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Abstract 

The objective of this research is to exploit high resolution driving behavior data collected via 

sensors of smartphones from 303 drivers in order to examine driver behavior at road segment and 

junction level. These sensor data are combined with traffic and road geometry characteristics and 

subsequently depicted spatially using Geographical Information System software. Events of harsh 

driver behavior (8592 harsh accelerations and 3946 harsh brakings) were mapped to delimited 

segments and junctions of two urban expressways in Athens, Greece. For the analysis, two multiple 

linear regression models and two log-linear regression models were developed. Results indicate 

that in road segments there is an increase in the number of harsh events if average traffic volume 

per lane increases in the respective areas. Furthermore, as the average occupancy increases in 

junctions, there is an increase in harsh accelerations, and as the average speed increases, more 

harsh decelerations occur. It is evident that traffic characteristics (traffic volume & speed) have 

the most statistically significant impact on the frequency of harsh events compared to factors 

related to road geometry and driver behavior. 

 

Keywords: driver behavior; harsh events; geometric characteristics; traffic characteristics; 

smartphone data   
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1. Introduction 

 

1.1. Road Safety State 

 

Despite the fact that several attempts have been made to reduce road crash numbers and 

the respective casualties, it appears that fatalities from crashes have platooned during the recent 

years with the global number of deaths rising to 1.35 million annually (WHO, 2018) 

(corresponding to around 3,700 daily fatalities globally). Regarding Europe, according to statistics, 

in 2016 25,600 fatal crashes (70 deaths a day) were reported on the roads of the European Union 

and more than 1.4 million people were injured (about 3,600 injured per day) from road crashes 

(European Commission, 2018). 

Greece, where the analyses of the present research take place, is the country with the 

highest crash fatality reduction from road crashes in Europe (51%) between 2009 and 2018 

(European Commission, 2019). However, with 64 deaths per million it still ranks 22nd among the 

28 states of the European Union (European Commission, 2019). Furthermore, some of the 

observed crash reduction is expected to be part of the economic recession as annual GDP decreases 

have been shown as associated with mortality rate decreases (Yannis et al., 2014). According to 

the Hellenic Statistical Authority (ELSTAT) in January 2018, road crashes that occurred throughout 

the country and caused the death or injury of people increased by 18.8% compared to the 

equivalent of 2017 (757 in January 2018 compared to 637 in January 2017). 

 

1.2 State of the Art 

 

1.2.1. The Importance of Driving Behavior Analysis 

 

The analysis of driver behavior has been established as a critical part of preventing road 

crashes and improving road safety. While it is established that the three main factors of a road 

crash are human factors (driver/road user behavior), road environment/design faults vehicle faults, 

driver behavior has been determined as the critical reason for about 95% of total road crashes 

(Singh, 2015). The critical reason of a crash is defined by the NHTSA as "the immediate reason 

for the critical pre-crash event and is often the last failure in the causal chain of events leading up 

to the crash" (Singh, 2018). Driving behavior comprises in turn a large number of factors that have 

been found to contribute to road crashes (Dingus et al., 2016). The road environment comprises of 

several different elements which may in turn influence driving behavior differently, as past 

research indicates (Horberry et al., 2006; Hamdar et al., 2016). 

With the present state of road safety in mind, it is logical to seek alternative venues for 

crash reduction. The exploitation of new technological advancements allows for driver monitoring 

through smartphone applications and the respective data collection and processing (Vlahogianni 

et al., 2017). Smartphones have the advantage of being programmable and a wide array of sensors 

has now become standard equipment that can be utilized for transport studies (such as 

accelerometer, digital compass, gyroscope, GPS, microphone and camera) and enable sensing 

applications, even without user engagement (Mantouka et al., 2018). 

Furthermore, the analysis of driving behavior seems to be useful in the car insurance 

market, while insurance is a significant proportion of car costs. To reduce costs for the car owner 

and for insurers, insurance companies have developed various programs such as Pay-As-You-

Drive (PAYD). For instance, drivers-customers who use the PAYD program will be charged 
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depending on the location and the time they drive against a specified amount of money that they 

would pay each year with another program (paid-by-the-year). In other words, the results of such 

an analysis will help to create new road safety programs or to reinforce existing ones. This way, 

the insurance programs will encourage responsible driving, reduce the risk of road crashes and 

save lives and money (Troncoso et al., 2010). 

Aggressive driving behavior parameters, such as harsh accelerations and decelerations, and 

their correlations with crash risk, have been investigated by the insurance industry (Paefgen et al., 

2014). Harsh events have been determined as strongly correlated with driving risk (Tselentis et al., 

2017). Earlier studies have documented harsh driving behavior as critical for driving risk 

assessment (Bonsall et al., 2005). 

Furthermore, harsh events have a significant impact on energy efficiency as well. The 

difference, under terms of fuel consumption and of gas emissions, between a safe (or calm) driver 

and an aggressive one is estimated to be greater than 40% (Alessandrini et al., 2012). For this 

reason, with the intention of reducing the environmental footprint due to the road transport system, 

in recent years the idea of educating drivers to adopt a more environmentally friendly way of 

driving has been promoted. Such behavior could be achieved by reducing harsh accelerations, 

harsh decelerations and harsh maneuvers (Yamakado et al., 2009). The desired reduction in the 

emission of gases could be accomplished by finding the factors influencing aggressive behavior 

through its analysis. 

 

1.2.2. Exploitation of Sensor Data 

 

While analyzing driver behavior is crucial, the difficulty in collecting reliable and high-

resolution data restricts progress in this field. The required data can be collected in different ways, 

such as (i) questionnaires that investigate a driver’s personality and driving styles to understand 

his risk of being involved in a road crash, (ii) simulators where a driver controls a car in a virtual 

driving environment, providing a safe and isolated way to study driver behavior, (iii) in-vehicle 

data recorders that collect driving variables in real-time and in a naturalistic driving environment 

(e.g. OBD). 

Some of the previous methods of collecting driving behavior data require high costs to be 

applied and may not yield objective results. The proliferation of smartphones and the various types 

of integrated sensors in them created a fourth method of collection: a cheap and easy to install 

platform for detecting driver behavior in naturalistic conditions, offering a low cost alternative to 

driving data collection. The evaluation of driver behavior through experiments using smartphone 

data was found to be a very promising method, enabling the acquisition of a wealth of real-life 

data on driving behavior and related risks such as distraction and speeding (Papadimitriou et al., 

2018). The dissemination of modern technologies for mobile devices, as well as the development 

of several applications for the utilization of their internal sensors, allow users to interact by getting 

a feedback in real-time about their driving behavior. Something like that can be useful in 

reinforcing driver awareness and promoting safety. By providing such interventions during 

driving, a reduction of approximately 20% is calculated in the average estimated number of road 

crashes under specific conditions (Wouters & Bos, 2000; 16). 

Due to the rapid technological progress, especially in telematics and Big Data analytics, 

along with increases in the information technologies’ penetration and use by drivers (e.g. 

smartphones), studies examine the driving behavior through the collection of data using 

technology devices adapted to the brain of the vehicle or through sensors of a smartphone. 
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There are several measurements which can be used alone or in combination in order to 

evaluate the driving behavior. These may be related to the way of driving, the mechanical 

characteristics of the vehicle, the weather conditions, the duration of the journey, the distance 

travelled, etc. In scientific literature as the most significant parameters for unsafe or aggressive 

driving style assessment appears to be longitudinal and lateral accelerations and decelerations 

(Vaiana et al., 2014; Shaout et al., 2011; 19. Klauer et al., 2009; Paefgen et al., 2012). More 

specifically, significant different frequencies of events were observed depending on the type of 

road in which event was occurred. That observation can be explained due to the traffic in the city 

which requires more accelerations, decelerations and sharper turns (Paefgen et al., 2012). 

Furthermore, in another investigation there were detected more aggressive behaviors in the area 

that was characterized by high traffic volume and located in the city center, while fewer were 

observed in the area that could be classified as suburban (Vaiana et al., 2014). 

The recording of driving behavior in naturalistic conditions, either from smartphone 

sensors or from in-vehicle device sensors, presents advantages such as the collection of high-

resolution data and objective measurements, as well as the possibility of informing drivers about 

their driving style by receiving feedbacks. A noteworthy fact is that exposure to feedback is an 

important incentive to drive more carefully and in a more responsible manner. Research has shown 

that drivers accept more easily feedback derived from technological methods compared to other 

methods (Toledo et al., 2008; Roetting et al., 2003). 

Significant correlations are found between the vehicle-related recording systems and the 

sensors of smartphones, although they are affected from the type of event, the location of the 

smartphone in the car and from external factors (Paefgen et al., 2012). However, due to the high 

cost of installing and operating a system unit in the vehicle for data collection, it is more strongly 

supported to create an application for smartphones and exploit its sensors. 

Several studies have been carried out focusing on the spatial analysis of recorded road 

crashes, road characteristics and census variables, and ultimately on the export of road crash 

models to improve road safety. Due to the progress of the geographic information systems it is 

possible the analysis of road crashes can be conducted across different geographic units. However, 

there is no clear guideline on which geographic unit should be selected for the spatial analysis of 

road crashes (Ziakopoulos & Yannis, 2019). The preference of the spatial unit may vary depending 

on the dependent variable of the mathematical model, and furthermore, it has been found that the 

distance travelled by the vehicle and the number of junctions in the area under study constitute 

statistically significant variables for the analysis of road crashes (Abdel et al., 2013). 

 

1.3. Aim of the Current Research 

 

In light of the aforementioned aims and methods, the aim of the current research is the 

utilization of high resolution smartphone data for the examination of frequencies of harsh 

accelerations and harsh decelerations (brakings) and their concentrations across junctions and road 

segments. The combined impact of road and traffic characteristics on driver behavior using data 

from smartphones will be investigated using multi-source data. To the extent of the authors' 

knowledge, this is an unexplored research direction that can offer valuable insights to 

understanding the factors affecting driver behavior as described by harsh events on a 

mesoscopic/macroscopic road segment basis. 
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2. Data Collection and Processing  

 

2.1. Data Collection 

 

To enable the analysis of the aggressive driving behavior, data from three separate sources 

were analyzed. The study area consisted of two urban expressways that were examined, Mesogeion 

Avenue and Vouliagmenis Avenue, in Athens mainly due to the comparable number of traffic 

lanes and the separation of the two directions that they feature. Specifically, driving behavior data, 

traffic characteristics of the two urban expressways under study as well as road geometry 

characteristics were collected. The first dataset concerned the driving behavior of 303 drivers in 

Athens and was collected using sensors of smartphones via the purpose-made application of 

OSeven telematics, which is a driver-friendly telematics application. The second one consisted of 

traffic characteristics which were collected through twenty-six (26) inductive loops, installed by 

the Traffic Management Centre of Attica Region in specific measuring positions on the two urban 

expressways under study. Finally, the third dataset was formed by geometry characteristics of the 

two urban expressways which were collected using the online mapping service provided by Google 

Maps. The data collection process is described in more detail in the following sections. 

An innovative data collection scheme using a smartphone application that has been 

developed by OSeven Telematics was exploited for the recording of driving behaviour data. This 

is an integrated system for the individualized recording, collection, storage, evaluation and 

presentation of driving behavior data using sensors of the smartphone and advanced machine 

learning (ML) algorithms. Recorded data come from various smartphone sensors (accelerometer, 

gyroscope, magnetometer and GPS) and data fusion algorithms provided by Android and iOS. A 

significant amount of data is recorded using this platform, as described in recent research that has 

utilized this specific scheme (Papadimitriou et al., 2019).  

It is important to mention that data are completely anonymized before being provided by 

OSeven so that driving behavior of each application user cannot be connected with any personal 

information (thus driver characteristics such as age, gender etc. are not used in this study), in 

accordance with standing European personal data protection laws (GDPR). This application 

involves a data exploitation approach that is not user intrusive. The smartphone application has 

been utilized for road safety research and described in past studies as well (Yannis et al., 2017; 

Tselentis et al., 2018, Tselentis et al., 2019; Stavrakaki et al., 2019). The flexible smartphone 

installation and transferability of the application enables the acquisition of data for several 

parameters while enabling researchers to eschew vehicle instrumentation or video examination for 

eye-tracking movements which involves increased effort and costs.  

In total, 303 drivers participated in the smartphone naturalistic driving experiment in 

Athens and between 25 August 2016 to 26 November 2017 leading to the creation of two large 

databases of harsh accelerations and decelerations with thousands of events each. More 

specifically, during this period 4869 harsh accelerations and 2181 harsh brakings were recorded 

in Mesogeion Avenue and 3723 harsh accelerations and 1765 harsh brakings were recorded in 

Vouliagmenis Avenue. A harsh event is recorded from the application when accelerometer values 

exceed certain predetermined thresholds determined by OSeven. Event intensity is also classified 

among different categories. For each harsh event that was recorded, respective descriptive 

variables (speed of the event, maximum speed difference in two seconds during the event (a form 

of range), distance of the event) were recorded as well. 
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Traffic characteristics were collected using the infrastructure provided by the Traffic 

Management Centre (TMC) of Attica Region. Specifically, 26 available measuring positions of 

traffic volume and occupancy were found in Vouliagmenis Ave. and Mesogeion Ave., installed by 

the TMC. However, as far as Vouliagmenis Ave. is concerned, only the measuring positions 

between Agiou Constantinou and Alimou Ave. taken into consideration due to the low quality of 

the remaining measurement locations. The obtained traffic data consists of a group of vehicles and 

are collected on two time bases. The first group is consisted of measurements at intervals of 90 

seconds and, through their aggregation, the second group is obtained, which consists of hourly 

measurements. The hourly database referring to each typical and indicative day of the year 2017 

was used for the purposes of the current research. TMC infrastructure and obtained data have also 

been utilized in past road safety research (Yannis et al., 2014b; Theofilatos et al., 2018). 

It was decided that the utilized traffic parameters would be the average hourly traffic flow 

(normalized as average hourly traffic flow/lane, measured in vehicles/hour), average occupancy 

(measured as absolute percentage) and average aggregated speed (measured in kilometers/hour). 

The yearly average of 2017 was calculated at each measurement location for these parameters in 

order to acquire the typical value for each parameter (essentially resulting in AADT/lane for traffic 

flow, and yearly averages of hour-level values for occupancy and aggregated speed). 

In order to be able to assess the influence of the road design on the aggressive behavior of 

the driver sample, the constructional configuration of each junction and road segment was 

determined through examination of aerial photography. Specifically, the geometrical 

characteristics of the two urban expressways were acquired with the help of the online mapping 

service Google Maps. The following variables were collected:  

 

 number of entrances and exits of each junction under study 

 number of outgoing and ingoing traffic lanes to and from the junction 

 presence or absence of access roads 

 number of right exits and entrances of the road segment 

 presence or absence of bus lanes 

 

2.2. Data Processing 

 

After driving behavior data, traffic characteristics and road geometry characteristics were 

obtained, they underwent considerable manipulation and processing. The first step consisted of 

trimming the harsh events from the entirety of the road network to the segments and junctions of 

the examined urban expressways. The next step consisted of the correct matching of traffic and 

geometry data to the corresponding segments and junctions that they characterized. 

The analysis of the collected data on a segment basis with the geographical information 

software system was conducted (ArcGIS 10.3) and specifically the application ArcMap (ArcMap 

10.3). Initially, the road axes of Athens were added and after that the harsh accelerations and 

decelerations were imported as points, based on their coordinates. In addition, the map was 

imported to facilitate the easier and faster detection of the correct road segments. In order to 

classify the harsh events in junctions and road segments according to the spatial unit that they 

occurred into, the two urban expressways under study were detected on the map and afterwards 

circles of 50 m radius were designed in place of junctions, accompanied by 40m radius cycles for 

pedestrian crossings and polygons for road segments on the expressways. Pedestrian crossings 

were too few in order to be meaningfully included in the analysis. 
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A challenge to be tackled at this point was the determination of the direction that each harsh 

event occurred on, for its assignment on the respective road segment. It should be noted that the 

smartphone sensor/GPS accuracy is a minimum of +/- 5m, therefore there might be small 

inaccuracies in the mapping of events, especially regarding their direction (by being recorded in 

the opposite direction). To conduct the mapping, polygons that coincided with the road segments 

of each traffic direction with a width equal to the sum of the widths of the traffic lanes of the 

particular direction plus the half width of the median strip were drawn. It was assumed that the 

overall smartphone sensor/GPS inaccuracies would essentially cancel themselves out, leaving the 

resulting allocation of events per direction close to reality. 

In this way, 17 road segments per direction and 24 junctions were defined on Mesogeion 

Ave., and 24 road segments per direction and 26 junctions were defined on Vouliagmenis Ave. As 

far as Vouliagmenis Ave. is concerned, not all road segments and junctions were taken into 

consideration due to the low quality of traffic measurements on certain parts of the expressway as 

previously described. The remaining junctions and the road segments were numbered during their 

design process so that the later data analysis would avoid any errors regarding the location of the 

spatial unit on the urban expressway. 

In order to achieve the categorization of the harsh events in each numbered spatial unit that 

was defined, a geoprocessing model was used. In this way each spatial unit was now characterized 

by the frequency of harsh acceleration or harsh deceleration and by the variables that characterized 

any harsh event. Since the harsh events were not analyzed in isolation but as total depending on 

where they occurred, values of the descriptive variables (minimum number, maximum number, 

standard deviation, range, mean) of the harsh events that occurred in the same spatial unit were 

calculated through the geoprocessing model. 

Finally, in order to combine the driving behavior high resolution data from the intelligent 

mobile phone sensors and the traffic sizes measured by the inductive loops placed by the TMC, 

the traffic measurement locations were added in the map under processing, based on their Cartesian 

coordinates. Consequently, a dataset was produced that imprinted the events of harsh accelerations 

and decelerations in Athens, the geometric characteristics of the road network and the 

measurement positions of traffic characteristics. 

Due to the smaller number of loops compared to the number of junctions and road segments 

defined on the two avenues under study, some mathematical approximations were made regarding 

the positions that had not been accurately measured by the TMC. More specifically, in locations 

where there was no measuring device, it was considered that the average traffic volume per lane, 

the average occupancy and the average speed that characterized the road segment was equal to the 

average of the corresponding traffic parameters that characterized the previous and the next road 

segment where there was a measuring device and thus a more precise measurement. 

 

𝑄/𝑙𝑆𝑛 =
𝑄/𝑙𝑆𝑛𝑢𝑝+𝑄/𝑙𝑆𝑛𝑑𝑜𝑤𝑛

2
 [

𝑉𝑒ℎ

ℎ
]  (1) 

𝛰𝑆𝑛 =
𝛰𝑆𝑛𝑢𝑝+𝛰𝑆𝑛𝑑𝑜𝑤𝑛

2
 [%]   (2) 

𝑉𝑆𝑛 =
𝑉𝑆𝑛𝑢𝑝+𝑉𝑆𝑛𝑑𝑜𝑤𝑛

2
 [𝑘𝑚/ℎ]   (3) 

Where: 

𝑆𝑛: road segment without a measuring device 
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𝑆𝑛𝑢𝑝: upstream road segment with a measuring device (before the road segment 𝑆𝑛) 

𝑆𝑛𝑑𝑜𝑤𝑛: downstream road segment with a measuring device (after the road segment 𝑆𝑛) 

𝑄/𝑙𝑆𝑛: average traffic flow per lane of the road segment 𝑆𝑛 

𝛰𝑆𝑛: average traffic occupancy of the road segment 𝑆𝑛 

𝑉𝑆𝑛: average traffic speed of the road segment 𝑆𝑛 

In the case where in a road segment without a measuring device (𝑆𝑛) was added a 

significant traffic load from a road perpendicular to the highway (e.g. Chalkiriou Street in 

Mesogeion Ave.), a different approach was followed. If 𝑆𝑛 was before the perpendicular road, then 

the traffic parameters were assumed to be equal of those of 𝑆𝑛𝑢𝑝 only; conversely, if 𝑆𝑛 was after 

the perpendicular road, then the traffic parameters were assumed to be equal of those of 𝑆𝑛𝑑𝑜𝑤𝑛 

only. This was due to the fact that traffic parameters were typically not available for perpendicular 

roads, and it was applied in practice only in two instances of the study. 

A different process was established for the traffic measurements of junctions. More 

specific, the average of the traffic measurements of the inbound segments were considered as the 

overall traffic flow, occupancy and velocity of the junction. 

Expressed in mathematical format (where k is the total of inbound segments for the 

junction): 

 

𝑄
𝑙⁄

𝑗𝑢𝑛
=

∑ 𝑄
𝑙⁄

𝑖𝑛𝑏𝑜𝑢𝑛𝑑
𝑘
𝑖=1

𝑘
 [

𝑉𝑒ℎ

ℎ
]   (4) 

𝑂𝑗𝑢𝑛 =
∑ 𝑂𝑖𝑛𝑏𝑜𝑢𝑛𝑑

𝑘
𝑖=1

𝑘
  [%]   (5) 

𝑉𝑗𝑢𝑛 =
∑ 𝑉𝑖𝑛𝑏𝑜𝑢𝑛𝑑

𝑘
𝑖=1

𝑘
 [𝑘𝑚/ℎ]   (6) 

 

Where the designed cycles of successive junctions intersected, indicating no intervening 

road segment, the traffic parameters were considered as equal to the averages of the inbound road 

segments that entered both junctions, and thus were considered the same for all junctions. 

The data processing was complemented by the introduction of elements related to the 

geometry of the two expressways under study as they were extracted by visual examination of 

aerial photography images provided by Google Maps and Google Earth. In the road segments 

under consideration, variables such as the length of the segment, the number of right exits or 

entrances, the existence of a sideway etc. were collected. In the junctions under consideration, the 

number of left and right exits, the number of left and right entrances, the number of incoming and 

outgoing lanes and the existence of a sideway was determined and inserted in the dataset. The 

various stages of data processing via GIS are visualized on Figure 1. 

On a similar note, Figure 2 provides a detail of the examined road environment 

accompanied by mapping of harsh events. The conditions for defining the limitation and drawing 

of boundaries for road segments and junctions are also visible. 
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Figure 1: Visualization of the stages of data processing 

 

 

 

Figure 2: Example of road environment boundaries and event mapping 
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2.3. Statistical Analysis  

 

Following the described data collection and processing, it was decided that multiple linear 

regression and log-normal regression models would be appropriate for the statistical analyses of 

driver behaviour. Specifically, regression models were developed to model how parameters of 

driving behaviour, traffic characteristics and road geometry characteristics influence the frequency 

of harsh events in a defined spatial unit. In road segments log-normal regression was implemented 

as it provided a better overall model fit (and also allowed no negative frequency predictions that 

might arise from unorthodox independent parameter combinations); in junctions linear regression 

models were utilized. 

Linear regression is a known and simple technique (and as such we will omit the 

mathematics behind it) used to model a linear relationship between a continuous dependent 

variable and one or more independent variables (Washington et al., 2010). In the analysis under 

consideration, the dependent variables were considered to be continuous due to the large number 

of events that were observed in the defined spatial units. The log-linear (log-normal) regression 

was applied as long as it described better the aggressive behaviour in road segments and since all 

the independent variables in the mathematical models were positive. Both approaches were 

calibrated using the Ordinary Least Squares method. 

To complement the developed models, elasticity analyses were conducted as well. As 

defined in practice, elasticity analyses allow for the quantification of the response of the dependent 

variable for a 1% change of an independent continuous variable. When dealing with independent 

categorical variables, it is meaningful to implement pseudo-elasticities to obtain the incremental 

changes that are incurred as a result of category changes in the categorical variables (Washington 

et al., 2010). By using elasticity (and pseudo-elasticity) analyses, the influence of each variable on 

the number of harsh accelerations or decelerations occurring in a road segment or in a junction 

was thus quantified. 

Following Washington et al. (Washington et al., 2010), the elasticity of a dependent 

variable 𝑌 with respect to a continuous independent variable 𝛸 that has a regression coefficient β 

can be defined as: 

 

𝑒𝑖 = 𝛽𝑖
𝛸𝑖

𝛶𝑖
≈

𝜕𝛸𝑖

𝜕𝛶𝑖
∗

𝛸𝑖

𝛶𝑖
   (7) 

 

For categorical independent variables, the pseudo-elasticity is defined as per the 

exponential change: 

 

𝐸𝛸𝑖𝑘

𝜆𝑖 =
𝐸𝑋𝑃(𝛽𝑘)−1

𝐸𝑋𝑃(𝛽𝑘)
   (8) 

 

The absolute elasticities can be rescaled to fit the range of all independent continuous 

variables, by setting the lowest value to 1 and adjusting the rest of the variables in proportion with 

their absolute score. It was decided that it was not appropriate to adjust pseudo-elasticities 

alongside elasticities as the increases in independent variables are not comparable. 

Having established the analysis process, the various model configurations were tested on 

the data. It should be noted that the final selection of the models was made after several 

configuration considerations of the many possible combinations of variables, which were 

documented but are not presented here for brevity. The four final models were evaluated 
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considering the common statistical tests (R2, t-test etc.) but also based on the logical explanation 

of the results. The correlation of variables was also examined to select the best-fitting mathematical 

model. In practice, what is expected is the best possible correlation between dependent and 

independent variables and the zero correlation between independent variables. Those independent 

variables that showed high correlation, greater than the empirical upper bound of 0.4 were not 

taken into account in the final behaviour models. The analysis was conducted using SPSS Statistics 

(IBM Corp, 2015). Results appear on Table 1 (for road segments) and Table 2 (for junctions) that 

follow.  
 

Table 1: Log-linear model results for harsh event frequency in road segments 

Independent Variables 

Frequency of harsh events in road segments 

Harsh accelerations Harsh decelerations (brakings) 
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βi* t p ei ei* βi* t p ei ei* 

Segment length 0.001 4.224 0.000 0.007 1.138 0.001 2.470 0.017 0.005 1.672 

Q/l 0.002 5.974 0.000 0.030 4.858 0.002 4.355 0.000 0.024 8.692 

V -0.011 -2.470 0.017 -0.014 -2.217 -0.010 -1.909 0.063 -0.013 -4.551 

Range (Speed Diff.) 0.039 3.477 0.001 0.006 1 0.076 4.650 0.000 0.013 4.593 

St.Dev. (Distance)  

 

 

 

0.058 1.756 0.086 0.003 1 

Adjusted R2 0.963 0.954 

 

Table 2: Linear model results for harsh event frequency in junctions 

Independent 

Variables 

Frequency of harsh events in junctions 

Harsh accelerations Harsh decelerations (brakings) 
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βi* t p ei ei* βi* t p ei ei* 

No. Outgoing_Lanes 15.520 2.526 0.017 0.104 -  

O 27.857 4.615 0.000 0.014 3.243  

logV2 -77.010 -3.891 0.001 -0.004 -1  

STD_Speed_Diff 74.238 3.860 0.001 0.012 2.821  

No. Right_Exits  

 

 

11.436 1.785 0.085 0.338 - 

Q  -0.020 -2.135 0.042 0.006 1 

V2  0.017 3.339 0.002 0.035 5.511 

MAX_Event_Speed  0.491 2.194 0.037 0.011 1.746 

MIN_distance  -16.160 -2.895 0.007 -0.009 -1.349 

Adjusted R2 0.904 0.723 
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Furthermore, for the developed models, the respective P-P plots were produced, shown in 

Figures 3-6 that follow. The normal probability plots (also known as P-P plots) are used to 

compare the observed cumulative distribution function (CDF) of the standardized residual to the 

expected CDF of the normal distribution. It is evident that all of the plots follow closely or very 

closely the curve, therefore it is assumed that a normal distribution is approximated very 

adequately by the sample data. Predictions of models have been examined in the available 

dataset, and it was ensure that no negative estimations were made from the linear predictors for 

the available data. 

 
Figure 3: Produced P-P plot for harsh accelerations in road segments 

 

 
Figure 4: Produced P-P plot for harsh brakings in road segments 
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Figure 5: Produced P-P plot for harsh accelerations in junctions 

 

 

 
Figure 6: Produced P-P plot for harsh brakings in junctions 
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3. Discussion of Results 

 

3.1 General Remarks 

 

An initial result from the descriptive statistical analysis is that the events of harsh 

accelerations are more frequent at junctions compared to road segments, while the frequency of 

harsh brakings appears to be marginally higher at junctions than at road segments. At sample level, 

this may indicate that the available green light time is often violated and many drivers speed up 

rapidly to evacuate the intersection immediately in orange or even red light duration. When 

examining the produced models, as is evident from Tables 1 and 2, the variables affecting the 

frequency of driver harsh events on a statistically significant level in road segments and junctions 

are several. 

The very high adjusted coefficient of determination (R2) values, especially for the road 

segments, merit discussion as well. It is not the belief of the authors that they have discovered a 

perfect model that describes harsh events unerringly; rather, it is believed that the current research 

has captured the majority of the parameters that can meaningfully and informatively describe and 

predict harsh event frequency. This was primarily achieved by taking into consideration three main 

pillars of road safety: (i) driver behavior, (ii) traffic parameters and (iii) road network/geometric 

characteristics. It also appears that the relationship is strongly log-linear for road segments and 

strongly linear in junctions as well. Another probability to keep in mind is that these high values 

are the product of the dataset, since very homogenous road segments and junctions have been used 

for its compilation. Ultimately, not all harsh accelerations/decelerations are inherently unsafe. 

However, by introducing traffic parameters in the models, a large amount of variance in event 

frequencies has been explained. 

 

3.2. Results for Road Segments 

 

The elasticity analysis for road segments shows that traffic parameters have increased 

effects than those of road geometry characteristics and driving behavior. In road segments, traffic 

volume per lane appears as the most critical variable; in particular, an increase of 1% of traffic 

volume per lane increases the logarithm of the number of harsh accelerations by 0.30% and the 

respective value of harsh brakings by 0.24%. This may be explained by the fact that increased 

levels of traffic congestion create dynamic obstacles which prevent the driver from selecting their 

vehicle speeds at will, thus resulting to abrupt driving behavior. 

The variables affecting harsh acceleration occurrence in road segments are in order the 

average speed of traffic, the length of the road segment and the maximum speed difference in two 

seconds during the event. With regard to the frequency of occurrence of harsh decelerations in 

road segments second, the most determining factor is the maximum range of differences of speed 

during the harsh decelerations that occur in the road segment; following in the hierarchy are the 

average speed of traffic, the length of the road segment and lastly the standard deviation of the 

distance travelled during the event. 

It was observed that as the length of the road segment increases, there is an increase in 

harsh events of accelerations and decelerations. This may be due the greater number of avenue 

exits/entrances and the more frequent changes of lanes. Therefore, it could be explained potentially 

by the fact that while traffic lights are part of the junction areas, their radius of influence extends 

to downstream and upstream subsections of road segments beyond each cycle defined for each 
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junction. In this way, the aforementioned subsections, have the possibility of a harsh event 

occurring due to a spillover from the traffic lights ahead. 

 

3.3. Results for Junctions 

The elasticity analysis for junctions shows that the most important factor affecting harsh 

accelerations appears to be the average occupancy; an increase of 1% of occupancy increases harsh 

accelerations by 0.014%. This result is interpreted because the most aggressive drivers perceive 

the increase in the saturation of the flow, they try to exploit any available spatial headway. 

Furthermore, due to speed variation traffic congestion affects driver behaviour to a greater extent. 

It also appears that the average speed of traffic (expressed squared) is the most critical factor in 

the events of harsh decelerations at junctions, with a 0.5% increase of speed (resulting to 1% 

increase of the square of average speed, which is the independent variable used for elasticity 

analysis) of traffic resulting in a 0.035% increase of harsh brakings. The interpretation is that by 

increasing average speed of traffic, more events of harsh decelerations are expected, possibly due 

to the creation of disturbance in traffic waves (shockwaves) or instantaneous queue formation at 

traffic lights or even from unexpected obstacles. 

In the hierarchy of variables that influence the frequency of harsh accelerations in junctions 

is the maximum difference of speed in two seconds during the event (in the form of standard 

deviation) and the average speed of traffic. The second most important factor, which affects the 

number of harsh decelerations that occur in junctions, according to the calculated elasticity, is the 

maximum speed recorded by the driver speeds during harsh decelerations that took place at the 

junction. Lastly follows the minimum distance of the harsh deceleration and the average traffic 

load. 

The increase in outgoing right traffic lanes in a junction causes an increase in harsh 

accelerations in the junction. Practically this could be explained by the desire of the most 

aggressive drivers to accelerate since they find more available free space from the increase of the 

traffic lanes. Another result is that the increase in the number of right exits from the junction causes 

an increase in the frequency of harsh decelerations which may be justified by the effort of the 

driver emerging from the junction to adjust the movement speed of his vehicle in a lower speed 

required to transition to the road network outside of the Avenue. Outgoing vehicles may also 

encounter other vehicles in the exit lane that drive at a slower speed, and harsh decelerations occur, 

possibly resulting in a traffic shockwave. 

 

4. Conclusions 

 

The present research aimed to explore the factors affecting the frequencies of harsh 

accelerations and decelerations (brakings) and their concentrations across junctions and road 

segments in two urban expressways of Athens. In order to achieve that aim, high resolution 

smartphone data were utilized for recording the harsh events and driving behavior parameters such 

as speed difference and event distance. This dataset was then complemented by traffic 

characteristics which were collected through twenty-six (26) loops, installed by the TMC of Attica 

Region in specific measuring positions on the two urban expressways under study. Geometrical 

characteristics of the road network were also added by examining the area using the online 

mapping service of Google Maps. 

After data collection and subsequent processing, two log-linear regression models were 

calibrated for road segments and two linear regression models were calibrated for junctions. The 
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models provided valuable insights as a number of affecting factors was determined for harsh event 

frequency. In short, it was observed that in road segments there is an increase in the number of 

harsh events if the average traffic volume per lane increases in the respective areas. In junctions 

as the average occupancy increases, there is an increase in harsh accelerations, and as the average 

speed increases, more harsh decelerations occur. It appears that traffic characteristics (traffic 

volume & speed) have the most statistically significant impact on the frequency of harsh events 

compared to road geometry characteristics and driver behavior data. 

The resulting very high (adjusted) R2 values lead to the conclusion that the vast majority 

of contributing factors of harsh event occurrence have been captured (driver behavior, traffic 

parameters and geometric parameters) by the current study. The results of this study may be 

transferred to similar areas outside the research area. However, prior to any generalization, 

necessary adjustments should be made for possible variations in the road environment and traffic. 

For instance, an analogous study should be conducted for motorways or rural roads that have 

fundamentally different characteristics than urban expressways in order to obtain more accurate 

results for these road environments. 
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