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Abstract 
Depression has been found to significantly increase the probability of risky driving and involvement in 

traffic collisions. The majority of studies correlating depressive symptoms with driving, pursue to predict 

the differences in driving behavior if the driver has already been diagnosed. Little evidence can be found, 

however, on how mental and psychological disorders can be identified from driving data, and usually 

analyses utilize simple models and aggregated data. This study aims at utilizing microscopic data from a 

driving simulator to detect sessions belonging to “depressed” drivers by utilizing powerful machine learning 

classifiers. Driving simulator sessions from 11 older drivers with symptoms of depression and 65 healthy 

drivers were utilized towards that aim. Random Forests, an ensemble classifier, with proven efficiency 

among transportation applications, are then trained on highly disaggregated data describing the mean and 

standard deviation of speed and lateral or longitudinal acceleration of drivers in the simulator. The 

kinematic data were aggregated in 30-seconds, 1-minute and 5-minute intervals, but the corresponding 

time-series of the measurements were also taken into account. Furthermore, classifiers were treated with 

imbalanced learning techniques to address the scarcity of depressed drivers among the healthy. Time-series 

of mean speed and the standard deviation of longitudinal acceleration even with a duration of 30-seconds 

have proven to be the best predictors of driving sessions belonging to depressed drivers with a very low 

rate of false alarms. The results outperform previous approaches, and indicate that naturalistic driving data 

or deep learning could prove even more efficient in detecting depression. 

 

Keywords: Depression, Driving Simulator, Random Forests, Time-Series   
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1. Introduction 

Depression is one of the two most common mental disorders among the world’s population (the other one 

being anxiety), influencing more than 300 million people in 2017 (World Health Organization, 2017). 

Furthermore, the total number of people suffering from depressive symptoms, has significantly increased 

during the last 15 years (World Health Organization, 2017). Usually, depressive disorders can be divided 

into two categories: i) major depressive disorders (also referred to as episodes), where symptoms include a 

depressed mood, loss of interest and decrease of energy for a short amount of time and ii) dysthymia, where 

the aforementioned symptoms might be milder but occur on a chronic basis. The significance of depression 

for mental well-being can be linked to the fact that is prevalent among different age groups, e.g. adolescents 

and young adults (Mojtabai et al., 2016) as well as elderly (Fiske et al., 2012) and is also heavily correlated 

with mild cognitive impairment (MCI; Ballenger, 2008; Beratis et al., 2017). 

 

Recent studies (Beratis et al., 2017; Brunnauer and Laux, 2017; Bulmash et al., 2006; Pavlou, 2016; Scott-

Parker et al., 2013a) have investigated the relationship between depression and driving performance and 

their findings conclude to a deterioration of driving behaviour in patients with depressive symptoms. 

However, in the majority of recent studies, the research hypothesis is based on a pre-defined cognitive 

impairment and is focusing on the differences between a group of depressed individuals and a control group 

with regards to driving behavioural (e.g. speed, acceleration, steering wheel variations) or safety 

characteristics (e.g. Time-to-Collision; TTC, headway or reaction times). Moreover, in order for 

associations with regards to depression or cognitive impairment in general and driving behaviour to be 

drawn, methodologies are limited to simple hypothesis testing (McDonald et al., 2018; Scott-Parker et al., 

2013b), descriptive statistics (Pavlou et al., 2016), simple regression (Beratis et al., 2017), with the most 

sophisticated technique being Structural Equational Modelling (SEMs) (Pavlou, 2016; Scott-Parker et al., 

2013b). In general, patients diagnosed with MCI, participate in driving simulator studies or on-road tests 

(Papadimitriou et al., 2017), and the data are post-processed and largely aggregated in order to distinguish 

between consistent and safe driving or unsafe behaviour.  

 

In the current era, advances in Intelligent Transportation Systems (ITS), data collection and handling, as 

well as vehicular technologies have brought about new innovative concepts, such as machine learning-

based driver analytics (Vlahogianni and Barmpounakis, 2017) and autonomous driving (Levinson et al., 

2011). In such frameworks, the identification of driving behaviour needs to be efficient in a proactive and 

real-time manner, ensuring safety and comfort among all traffic participants.  

 

Limited proof can be found in the literature on how a specific cognitive impairment, such as depression, 

can be identified using microscopic (i.e. highly disaggregated) driving data from experimental studies with 

the exploitation of machine learning approaches. This gap forms the motivation for the current paper, which 

aims at identifying if driving characteristics captured in a driving simulator experiment belong to a 

depressed driver or a control participant. The proposed approach, utilizes highly disaggregated data which 

describe the speed, lateral and longitudinal acceleration of participants, and compares two different 

methodological frameworks: i) one where data are aggregated in 30-seconds, 1-minute and 5-minute 

intervals and the mean and standard deviations of the aforementioned kinematic characteristics are extracted 

and ii) one that utilizes the time series of these kinematic variables with corresponding lengths to the 

aggregated data(i.e. 30-second, 1-minute and 5-minute time series). The use of different data aggregation 

intervals as well as the use of time series with different duration would also attempt to investigate the 

effectiveness of measurement duration and aggregation level in identifying data points belonging to 

depressed drivers, so as to determine which duration or aggregation level should be preferred by researchers 

and practitioners.  

 

The remaining parts of the paper are structured as follows: initially the literature is reviewed in order to 

understand how depression, cognitive impairment and driving behaviour are correlated, and then the 

methodology to detect depression among drivers using machine learning is presented. This is followed by 
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a description of the data utilized for the study, the results and their discussion with regards to the developed 

classifiers. Finally, conclusions are drawn and recommendations for further research are proposed.  

 

2. Literature Review 

Depression, as a mental impairment, affects the way in which information is processed and may lead to 

difficulties in rapidly changing environments which are task demanding (Grahek et al., 2019). Due to the 

infamy of depression as a psychiatric disorder, its potential impact on driver performance could have 

significant implications not only on the individual’s well-being but also on traffic safety due to inabilities 

of depressed to concentrate and their slow reacting times (Wickens et al., 2014). Wickens et al. (2014) in 

their review on depression and driving, argue that although several studies have demonstrated mixed results 

on the effect of depression on road safety, the majority of the literature suggests an increased collision 

probability for depression patients. Furthermore, in the same study, it is shown that there is evidence in the 

literature, that depressed drivers usually drive in a more aggressive and risky way than healthy ones. 

 

In a recent review and meta-analysis by Hill et al. (2017), it was found that a depression diagnosis, almost 

doubles the probability of an individual being involved in a car collision, however the large variation of 

study designs and study samples may hinder the transferability of results among different countries. Another 

important finding of Hill et al., is that the use of anti-depressant medication may lead to an enhanced 

collision involvement probability of 40%. As a result, driving performance of depressed drivers, might be 

also affected by their medications, the effects of which are usually not clear or not taken into account in 

studies on depression and driver behaviour. From the two aforementioned reviews (Hill et al., 2017; 

Wickens et al., 2014), as well as the study of Cunningham and Regan, (2016) it is demonstrated that the 

majority of studies, infer differences between healthy controls and depressed drivers, by comparing 

variables of interest, in hypothesis tests, exploratory analysis of variable variations or simple regression 

techniques which provide odds ratios for driving characteristics or collision involvement. 

 

The driving performance of patients with MCI has been the study of several studies lately by Pavlou et 

al.(Pavlou, 2016; Pavlou et al., 2016). These studies were focused on elderly drivers with MCI, and drivers 

suffering from Alzheimer’s or Parkinson’s disease, with the aim of assessing their fitness to drive and the 

safety of their driving behaviour through a driving simulator experiment. It was found through exploratory 

analysis and the development of SEM models that MCI, Alzheimer’s and Parkinson’s patients had larger 

reaction times and increased collision probabilities than healthy controls. However, the specific effect of 

depression on driving behaviour and collision probability was not investigated, and the data used for the 

analysis were aggregated for the time duration of the driving session of each participant. Using the same 

dataset, Beratis et al. (2017) investigated the effect of depression on elderly drivers with MCI by using 

hierarchical multiple linear regression. It was again validated that depression was negatively associated 

with driving behaviour and that depressive symptoms can be utilized as predictors for several driving 

indices including speed, reaction times, lateral position and number of crashes.  

 

The prominent characteristic of the aforementioned studies, as well as the ones included in the reviews of 

Hill et al., (2017) and Wickens et al., (2014), is the direction of their research hypotheses: depression or 

any cognitive impairments is taken as prerequisite and the effect on driving characteristics or road safety is 

investigated, often with simplistic approaches, in order to identify differences between patients and control 

cases. Little evidence can be found in the research community, of studies that are concerned with the 

prediction of a mental disease based on driver behaviour characteristics. To the authors knowledge, the 

most relevant studies are the one of Vardaki et al. (2014) and Papadimitriou et al., (2017), with the latter 

being the only that identified significant results. In Vardaki et al., (2014), MCI drivers and controls were 

attempted to be distinguished through the performance on a sign recall task in a driving simulator, but 

results showed that the recall performance was not able to statistically significantly predict MCI 

impairment. On the contrary, in Papadimitriou et al., (2017), using  discriminant analysis managed to 
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identify almost 65% of 419 drivers, with regards to their pathological symptoms (i.e. healthy, MCI or 

Alzheimer’s disease), based on variables captured from a driving simulator experiment. However, there 

were a lot of misclassification with regards to the two different cognitive disorders and the data used were 

aggregated for the whole duration of the driving session similarly to Pavlou, (2016). 

Summarizing, it is evident from reviewing the literature on depression and cognitive impairment as well as 

their correlation with driving behaviour and road safety, that predicting depression symptoms from driving 

characteristics would be beneficial for road safety and that microscopic (highly disaggregated) data are yet 

to be utilized for predicting cognitive disorders. Furthermore, although a proactive detection of symptoms 

is supported to have positive association for road safety by recent studies (Beratis et al., 2017; Papadimitriou 

et al., 2017), machine learning techniques which have become popular due to their efficiency in a variety 

of domains, have also not been applied for cognitive disorder prediction. Therefore, this study will attempt 

to bridge the gap in the literature by applying machine learning classification algorithms for predicting if 

highly disaggregated vehicle motion characteristics belong to a depressed driving session and compare 

classification performance with time-series classifiers. 

 

3. Methodology 

As mentioned before, the purpose of this study is the prediction of sessions belonging to depressed drivers 

using microscopic driving simulator data. The underlying problem of distinguishing between healthy 

drivers and depressed individuals is a binary classification one, and therefore binary classification 

algorithms are going to be utilized. 

 

3.1. Binary classification and performance evaluation metrics  

In binary classification, the objective is to efficiently determine the “class” of unlabelled data instances, 

based on training examples from a labelled dataset, which is used as an example for the developed 

classifiers. Hence, in order to develop an efficient classifier, a training dataset 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = {(𝑥𝑛, 𝑦𝑛), 𝑛 =

1, … 𝑁} is considered, where 𝑥𝑛 is a predictor variable and 𝑦𝑛={0,1} is the response. In the current paper 

predictor variables are going to be described by microscopic motion characteristics obtained from a driving 

simulator, and the response variable is going to be described by the tuple {‘Control’, ‘Depression}.  

 

Classification performance of developed classifiers is initially assessed through the confusion matrix, which 

essentially compares and contrasts the original and predicted (i.e. after classification) label or class of a data 

instance, so as to verify their correct classification. Based on the confusion matrix, several performance 

metrics can be obtained, such as: 

 

Recall = 
TP

TP+FN
         (1) 

Specificity = 
TN

TN+FP
         (2) 

Precision = 
TP

TP+FP
         (3) 

G-means= √𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡y       (4) 

f1-measure= 
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
        (5) 

False alarm rate= 
FP

TN+FP
         (6) 

 

where: TN: True Negative, TP: True Positive, FN: False Negative, FP: False Positive. 

 

The terminology of “negative” and “positive” instances correlates to the distinction between the two classes. 

In the majority of problems, the class of interest (i.e. the class that is seek to be discovered among the data) 

is termed as the “positive” class, while a “negative” class describes the remaining data instances. In the 

current problem formulation, as the two classes are “Depression” and “Control”, and “Depression” is the 
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one needed to be efficiently identified, it forms the “positive” class. Consequently, data instances labelled 

as “Control” belong to the “negative” class. 

 

As far as classification metrics are concerned, recall demonstrates the correct classification accuracy with 

respect to depressed driving sessions, while the specificity statistic shows the performance of the classifier 

in terms of the control cases. Precision is used for identifying the proportion of driving sessions predicted 

as belonging to “depressed” participants, and actually belong to “depressed”. G-means, essentially the 

geometric mean of recall and specificity, is used to ensure classification accuracy among both classes, even 

when there is an imbalance between their data instances. Lastly, the f1-measure is the harmonic mean of 

precision and recall and resembles the overall correct classification of “depressed” driving sessions 

(Tharwat, 2018). 

 

3.2. Classification algorithm and the problem of imbalance 

In order to be able to distinguish efficiently between depressed and healthy control driving sessions, an 

efficient algorithm needs to be utilized, with proven results in relevant domains. Random Forests (RFs) 

have been proven to perform well in studies that correlate driving simulator with driving behavior and 

safety assessment using both aggregated and time-series simulation measurements (Katrakazas et al., 2018; 

Katrakazas et al., 2019). Furthermore, they have been successfully applied in detecting depression among 

the medical society (Cacheda et al., 2019; Wade et al., 2015). Therefore, RFs show potential in order to be 

able to detect depression from driving simulator variables using disaggregated data and time-series 

measurements.  

 

RFs are an ensemble classifier and more specifically a bagging algorithm. Bagging algorithms make use of 

only one learning algorithm and modify the training set by using the bagging algorithm to create new 

training sets (Breiman, 2001). RFs are an enhancement of bagged trees and utilize the bagging algorithm 

along with the random subspace method proposed by Ho (1998). Every tree is built using the impurity Gini 

index (Breiman, 2001), but only a random subset of the input features is used for constructing the tree 

without pruning. For the training dataset, one-third of the samples is randomly neglected and forms the so-

called “out-of-bag” (OOB) samples, while the samples that are accepted are used for building the tree. For 

every constructed tree the OOB samples are used as a validation dataset and the misclassification OOB 

error is estimated. When a new data record needs to be assigned to a class, its attributes are run through the 

constructed trees and a classification result for every tree is obtained. The majority vote over all the 

classification results (i.e. from all trees) is chosen as the classified label for that specific data record (Verikas 

et al., 2011). However, an appropriate value for the number of features used for splitting a node of a tree 

needs to be tuned by the user in order for the OOB  

 

One of the limitations in approaches concerned with identification of a (cognitive) impairment, and 

generally in disease identification is the documented imbalance of the utilized datasets. In disease 

identification, usually the data instances representing the class of healthy controls is overpopulated, while 

the class of patients has few examples. This is a well-documented problem in studies on machine learning 

and detection of depression or other MCIs (Bertoncello, M., Wee, 2015; Dipnall et al., 2016; Gerych et al., 

2019; Munteanu et al., 2015). The inherent limitation of performing classifications on imbalanced datasets 

is the high misclassification rate for the patient class, as the algorithms favour the majority class, for which 

they have many example instances.   

 

To overcome this problem, machine learning and data mining experts, propose data sampling, algorithm 

alteration or cost-sensitive learning (He and Garcia, 2009; López et al., 2013). The first and simplest 

solution (i.e. data sampling), describes the procedure of undersampling the majority class or synthetically 

oversampling the minority class in order to produce a “balanced” dataset, train a classifier on it, and test its 

results on the original and imbalanced dataset. The problem with oversampling according to (López et al., 

2013) is that it usually leads to overfitting. However, if both approaches (i.e. under- and oversampling) are 
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combined, they can provide an alternative solution to overcome individual limitations of the two techniques 

(Lemaitre et al., 2016). 

 

Reviewing the literature in undersampling and overasampling with data cleansing, it was found that Edited 

Nearest Neighbours (ENN) (Wilson, 1972), and its integration with Synthetic Minority Oversampling 

TEchnique (SMOTE) (Chawla et al., 2002) performed well for classes that are difficult to recognise. This 

approach has also shown enhanced results, when applied in real-time collision prediction (Katrakazas et 

al., 2019; Katrakazas et al., 2019; Katrakazas, 2017), or safety assessment of driving simulator data. The 

procedure of SMOTE-ENN is as follows: After artificially generating instances of the minority class 

through SMOTE, ENN is implemented to conduct the data cleaning in depth and removes data instances 

from both classes when the three nearest neighbours of a data instance are misclassified. This is beneficial, 

especially for datasets with a small number of instances in the positive class (as in the depressed driving 

classification problems. As it can be observed, SMOTE-ENN forms another potential solution for the 

identification of depression among drivers using driving simulator data. The algorithm will be henceforth 

termed as SMOTE-ENN. 

 

3.3. Aggregated data versus time-series modelling 

As the objective of the study will be carried out using microscopic data from driving sessions, there needs 

to be a distinction between the levels of data aggregation. Among the transportation research domain, traffic 

data used for behaviour prediction or safety assessment are usually aggregated (Abdel-Aty et al., 2005; 

Franke and Krems, 2013), in order for post-trip or post-event interventions to be applied, while real-time 

applications (Habtemichael and Santos, 2012; Vlahogianni and Barmpounakis, 2017) demand the use of 

highly disaggregated or time-series data, in order to identify different behaviours or critical events in a very 

short time horizon. In order for the present study, to be consistent with the state-of-the-art in both 

approaches, data from the driving simulator will be aggregated in short time intervals and simultaneously 

the time-series of the recorded variables will be explored so as to investigate the most effective approach. 

The data aggregation intervals as well as the time-series will have a length of 30-seconds, 1-minute and 5-

minutes, as these intervals and time-series lengths have been also utilized in previous case-control traffic 

safety studies (Katrakazas et al., 2019; Katrakazas et al., 2017). 

 

4. Data Description and Pre-processing 

The data utilized in this study were collected using a driving simulator at the Department of Transportation 

Planning and Engineering of the National Technical University of Athens. More specifically, a FOERST 

Driving Simulator FP, consisting of 3 LCD wide screens 40" (Full HD: 1920x1080 pixels, a driving position 

and a support motion base was employed. The simulator’s dimensions at full development are 230x180cm, 

the width of its base is 78cm and its total field of view is 170 degrees. The data collected with the simulator 

were originally used for the Distract and DriverBrain projects (Pavlou, 2016; Yannis et al., 2014) which 

investigated the causes and impacts of driver distraction, as well as the driving capabilities of drivers with 

MCIs  using a driving simulator.  

 

With regards to the MCI drivers, all of the participants were recruited among the patients of the 2nd 

Department of Neurology of the University of Athens Medical School at ATTIKON University General 

Hospital, after informed consent was obtained from all individuals. Participants, were initially evaluated on 

a full clinical medical, ophthalmological and neurological scope in order to document the characteristics of 

their disorders, as well as complementary parameters with a potential impact on driving (e.g. medication). 

A second assessment also took place with regards to neuropsychological tests and psychological 

behavioural questionnaires. With regards to depression, patients were evaluated using the Patient Health 

Questionnaire (PHQ-9) scale (Cameron et al., 2008). According to the PHQ-9 scale, participants were found 

to have minimal, mild and moderate depression (Beratis et al., 2017), which corresponds to scores 1-14 on 

the scale. More specifically, 65% of the control group had none or minimal depression (PHQ-9 values 0-4) 



  

8 
 

and 35% had mild symptoms (PHQ-9 values 5-9), while in the depressed group 18.18% had minimal (PHQ-

9 values 0-4), 54.55% mild (PHQ-9 values 5-9) and 27.27% moderate depression (PHQ-9 values 10-14). 

 

The driving scenarios included driving in rural, urban and motorway environments. For the analysis part of 

this paper only the rural area data were used, as these were available to the authors. Each experiment 

included a 15- to 20-minute warm-up drive, so as to familiarize the driver with the simulator, and a 20-

minute recorded driving session. The rural route was 2.1 km long on a single carriageway, with 3m lane 

width, zero gradient and mild horizontal curves. During each trial, 2 unexpected incidents were 

programmed to occur and concerned the sudden appearance of an animal. The experiment was 

counterbalanced with regards to the number and order of trials. For more details on the dataset, the 

experiment and the medical evaluation of participants, the reader is referred to (Beratis et al., 2017; Pavlou, 

2016; Yannis et al., 2014). 

 

Measurements from the driving simulator, were recorded every 17 and 33 milliseconds, and the variables 

of interest, in order to predict depression, were chosen to be speed, time to headway (i.e. collision with the 

ahead driving vehicle), TTC, as well as lateral and longitudinal acceleration. In order for the classifiers to 

be developed, driving sessions of healthy controls and depressed drivers were chosen. In total, driving 

sessions of 11 depressed drivers and 65 healthy controls were chosen, adding up to 2,700,223 raw 

measurements. The participants included in the final dataset, were not under treatment with antidepressant 

medication. It should also be mentioned here that the final dataset for classification contained labelled data 

from all drivers (both depressed and control), in order for the models to be able to distinguish between 

sessions belonging to depressed or control participants. The details on the age, education and driving 

experience of the drivers are summarized in Table 1. Depressed and the control samples were matched with 

regards to age, so as to get more clear classification results. Matching was performed by taking control 

samples which are in the range of two standard deviations around the mean of the age of the depressed 

sample. Due to the large number of observations, the raw observations were aggregated initially to 

250millisecond intervals, so as to reduce noise in the dataset. After obtaining the aggregated 250 ms 

measurements and in order to obtain the mean and standard deviations for 30-seconds, 1-minute and 5-

minute intervals, consecutive time “segments” of 30-second, 1-minute and 5-minute duration were used to 

filter measurements and acquire the corresponding statistics for each duration. In order to avoid the 

development of classifiers with correlated variables, the correlation heatmap was estimated for each 

aggregation interval (i.e. 30-seconds, 1-minute and 5-minute data) across all data points and is presented in 

Figure 1.  

Table 1: Description of the control and depressed drivers 
 

Variable 
Depressed (N=11) Control(N=65) 

mean std min max mean std min max 

Age (years) 55.61 11.72 27.00 73.00 54.66 11.47 33.00 78.00 

Education (years) 11.04 3.19 6.00 15.00 15.30 3.16 6.00 24.00 

Driving_experience 
(years) 31.69 12.86 5.00 55.00 31.26 10.60 9.00 50.00 
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Figure 1: Correlation heatmaps of independent variables from the driving simulator (top left: 30-

seconds data, top right: 1-minute data and bottom: 5-minute data) 

 

From Figure 1, it can be observed that surrogate safety indicators (i.e. TTC and Time to Headway) are 

highly correlated with each other and with speed, and as a result it was decided to drop these variables and 

include only the kinematic characteristics of driving for the remaining of the analysis, i.e. the mean and 

standard deviation of speed, lateral acceleration and longitudinal acceleration and as a result six variables 

were utilized for the development of the classifiers on aggregated data, and the time-series analysis. 

Descriptive statistics for the three general variables (i.e. speed, lateral acceleration and longitudinal 

acceleration) are given in Table 2. 

 

Table 2:  Descriptive statistics for the included variables 

Variable 
Depressed (N=11) Control(N=65) 

mean std min max mean std min max 

Speed (km/h) 30.92 19.59 0.00 119.50 34.85 20.55 0.00 104.80 

AccLat (m/s2) -0.04 20.00 -11243.00 32.08 0.01 13.69 -6826.00 8007.00 

AccLon (m/s2) 27.28 1150.54 -535182.00 6919.00 31.62 1430.082 -528154.00 7886.00 
 

In order for the variable length to be extracted, the 250-millisecond observations were split in the 

corresponding intervals (i.e. 30 seconds, 1 minute and 5 minutes) and each series of observations was 

labelled according to the driver’s psychological status (i.e. ‘control’ or ‘depression). As a result, six time-
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series (one for each of the mean and standard deviation of speed, lateral and longitudinal acceleration) were 

created for each time interval, adding up to 21 datasets in total (6 time-series * 3 intervals + 3 datasets with 

aggregated observations for each interval). For each time-series dataset, and in order to optimize the 

classification results, rows (i.e. individual time-series) were deleted if the majority of their observations 

were zero. Furthermore, the total number of cases for control and depressed driver observations was 

extracted, so as to identify if an imbalanced learning technique (e.g. SMOTE-ENN) should be applied. The 

extracted ratio of control:depressed data instances in each of the datasets was: 

 

 Aggregated data in 30-seconds intervals  1:7  

 Aggregated data in 1-minute intervals   1:7 

 Aggregated data in 5-minute intervals  1:6 

 30-seconds time-series    1:6 

 1-minute time-series    1:6. 

 5-minute time-series    1:6 

 

Consequently, as there is a difference between the instances of the two classes, it was decided that SMOTE-

ENN will be utilized along RFs in order to obtain balanced classification performance 

 

5. Results and Discussion 

As discussed in the methodology section, both the aggregated datasets, as well as the time-series were 

attempted to be classified using the RF algorithm, which is a powerful ensemble classifier, and the 

assistance of SMOTE-ENN to investigate any potential enhancement from an imbalanced learning 

technique. Before the initiation of each algorithm, an optimization routine was run along with 10-fold cross-

validation in order to find the optimal parameters for RF classifiers. More specifically, for each RF, the 

number of estimators, the maximum depth of the tree, and the maximum number of features to consider 

when looking for the best split of a node were optimized. In order to avoid over-fitting and assure the 

validity of the results, 70% of the dataset was used for training the classifiers and the remaining 30% was 

used for testing the classification results. The models were developed in Python 3.7 using the scikit-learn 

(Pedregosa et al., 2012) package for RFs and the imbalanced-learn package (Lemaitre et al., 2016) for the 

application of SMOTE-ENN with regards to imbalanced learning. SMOTE-ENN was run with SMOTE 

taking into account 10 data instances neighbours for generating synthetic samples and ENN cleaning the 

dataset using the three nearest neighbours of data cases. Each RF run with SMOTE-ENN for balancing the 

dataset, was trained on the balanced dataset (acquired after undersampling the majority class and 

oversampling the minority class) and the performance was tested on the original (imbalanced) dataset. By 

testing the performance on the original dataset, it is ensured that the validation of the classification results 

is not based on artificially created instances from SMOTE or a smaller sample acquired through ENN, but 

is directly acquired from the attributes of the original dataset. 

 

The classification results, were evaluated through equations 1-6 for their scores in precision, recall, 

specificity, g-means, f1-score and false alarm rates. Figure 2 demonstrates the results for recall, specificity 

and false alarm rate for the developed classifiers. Recall, Specificity and False Alarms were chosen because 

it is essential for the classifiers to be able to predict correctly cases of depressed drivers (which is shown 

by the recall metric), cases of healthy control (given by the specificity measure) and not make 

misclassifications with regards to the mental status of drivers (as shown by the false alarm rate). Classifiers 

were accepted if they succeeded in sufficiently identifying both control and depressed driver data points 

with a false alarm rate lower than 30%. In Figure 2, every classification algorithm is marked according to 

the following coding: “RF_30” denotes the RF classifier on 30-seconds aggregated data, “RF_SMOTE-

ENN_1” denotes the RF classifier treated with the imbalanced technique of SMOTE-ENN on 1-minute 

aggregated data, and “Speed_StdDev_SMOTE-ENN_1” denotes the RF classifier on the 1-minute time-

series of the standard deviation of speed, treated with the SMOTE-ENN imbalanced learning technique. It 
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should be noted here, that the classifiers for the 5-minute time-series of the standard deviation of speed 

using SMOTE-ENN, and the same classifiers for 5-minute time-series of mean and standard deviation of 

lateral and longitudinal acceleration did not converge and therefore their results are not presented. 

Furthermore, it was found that all time-series classifiers without the treatment for the imbalance of the 

dataset failed to correctly identify any of the depressed drivers, and therefore only results of the SMOTE-

ENN treated RFs are presented in Figure 2. The same result (i.e. the failure to detect data points belonging 

to depressed drivers) was observed for the classifiers regarding aggregated data without treatment for 

imbalanced learning. This is probably due to the fact that the data imbalance between control and depressed 

driver cases is such that algorithms fail to identify depressed cases without any assistance from imbalanced 

learning.  

 

From Figure 2, it can be observed that an efficient prediction of sessions belonging to drivers suffering 

from depression is indeed feasible. The accepted classifiers are able to predict correctly cases of depressed 

drivers, even with highly disaggregated driver behaviour data (i.e. data aggregated in 30-second intervals). 

Furthermore, it is demonstrated that the developed classifiers can make correct predictions regarding both 

classes, as both recall and specificity statistics are high among the models. Another important finding is 

that the developed classifiers, have succeeded in distinguishing between depressed and control driving 

sessions, with a very small percentage of false alarms. More specifically, the highest false alarm rate was 

found in data aggregated in 1-minute intervals (i.e. 20%), as well as the 30-second time-series of the mean  

lateral acceleration (i.e. 25%). These two models also have the lowest rates of specificity, which shows 

their limitation in correctly identifying health control cases. With regards, to treating aggregated data with 

imbalanced learning it is obvious that small differences are observed, with the best performance obtained 

using driving data aggregated in 5-minute intervals. With regards to individual time-series of driving 

indicators, the best results are obtained using 30-seconds and 1-minute measurements of mean speed, while 

the best results for 5-minute time series were obtained using the series of the standard deviation of the 

longitudinal acceleration but with 33% of false alarms. These indicators could be efficiently utilized in real-

time applications in order to detect driving sessions of depressed drivers. When time-series of shorter 

duration are utilized, the best predictors for depressed driving sessions are the mean speed and the standard 

deviation of longitudinal accelerations. To further validate the results, Table 3 gives the full classification 

results for the ten best classifiers. 
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Figure 2: Classification performance for the best ten (a) and the rejected classifiers (b) 

 

Table 3: Overall performance of the ten best developed classifiers 

Classifier Precision  Recall Specificity f1-score G-Means FP Rate 

Speed_Mean_SMOTE-ENN_30 92.89% 99.81% 85.04% 96.23% 96.29% 14.96% 

Speed_Mean_SMOTE-ENN_1 95.45% 96.92% 91.49% 96.18% 96.19% 8.51% 

Speed_StdDev_SMOTE-ENN_1 95.24% 97.01% 89.26% 96.12% 96.12% 10.74% 

AccLon_StdDev_SMOTE-ENN_30 93.67% 98.48% 77.56% 96.01% 96.04% 22.44% 

AccLon_Mean_SMOTE-ENN_1 92.59% 99.60% 78.95% 95.97% 96.03% 21.05% 

Speed_StdDev_SMOTE-ENN_30 92.16% 98.33% 77.72% 95.14% 95.19% 22.28% 

AccLon_Mean_SMOTE-ENN_30 90.51% 99.61% 78.05% 94.84% 94.95% 21.95% 

AccLat_Mean_SMOTE-ENN_30 91.11% 98.87% 74.75% 94.83% 94.91% 25.25% 

RF_SMOTE-ENN_30 88.97% 99.18% 82.89% 93.80% 93.94% 17.11% 

RF_SMOTE-ENN_1 88.12% 97.27% 80.49% 92.47% 92.58% 19.51% 

RF_SMOTE-ENN_5 88.89% 94.12% 90.91% 91.43% 91.47% 9.09% 

 

Table 3 further demonstrates the power of RFs treated with SMOTE-ENN in identifying depressed drivers 

in short-term time-series and aggregated data. Monitoring mean speed in 30-seconds or 1-minute time 

durations led to identifying almost all the depressed drivers among the healthy controls, with only up to 

15% false alarms. Furthermore, the high scores of such classifiers in precision, f1 and G-means proves that 

the predictions are at their majority relevant and balanced among the two classes. Hence, both depressed 

and healthy drivers can effectively be predicted. As a result, from the developed models, it is found that 

mean longitudinal acceleration, speed and lateral accelerations are the three best indicators of depressed 

driving data points. As Table 3 shows that the best classification results are obtained using individual 
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driving behaviour indicators such as speed and acceleration, it can be concluded that time-series outperform 

aggregated data in identifying depressed driving. This is probably a consequence of the fact that time-series 

data capture better the dynamic nature of the driving task, and includes useful information that is lost in the 

aggregation procedure.  

 

In order to compare the results of this paper with similar studies in the field, the results of Papadimitriou et 

al., (2017) were used, as this study had a similar objective with our present study (i.e. the identification of 

cognitive impairment through driving simulator measurements). In Papadimitriou et al., (2017), which 

aimed at distinguishing between patients of MCI, Alzheimer’s disease and healthy drivers, only up to 63% 

of MCI patients were identified, and up to 47% of Alzheimer’s disease cases, percentages which are at best 

30% lower than the majority of the classifiers developed in this paper. These findings validate the 

enhancement offered by machine learning approaches and the utilization of highly disaggregated time-

series of driving simulator observations. 

 

6. Conclusions 

Depression is one of the most frequent mental disorders and has been found to be negatively correlated with 

driving performance, usually among elderly drivers. Although there is a plethora of studies investigating 

the effects of depression on driving behavior indices, there is a significant gap in studies seeking to identify 

indicators of depression from driving attributes and especially using machine learning techniques. The 

present study, takes a first step in bridging that gap, by developing Random Forests classifiers, treated with 

imbalanced learning and trained on highly disaggregated (30-seconds, 1-minute and 5-minute) driving 

behavior measurements and corresponding time-series. 

 

Results of the developed models, are more than promising, and demonstrate that time-series of mean 

longitudinal acceleration and speed can be utilized to identify drivers with depression, with a very low 

percentage of false alarms, even with 30-seconds observations. In a current transportation environment, that 

is rapidly becoming automated, this finding is extremely important, as AVs could “sense” a potential 

psychological disorder through sequential vehicle kinematic observations and take control of the vehicle to 

assure more comfort and safety for the passengers.  

 

Nevertheless, the current study is just a preliminary investigation on how machine learning can be utilized 

in predicting mental disorders from driver analytics. Deep learning, naturalistic driving data and multiple 

classification of other cognitive and mental disorders are envisioned to enhance the findings of the current 

paper. Moreover, in order for a classification approach similar to the one developed in the current paper to 

become more person-based, the classified aggregated and time series driving data should be contrasted with 

the remaining data of the same driver in order to more clearly identify if a specific driver is depressed. 

 

Future research should focus on exploiting similar classification results for the development of human-

machine interfaces (HMIs) that could assist depressed drivers or drivers with other cognitive impairments 

while driving. On the same principle, personalized in-vehicle or post-trip safety interventions (e.g. coaching 

or gamification) tailored to the needs of drivers suffering from depression could be developed. Moreover, 

driving simulator experiments exclusively on depressed patients and the assistance of psychologists and 

psychiatrists in developing depression-targeted scenarios could become beneficial for developing even 

more powerful classifiers to detect depression from driving sessions.  

 

As a final note, it should be noted that although prediction of depression is sufficiently supported from the 

findings of the paper, in no case, should driving analytics circumvent neuropsychological assessments. 

However, they could act as a precursor or a complementary form of assessing mild psychological or mental 

disorders.  



References 

Abdel-Aty, M., Pande, A., Hsia, L.Y., Abdalla, F., 2005. The Potential for Real-Time Traffic Crash 

Prediction. In: ITE Journal on the Web. pp. 69–75. 

Ballenger, J.C., 2008. Depression in Patients With Mild Cognitive Impairment Increases the Risk of 

Developing Dementia of Alzheimer Type: A Prospective Cohort Study. Yearb. Psychiatry Appl. 

Ment. Heal. 2006, 268–269. 

Beratis, I.N., Andronas, N., Kontaxopoulou, D., Fragkiadaki, S., Pavlou, D., Papatriantafyllou, J., 

Economou, A., Yannis, G., Papageorgiou, S.G., 2017. Driving in mild cognitive impairment: The 

role of depressive symptoms. Traffic Inj. Prev. 18, 470–476. 

Bertoncello, M., Wee, D., 2015. Ten Ways Autonomous Driving Could Redefine the Automotive World. 

Market Evaluation on Development of Autonomous Vehicles. 

Breiman, L., 2001. Random Forests. Mach. Learn. 45.1, 5–32. 

Brunnauer, A., Laux, G., 2017. Driving under the Influence of Antidepressants: A Systematic Review and 

Update of the Evidence of Experimental and Controlled Clinical Studies. Pharmacopsychiatry 50, 

173–181. 

Bulmash, E.L., Moller, H.J., Kayumov, L., Shen, J., Wang, X., Shapiro, C.M., 2006. Psychomotor 

disturbance in depression: Assessment using a driving simulator paradigm. J. Affect. Disord. 93, 

213–218. 

Cacheda, F., Fernandez, D., Novoa, F.J., Carneiro, V., 2019. Early Detection of Depression: Social 

Network Analysis and Random Forest Techniques. J. Med. Internet Res. 21, e12554. 

Cameron, I.M., Crawford, J.R., Lawton, K., Reid, I.C., 2008. Psychometric comparison of PHQ-9 and 

HADS for measuring depression severity in primary care. Br. J. Gen. Pract. 58, 32–36. 

Chawla, N. V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE: Synthetic minority over-

sampling technique. J. Artif. Intell. Res. 16, 321–357. 

Cunningham, M.L., Regan, M.A., 2016. The impact of emotion, life stress and mental health issues on 

driving performance and safety. Road Transp. Res. 25, 40–50. 

Dipnall, J.F., Pasco, J.A., Berk, M., Williams, L.J., Dodd, S., Jacka, F.N., Meyer, D., 2016. Into the 

bowels of depression: Unravelling medical symptoms associated with depression by applying 

machine-learning techniques to a community based population sample. PLoS One 11, 1–19. 

Fiske, A., Loebach Wetherell, J., Gatz, M., 2012. Depression in older adults. Am. J. Nurs. 112, 22–30. 

Franke, T., Krems, J.F., 2013. Understanding charging behaviour of electric vehicle users. Transp. Res. 

Part F Traffic Psychol. Behav. 21, 75–89. 

Gerych, W., Agu, E., Rundensteiner, E., 2019. Classifying Depression in Imbalanced Datasets Using an 

Autoencoder- Based Anomaly Detection Approach. Proc. - 13th IEEE Int. Conf. Semant. Comput. 

ICSC 2019 124–127. 

Grahek, I., Shenhav, A., Musslick, S., Krebs, R.M., Koster, E.H.W., 2019. Motivation and cognitive 

control in depression. Neurosci. Biobehav. Rev. 102, 371–381. 

Habtemichael, F.G., Santos, L. de P., 2012. The Need for Transition from Macroscopic to Microscopic 

Traffic Management Schemes to Improve Safety and Mobility. Procedia - Soc. Behav. Sci. 48, 

3018–3029. 

He, H., Garcia, E.A., 2009. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21, 1263–

1284. 

Hill, L.L., Lauzon, V.L., Winbrock, E.L., Li, G., Chihuri, S., Lee, K.C., 2017. Depression, 

antidepressants and driving safety. Inj. Epidemiol. 4. 

Ho, T.K., 1998. The random subspace method for constructing decision forests. IEEE Trans. Pattern 

Anal. Mach. Intell. 20, 832–844. 

Katrakazas, C., 2017. Developing an advanced collision risk model for autonomous vehicles 272. 

Katrakazas, C, Antoniou, C., Yannis, G., 2019. Time Series Classification Using Imbalanced Learning for 

Real-Time Safety Assessment 1–15. 

Katrakazas, C., Quddus, M., Chen, W.H., 2017. A Simulation Study of Predicting Real-Time Conflict-

Prone Traffic Conditions. IEEE Trans. Intell. Transp. Syst. 1–12. 



  

15 
 

Katrakazas, C., Quddus, M., Chen, W.H., 2018. A simulation study of predicting real-time conflict-prone 

traffic conditions. IEEE Trans. Intell. Transp. Syst. 19, 3196–3207. 

Katrakazas, Christos, Quddus, M., Chen, W.H., 2019. A new integrated collision risk assessment 

methodology for autonomous vehicles. Accid. Anal. Prev. 127, 61–79. 

Lemaitre, G., Nogueira, F., Aridas, C.K., 2016. Imbalanced-learn: A Python Toolbox to Tackle the Curse 

of Imbalanced Datasets in Machine Learning. CoRR abs/1609.0, 1–5. 

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z., Langer, D., Pink, O., 

Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Teichman, A., Werling, M., Thrun, S., Hardware, 

A., 2011. Towards Fully Autonomous Driving : Systems and Algorithms. 

López, V., Fernández, A., García, S., Palade, V., Herrera, F., 2013. An insight into classification with 

imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 

(Ny). 250, 113–141. 

McDonald, C.C., Sommers, M.S., Fargo, J.D., Seacrist, T., Power, T., 2018. Simulated Driving 

Performance, Self-Reported Driving Behaviors, and Mental Health Symptoms in Adolescent Novice 

Drivers. Nurs. Res. 67, 202–211. 

Mojtabai, R., Olfson, M., Han, B., 2016. National Trends in the Prevalence and Treatment of Depression 

in Adolescents and Young Adults. Pediatrics 138, e20161878–e20161878. 

Munteanu, C.R., Fernandez-Lozano, C., Mato Abad, V., Pita Fernández, S., Álvarez-Linera, J., 

Hernández-Tamames, J.A., Pazos, A., 2015. Classification of mild cognitive impairment and 

Alzheimer’s Disease with machine-learning techniques using 1 H Magnetic Resonance 

Spectroscopy data. Expert Syst. Appl. 42, 6205–6214. 

Papadimitriou, E., Yannis, G., Pavlou, D., Beratis, I., Papageorgiou, S.G., Transportation Research, B., 

2017. Can Driving in the Simulator Diagnose Cognitive Impairments? Transp. Res. Board, 96th 

Annu. Meet. 14p. 

Pavlou, D., 2016. Traffic and safety behaviour of drivers with neurological diseases affecting cognitive 

functions. 

Pavlou, D., Beratis, I., Papadimitriou, E., Antoniou, C., Yannis, G., Papageorgiou, S., 2016. Which Are 

the Critical Measures to Assess the Driving Performance of Drivers with Brain Pathologies? Transp. 

Res. Procedia 14, 4393–4402. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., 

Perrot, M., Duchesnay, É., 2012. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 

2825–2830. 

Scott-Parker, B., Watson, B., King, M.J., Hyde, M.K., 2013a. A further exploration of sensation seeking 

propensity, reward sensitivity, depression, anxiety, and the risky behaviour of young novice drivers 

in a structural equation model. Accid. Anal. Prev. 50, 465–471. 

Scott-Parker, B., Watson, B., King, M.J., Hyde, M.K., 2013b. A further exploration of sensation seeking 

propensity, reward sensitivity, depression, anxiety, and the risky behaviour of young novice drivers 

in a structural equation model. Accid. Anal. Prev. 50, 465–471. 

Tharwat, A., 2018. Classification assessment methods. Appl. Comput. Informatics. 

Vardaki, S., Yannis, G., Antoniou, C., Pavlou, D., Beratis, I., Papageorgiou, S.G., 2014. DO 

SIMULATOR MEASURES IMPROVE IDENTIFICATION OF OLDER DRIVERS WITH MCI? 

In: 94th Annual Meeting of the Transportation Research Board, Washington, January 2015. 

Verikas, A., Gelzinis, A., Bacauskiene, M., 2011. Mining data with random forests: A survey and results 

of new tests. Pattern Recognit. 44, 330–349. 

Vlahogianni, E.I., Barmpounakis, E.N., 2017. Driving analytics using smartphones: Algorithms, 

comparisons and challenges. Transp. Res. Part C Emerg. Technol. 79, 196–206. 

Wade, B.S.C., Joshi, S.H., Pirnia, T., Leaver, A.M., Woods, R.P., Thompson, P.M., Espinoza, R., Narr, 

K.L., 2015. Random forest classification of depression status based on subcortical brain 

morphometry following electroconvulsive therapy. Proc. - Int. Symp. Biomed. Imaging 2015-July, 

92–96. 



  

16 
 

Wickens, C.M., Smart, R.G., Mann, R.E., 2014. The Impact of Depression on Driver Performance. Int. J. 

Ment. Health Addict. 12, 524–537. 

Wilson, D.L., 1972. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Trans. 

Syst. Man Cybern. 2, 408–421. 

World Health Organization, 2017. Depression and Other Common Mental Disorders. Institutes Heal. 

Natl. 1–22. 

Yannis, G., Golias, J., Antoniou, C., Vardaki, S., Papantoniou, P., Pavlou, D., Espié, S., Kalisperakis, G., 

Papageorgiou, S.G., Tsivgoulis, G., Bonakis, A., Andronas, N., Papatriantafyllou, I., Liozidou, A., 

Kontaxopoulou, D., Economou, A., Kosmidis, M., 2014. Distract: Causes and Impacts of Driver 

Distraction: A Driving Simulation Study, Deliverable 4: Driving Simulator Experiment. 

 


