Bayesian Joint model [of the two] | Elasticity analysis 

Cai et al. 2016 United States P-V | B-V ●      ● ●     ● ● ●  ●  ● ●  TAZ  
Negative Binomial spatial and aspatial models (basic, zero-inflated & 
hurdle) 

Cottrill & Thakuriah 2010 United States P-V ● ● ○   ●        ● ● ● ○ ●  ●  EJ (CT)  Poisson Regression with heterogeneity | Poisson Regression with 
exogenous underreporting  

Cui et al. 2015 Canada 
TC (on 

boundary) 
 ●           ● ●       

2 city 
areas 

Neighborhoods   
(1) Entropy-based histogram thresholding (2) Collision density 
probability distribution (3) Collision aggregation through density ratio 

Delmelle & Thill 2008 United States B-V ●            ● ○ ● ● ○ ●  ●  CT  OLS Regression | Kernel density  

Dong et al. 2016 United States TC ●      ●         ● ●  ●   TAZ  
Bayesian Multivariate Poisson Lognormal Regression | Bayesian 
spatial-temporal interaction models 
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Dong et al. 2015 United States TC ●      ● ● ○    ● ●    ●  ●  TAZ  
ν-Support Vector Machine with Correlation-based Feature Selector | 
Bayesian Multivariate Poisson Lognormal with CAR Prior  

Dong et al. 2014 United States TC ●      ● ● ○    ● ● ●   ●  ●  TAZ  Bayesian Multivariate Poisson Lognormal with CAR Prior Regression 
for boundary and non-boundary area models  

Erdogan et al.  2008 Turkey TC ●  ●  ○     ○ ○   ●        Hotspot clusters  Poisson test | Chi^2 test | Kernel density analysis  

Gomes et al. 2017 Brazil TC ●  ○          ● ●  ●  ●  ●  TAZ  Negative binomial regression | Poisson GWR | Negative Binomial 
GWR 

Guo et al. 2017 Hong Kong P-V ●  ○  ● ●  ●     ● ●  ● ○   ●  TAZ  
Space Syntax | Poisson Lognormal Regression | Bayesian Poisson 
Lognormal with CAR Prior Regression with (1) contiguity (2) 
geometry-centroid distance and (3) road network connectivity 

Hadayeghi et al.  2010 Canada TC ●    ● ● ●      ● ● ● ●   ● ●  TAZ  Poisson GWR | Negative Binomial Regression | Poisson regression 

Hadayeghi et al.  2003 Canada TC ●  ○  ● ● ●      ● ● ● ●   ● ●  TAZ  GWR | Negative Binomial Regression 

Jiang et al. 2016 United States 
TC | B-V | 

P-V 
●  ○    ●      ● ● ● ● ○ ●  ●  TAZ  Random Forest Models (CART trees) | Wiloxon Tests 

Ladron de Guevara 
et al.  

2004 United States TC ●  ○ ○   ●      ● ● ● ●   ● ●  TAZ  Negative Binomial Regression | Simultaneous equation estimation 

LaScala et al.  2004 United States P-V | B-V ●  ○   ●        ● ● ● ○ ● ● ● 
Communit

ies 
Geographic units  Linear regression models  

LaScala et al.  2000 United States P-V   ●   ●       ○ ● ● ● ○ ● ● ●  CT  Spatial autocorrelation regression log-linear model 

Lee & Abdel-Aty 2018 United States B-V ●      ●  ●    ●  ● ● ● ● ● ●  ZIP  Bayesian Poisson lognormal CAR models 

Lee et al. (b) 2018 United States 
Crashes of 

8 road 
user types 

● ●     ●      ● ● ● ● ● ● ● ●  TAZ  Fractional Split Multinomial Model 

Lee et al. (a) 2017 United States 
TC | P-V  

| B-V 
●  ○   ●       ○  ● ● ○ ●  ● 

County | 
County 
Division 

TAD | ZIP | TAZ | 
CT | BG | CB 

Intersection
s  

Mixed effects Negative Binomial models with: (1) micro-level 
variables, (2) micro- and macro-level variables and (3) micro- and 
macro-level variables with random-effects 

Lee et al. (a) 2015 United States 
V/V-V |  

P-V | B-V 
●      ●  ●      ● ● ○  ● ●  TAZ  

Univariate and Multivariate  Bayesian Poisson Lognormal with CAR 
Prior Regression 

Lee et al. (b) 2015 United States P-V ●      ●  ●    ● ● ● ● ● ● ● ●  ZIP  
Bayesian Poisson lognormal simultaneous equations spatial 
error model 
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Lee et al. (a) 2014 United States 
V/V-V  

(at-fault) 
●              ● ● ● ● ●   ZIP  Bayesian Poisson-lognormal model  

Lee et al. (b) 2014 United States TC ●  ○    ●  ○     ● ● ●    ●  TSAZ | TAZ  Brown-Forsythe test | Bayesian Multivariate Poisson Lognormal 
Regression 

Levine et al. 1995 United States TC ●  ○          ○ ● ●    ● ●  BG  Spatal lag regression model 

Loukaitou-Sideris 
et al.  

2007 United States P-V ●  ○   ●       ○ ○ ● ● ○ ● ● ●  CT  OLS regression  

Lovegrove & 
Sayed 

2007 Canada TC ●  ○    ●      ● ● ●    ● ●  
Neighborhood - 

TAZ 
 Groups of Macrolevel Crash Prediction Models using GLMs 

Lovegrove & 
Sayed 

2006 Canada TC ●  ○  ●  ● ●     ● ● ●   ● ● ●  Neighborhood - 
TAZ 

 Groups of Macrolevel Crash Prediction Models using GLMs 

Lovegrove et al. 2009 Canada TC ●  ○    ●  ○    ● ● ●    ● ●  TAZ  Groups of Collision Prediction GLMs | Modified T-tests 

MacNab 2004 Canada TC   ●            ● ●  ● ● ●  Local health area  Bayesian spatial model with spatial autocorrelation 

Naderan & Shahi  2010 Iran TC ●  ○     ●       ●       TAZ  Negative Binomial regression  

Narayanamoorthy 
et al. 

2013 United States P-V | B-V ●  ●           ○ ● ● ● ●  ●  CT  Customized generalized ordered-response spatial multivariate count 
model 

Nashad et al.  2016 United States P-V | B-V ●      ●      ● ● ●  ●  ● ●  sTAZ  Negative binomial regression (copula-based) 

Ng et al. 2002 China TC | P-V ●  ○            ●  ○   ●  TAZ  Negative Binomial Regression with Empirical Bayes approach | 
Cluster Analysis 

Noland & Quddus 2005 United Kingdom TC | P-V ●  ○          ● ● ●  ● ● ● ●  Enumeration District  Negative Binomial Regression | ANOVA  

Noland & Quddus 2004 United Kingdom TC ●  ○   ○       ● ● ● ●  ● ● ●  Ward  Negative Binomial Regression  

Pirdavani et al. (a) 2014 Belgium TC ●  ○   ● ● ● ●    ● ● ●   ● ●   TAZ  Geographically Weighted GLM | Negative Binomial Regression 

Pirdavani et al. (b) 2014 Belgium 
V-V  

P-V | B-V 
●  ○    ● ●     ● ○   ● ●    TAZ  Geographically Weighted Regression (GWR) 

Pirdavani et al. 2013 Belgium 
V-V  

P-V | B-V 
●  ○    ● ●     ●    ○ ●    TAZ  Negative Binomial regression Zonal Crash Prediction Models 

Quddus 2008 United Kingdom TC ●  ○  ● ●    ●   ● ● ● ● ○  ●   Ward  Negative Binomial Regression | Spatial autoregressive model | 
Spatial error model | Bayesian hierarchical models for spatial units  
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Rhee et al.  2016 South Korea TC ●  ○    ● ● ○   ○ ● ● ● ●  ● ● ●  TAZ  OLS regression | Spatial lag regression | Spatial error regression | 
Poisson GWR 

Siddiqui & Abdel-
Aty  

2012 United States 
P-V 

(interior & 
boundary) 

●        ●    ● ● ●  ○  ● ●  TAZ  
Multivariate Negative Binomial regression | Multivariate Bayesian 
Negative Binomial regression for boundary and non-boundary area 
models  

Siddiqui et al. 2012 United States P-V | B-V ●    ○    ●    ● ● ●  ○ ● ● ●  TAZ  Bayesian Multivariate Poisson Lognormal | Negative Binomial 
Regression  

Soltani & Askari 2017 Iran V-V ●  ●            ●  ○   ●  TAZ  Moran's I | Getis-Ord Gi* index 

Tasic et al. 2017 United States 
TC | V-V | 
P-V | B-V 

●  ○    ● ●     ● ● ●  ● ● ● ●  CT  Generalized Additive Models  

Ukkusuri et al.  2012 United States P-V ●  ○        ● ● ● ● ● ●    ●  CT | ZIP  
Negative binomial regression | Negative binomial regression with 
heterogeneity in dispersion parameter | Zero-inflated negative 
binomial regression 

Ukkusuri et al.  2011 United States P-V ●           ○ ● ● ● ● ○   ●  CT  Negative Binomial Regression with random parameters  

Wang et al. (b) 2016 China P-V ●  ○          ● ● ●  ○   ●  TAZ  
Bayesian Conditional Autoregressive (CAR) models with seven 
different spatial weight features 

Wang & 
Kockelman  

2013 United States P-V ●  ○    ●       ● ●  ○  ● ●  CT  Multivariate Poisson Lognormal Regression with and without CAR 
Priors  

Wei & Lovegrove 2013 Canada B-V ●     ●       ● ● ● ● ● ● ● ●  TAZ  Negative Binomial Macrolevel Crash Prediction Models 

Wier et al. 2009 United States P-V ●  ○   ●       ● ● ● ● ○  ● ●  CT  Log-linear multivariate OLS regression model  

Xu and Huang  2015 United States TC ●  ●  ○  ●  ●    ● ● ●   ●    TAZ  
Negative Binomial regression | Bayesian negative binomial model 
with CAR prior | Random parameter negative binomial model | Semi-
parametric Poisson GWR 

Xu et al. (a) 2017 United States 
TC 

(interior & 
boundary) 

●  ○    ● ● ●    ● ● ● ●  ● ●   TAZ  Bayesian spatially varying coefficients model 

Xu et al. (b) 2017 United States TC ●     ●  ●     ● ● ● ● ● ● ● ●  TAZ  Semi-parametric Poisson GWR | One-way ANOVA tests 

Yasmin & Eluru  2016 Canada B-V ●     ●       ● ● ●  ● ● ● ●  TAZ  Poisson Regression | Negative Binomial regression (basic and Latent 
Segmentation) 
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Zhai et al. (a) 2019 United States 
TC 
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●  ●     ● ●    ● ● ● ●  ●    
BG | TAZ |  
CT | ZIP  

 Bayesian Poisson-lognormal models with Multivariate CAR priors 

Zhai et al. 2018 United States 
TC 

(interior & 
boundary) 

●      ● ● ●    ● ● ●   ●    TAZ  Bayesian Poisson-lognormal model with CAR prior 

 ● Considered in the study design, ○ considered in the study process as filter/defining characteristic  
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Table 3: Studies with road safety spatial analyses primarily on the regional level 

Study Characteristics  
Dependent 
variables 

Independent variables – parameters  Spatial 
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approach 
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ct
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Regional level 

Aguero-Valverde 2013 Costa Rica TC ●  ●    ●        ● ● ●  ●   Canton 
Full Bayes hierarchical approach Poisson multivariate CAR model for 
spatial random effects. 

Aguero-Valverde & 
Jovanis  

2006 United States TC ●  ○    ●        ● ● ●     County Negative Binomial Regression | Full Bayesian hierarchical models 

Atubi 2012 Nigeria TC ●  ○            ● ●      State Multivariate linear regression 

Bu et al.  2018 United States TC ●  ●   ●   ●    ●   ●      Metropolitan areas Simple Density distribution analysis  

Erdogan  2009 Turkey TC  ● ● ●           ● ●  ●  ●  County Moran's I and Geary's c values, Z and G statistics 

Flask & Schneider  2013 United States MC ●  ○       ● ●  ○  ● ● ●  ●   County | Township Bayesian Negative Binomial Regression with mixed effects 

Han et al. 2018 United States TC ●     ●       ○ ● ●       
County (spec. road 

type) 
Bayesian hierarchical random parameter model | Bayesian hierarchical 
random intercept model | Bayesian Poisson lognormal model 

Huang et al.  2010 United States TC ●  ●   ○ ●       ● ● ● ● ○ ● ● ● County Bayesian Spatial CAR Priors regression 

LaScala et al.  2001 United States P-V   ● ●  ●        ● ○ ● ● ○ ● ● ● Communities Spatial autocorrelation regression log-linear model 

Lee et al. (a) 2019 United States P-V  ○ ○ ●    ●        ● ● ● ●  ● Metropolitan areas Multiple linear regression model integrated in a Poisson Lognormal Model 

Lee et al. (b) 2019 
Italy, United 
States 

TC | 
P-V | B-V 

●               ● ● ● ●   County | Provincia 
Negative Binomial Regression | Calibration factors | Transferability 
Indexes  

Lee et al. (a) 2018 United States TC ●  ○                   State Crash Modification Factors 

Lee et al. (c) 2018 United States P-V | B-V ●  ○     ●        ● ● ● ●   Metropolitan areas Bayesian integrated and non-integrated Bivariate Models 

Lee et al. (b) 2017 United States MC ●  ○             ●   ● ● ● County | Parish 
Before-and-After Study (1) with Comparison Group | (2) With Empirical 
Bayes | Safety Performance Functions | Crash Modification Factors 

Li et al.  2019 United States TC ●  ○    ●      ●   ● ○  ● ● ● County 
Hierarchical Bayesian random parameters models (structured and 
unstructured spatio-temporal effects) 

Li et al.  2013 United States TC ●  ○    ● ●       ● ● ●  ● ●  County Negative Binomial Regression | Poisson GWR 

Liu and Sharma 2018 United States TC ●  ●    ●            ● ● ● County 
Hierarchical Bayesian random parameters models (structured and 
unstructured spatio-temporal effects) 

Moeinaddini et al. 2014 
20 Cities 
Worldwide 

TC ●  ○           ● ●       City Gamma-distributed GLM 

Noland & Oh 2004 United States TC ●  ○   ●    ●  ● ●  ● ●   ●   County Negative Binomial Panel Regression  

Song et al.  2006 United States TC ●  ○    ○   ●    ○        County 
Bayesian Multivariate Poisson Lognormal Regression with and without 
CAR Prior  

Zhai et al. (b) 2019 Hong Kong P-V   ●           ● ●  ● ●    City Binary & Mixed logit models with and without variable interaction terms  

 ● Considered in the study design, ○ considered in the study process as filter/defining characteristic 
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Table 4: Studies with road safety spatial analyses primarily by conditional approaches 

Study Characteristics  
Dependent 
variables 

Independent variables – parameters  

Spatial aggregation approach Analysis - Modelling approach 
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Zonal 
level 

Link/ segment/ 
intersection 

level 
Condition-based level  

Bao et al. 2019 United States TC ● ● ●   ●       ● ● ●  ○   ●   
Multiple grids (approx. to 

ZIP areas)  
Convolutional Neural Network augmented with 
a Long Short-term Memory Network 

Bíl et al. 2013 Czech Republic TC ●            ○ ●        
Rural 

segments 

Rural road network split 
into fundamental 

segments  

Network Kernel Density Estimation with 
significance verification 

Cai et al. (b) 2019 United States TC ●     ●  ●    ● ● ●   ●   ●   
9-mi2 grid structure 

divided to smaller cells 

Convolutional Neural Networks (GLM and 
Artificial Neural Networks for benchmarking 
purposes) 

Cai et al. (a) 2017 United States 
TC | P-V  

| B-V 
●  ○   ●  ●     ● ●  ● ●    

TAD | 
TAZ | 
CT 

 
Multiple grids from  

1 to 100 mi2 
Multivariate Poisson Lognormal Regression 
with and without spatial autocorrelation  

Chung et al. 2018 United States TC ●  ○   ●        ○         
Areas within 20 mi of 
2271 weather stations 

Categorical analysis (sensitivity, positive 
predictive value, Cohen's Kappa) | Negative 
Binomial Regression 

Imprialou et 
al. 

2016 United Kingdom TC ●  ○ ● ●    ● ●  ●  ●        
Rural & 
Highway 
segments 

Pre-crash conditions 
Bayesian Multivariate Poisson Lognormal 
Regression 

Kim et al. 2006 United States 
TC | V-V | 
P-V | B-V 

●              ●  ○  ● ●   0.1-mi2 grid structure 
Negative Binomial Regression | OLS 
Regression 

Loo et al. 2011 China V-V | P-V  ●          ○   ○   ○     
Urban & 
suburban 
segments 

Urban and suburban 
network split into 

fundamental segments 
Network Kernel Density Estimation 

Mohaymany 
et al. 

2013 Iran TC ●          ○   ○ ●       
Rural 

segments 
Rural road split into 

fundamental segments 
Network Kernel Density Estimation 

Ossenbrugg
en et al. 

2010 United States TC ●  ○  ● ● ●                1-mi2 grid structure Homogeneous Poisson process spatial testing 

Xie et al. 2017 United States P-V ○  ●   ● ●        ● ● ● ● ● ●   
300×300 feet2 grid 

structure 
Linear Regression Model | Tobit Model | 
Potential for Safety Improvement 

Xie and Yan 2008 United States TC ●          ○   ○         
Urban network split into 

fundamental lixels 
Network Kernel Density Estimation 

 ● Considered in the study design, ○ considered in the study process as filter/defining characteristic 


