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ABSTRACT 
This paper attempts to shed light on the temporal evolution of driving safety efficiency with the 

aim to acquire insights useful for both driving behavior and road safety improvement. Data 

exploited herein are collected from a sophisticated platform that uses smartphone device sensors 

during a naturalistic driving experiment, at which the driving behavior from a sample of two 

hundred (200) drivers during 7-months is continuously recorded in real time. The main driving 

behavior analytics taken into consideration for the driving assessment include distance travelled, 

acceleration, braking, speed and smartphone usage. The analysis is performed using statistical, 

optimization and machine learning techniques. The driver’s safety efficiency index is estimated 

both in total and in several consecutive time windows to allow for the investigation of safety 

efficiency evolution in time. Initial data analysis results to the most critical components of 

microscopic driving behaviour evolution, which are used as inputs in the k-means algorithm to 

perform the clustering analysis. The main driving characteristics of each cluster are identified and 

lead to the conclusion that there are three main driving groups of the a) moderate drivers, b) unstable 

drivers and c) cautious drivers. 

 

Keywords: Driving Behavior, Driving Safety Efficiency, Temporal Evolution, K-means Clustering, 

Smartphone Data 

                                                      

1
Corresponding author. Tel.: +30-210-772-2210; fax: +30-210-772-1454. 

E-mail address: mailto:dtsel@central.ntua.gr 

mailto:dtsel@central.ntua.gr


 

2 

1. INTRODUCTION 

Many studies in driving behavior literature (1, 2, 3, 4) have focused on measuring driving safety 

efficiency. Driving safety efficiency in this study refers to the amount of driving events (harsh 

braking, harsh acceleration, mobile phone usage, speeding) occurred during a certain driving period 

(1). The most efficient drivers are those with the least number of events. Nonetheless, only a few 

of them have demonstrated that there is a potential in analyzing and evaluating driving behaviour 

using microscopic driving data (e.g. driving over the speed limits, mobile phone usage and the 

number of harsh acceleration and braking events occurred while driving) collected from naturalistic 

driving experiments (1), (5 - 10). It is extremely important from a safety perspective to identify the 

behavioral parameters that influence drivers and, therefore, the probability of getting involved in a 

crash. 

Several studies, thus far, have investigated the microscopic driving factors that could potentially be 

incorporated in driving assessment models as well as the methodologies for driving behavior data 

collection and analysis (1, 11). Driving behavior is complex; it can be influenced by the mode of 

transport (12), and the type of road (13). Due to this inherent complexity, a different optimal driving 

policy may exist for each driver (14). Finally, driving behavior, if controlled, can lead not only to 

safer roads, but also to healthier cities (15). 

As for the data collection, literature review revealed that the methodologies most commonly used 

include driving simulators (16, 17), questionnaires (3) combined with simulators and naturalistic 

driving experiments (5, 18, 19). Naturalistic experiments provide a wide perspective of 

understanding typical microscopic travel and driving behaviour (10). A naturalistic study can help 

(20): a) determine crash risk, b) study the interaction between road/ traffic conditions and driver’s 

behaviour, c) understand the interaction between car drivers and vulnerable road users, d) specify 

the relationship between driving pattern and vehicle emissions and fuel consumption, and many 
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other aspects of traffic participation. The most popular devices for monitoring driving measures are 

recorders related to the car engine (21, 22) such as on-board-diagnostics (OBD) devices and 

smartphones (23). 

Driving efficiency assessment using microscopic driving parameters is thoroughly studied (1). 

Nevertheless, the evolution of the driving performance in time (in the long term) has not yet been 

investigated. The temporal characteristics of driving efficiency and especially stationarity, trend 

and volatility, are of outmost importance when driving efficiency is measured. This is because the 

average driving efficiency might be representative of the total driving risk only in those cases when 

driving behavior is not fluctuating in time. This occurs solely when a driver retains a steady 

behavior that is usually close to the average and is not significantly changing while the driver is 

being monitored. Therefore, driving efficiency measured might not be representative of a driver’s 

risk in a case of an unstable driver whose behaviour is volatile. In other words, the methodology of 

average efficiency estimation might not always be able to stand alone. For instance, when 

comparing the behavior of two drivers of the same average efficiency, it is more likely for the less 

steady driver (the one with the more volatile behavior) to have a higher crash risk since he features 

a higher number of less efficient trips. 

In order to fill this research gap, this paper presents a methodological framework to study the 

temporal evolution of measured driver’s efficiency with the aim to provide insights on the different 

driving behavior profiles. Whereas the authors’ previous work (1) focused on assessing the 

aggregated driving behavior, this is an effort to reveal more information on how this behavior 

evolves over time, providing thus more information on the dynamic aspects of driving behavior. In 

other words, instead of providing only one driving efficiency index for the total monitoring period, 

monitoring period is divided into several shorter consecutive time periods and an individual driving 

efficiency index is provided for each of these periods. This process creates a time-series of driving 

efficiency indices for each driver, the trend and volatility of which is estimated. The latter two 
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characteristics of the time-series, together with the driving efficiency of the total monitoring period, 

are used as inputs in a clustering algorithm to identify prevailing driver profiles. These profiles 

constitute an attempt to recognize the several existing driver profiles and their characteristics. The 

main driving characteristics of each group are presented and important conclusions are drawn 

regarding the features of each driving group. This methodology could be exploited as a platform’s 

service in order to provide recommendations to drivers on how to improve their driving efficiency 

and become less risky. 

2. METHODS FOR DRIVING EFFICIENCY ANALYSIS 

Previous research on efficiency analysis has shown that data envelopment analysis (DEA) is an 

effective methodology to measure driving efficiency (24, 25). Despite the fact that DEA is mostly 

used in business, economics, management and health (26, 27), it has also been implemented in 

transport fields in assessing public transportation system performance (28), as well as traffic safety 

studies (29, 30, 31) where it was proved to be equally useful as in the fields stated above. DEA is 

a mathematical programming technique with minimal assumptions that determines the efficiency 

of a Decision-Making Unit (DMU) based on its inputs and outputs and relatively estimates 

efficiency to the rest of the units involved in the analysis. A Decision-Making Unit (DMU) is 

“technically efficient” when the amount of outputs produced is maximized for a given amount of 

inputs, or for a given output the amount of inputs used is minimized (32). Thus, when a DMU is 

technically efficient, it operates on its production frontier and therefore DMUs lie on the efficiency 

frontier (33).  The first DEA model proposed by (34) is the CCR model that assumes a constant 

returns to scale exhibition in production i.e. outputs are proportionally increased to inputs. 

When studying driving behavior, efficiency is defined by the number of driving metrics recorded 

for a specific period or distance that a driver is being monitored (1), (6 - 9). Therefore, drivers are 

considered driving units that make decisions about the number of events occurring, the time of 
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mobile phone usage and speed limit violation within a given mileage range. Driving metrics and 

distance recorded are used as DEA inputs and outputs in order to estimate a driving safety efficiency 

index. The concept of DEA is to minimize inputs (input-oriented model) or maximize the outputs 

of a problem (output-oriented model) (33). More specifically in the case study examined herein, a 

driver should either drive more kilometers maintaining the same number of harsh braking/ 

accelerating events or reduce the number of harsh braking/accelerating events for the same mileage. 

The same applies, of course, to the rest of the metrics recorded for each driver. From a road safety 

perspective, increasing mileage increases the exposure of a driver and consequently crash risk (11) 

and, therefore, an input-oriented (IO) DEA model is developed aiming to minimize inputs (recorded 

metrics) maintaining the same number of outputs (recorded distance). Previous research also 

showed that the driving efficiency problem is considered a constant-returns-to-scale (CRS) 

problem and that the sum of all metrics (inputs) recorded such as the number of harsh acceleration 

and braking events occurred in each tripi changes proportionally to the sum of driving distance 

(output) (1). The mathematical formulation of the DEA problem is thoroughly described in section 

3.1. The proposed methodology is applied to a driving sample of 38,000 recorded trips collected 

from one hundred (100) drivers in urban road and one hundred (100) drivers in rural road. 

Models representing driving safety efficiency in urban and rural road types with multiple inputs 

and outputs are developed. Input and output selection is a critical process in DEA. Taking into 

consideration (35, 36) before applying DEA to a dataset and the specific data used in this study, 

metrics are used in the form of the number of harsh acceleration/ braking events, seconds driving 

over the speed limit and seconds used the mobile phone and not as e.g. the percentage of trip 

duration using the mobile phone. Literature review revealed that all the indicators mentioned before 

are the most influencing crash risk factors, among those that can be recorded from the smartphone 

sensors, and therefore they should be included in the models implemented (1), (5 - 9). All indicators 

along with distance travelled by drivers are provided per road type (urban, rural, highway) e.g. 
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number of harsh accelerations that occurred in urban road, seconds of speed limit exceedance in 

rural road etc. Variables used in the analysis along with the input and output combinations 

performed and their description are illustrated in Table 1. As it appears, one DEA model is 

developed for each of the two types investigated. The results of this step of the analysis are similar 

to those found in (1) and therefore they are not individually discussed herein. 

<Table 1> 

In this work, the driver is considered a DMU with an aggregate performance and his driving 

behavior equivalent to the sum of the driving characteristics for the entire period examined (1). For 

instance, the total distance travelled in rural road is equivalent to the sum of the distance travelled 

in rural network in each ijtrip  (where i is the index of 
idriver  and j the index of jtrip  of 

idriver ) by 

the specific 
idriver  ( iDMU ). In general, the same applies for all indicators of 

idriver , which are 

calculated aggregately as shown in (1): 

iN

i ijj=1
indicator = indicator                (1) 

recorded , (1, )j itrip j N    that took place by idriver . Since every driver is treated as DMU, the 

linear program constructed has 101 variables (
iλ ,

Βθ ), equal to the number of drivers plus the 

efficiency of 0driver . The number of constraints on the other hand is equal to the sum of a) the 

number of inputs (
0* * 0     ), b) the number of outputs ( 0*Y y  ) and c) the number of 

drivers ( 0i  ). The DEA procedure described in (1) is followed separately for each model as 

described in Table 1. 
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3. TEMPORAL FEATURES OF DRIVING EFFICIENCY 

3.1 Driving Safety Efficiency Estimation - Mathematical formulation 

For the sake of simplicity, it is noted that from now on DMUs will be referred as drivers. In order 

to evaluate the driving efficiency of 
0Driver  and assuming a sample of N drivers, let X  and Y  

represent the set of inputs and outputs respectively, for the rest of the drivers’ sample. In other 

words, 1 2 iX={x ,x ,...,x }  and 
1 2 iY={y ,y ,...,y }  where  1, 1i N  . The input-oriented CCR model 

evaluates the efficiency of 
0Driver  by solving the linear program (33) presented below. Considering 

each driver as a DMU and taking into account the principles of DEA (34), the mathematical 

formulation for the specific driving efficiency problem examined herein is:  

0min(Driving_Efficiency )  

Subject to the following constraints: 

0 0Driving_Efficiency 0x X      

0Y y             (2) 

0i i      

where iλ  is the weight coefficient for each 
iDriver  that is an element of set λ, X is the set of Inputs 

(number of harsh acceleration/braking events, seconds of mobile phone usage, seconds driving over 

the speed limits), Y is the set of Outputs (distance travelled) and 
0Driving_Efficiency  is a scalar 

representing the efficiency of reference driver (the one with Driver ID=0) i.e. 
0Driver . Apparently, 

the use of the sets in the constraints indicates the creation of (N-1)  inequalities when “building” the 

constraints of the linear problem i.e. 1+3*(N-1)=3*N-2  constraints. The rationality behind these 
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constraints is to ensure that, compared to the rest of the sample, there could not be any other X, Y 

combination leading to a higher efficiency than that of the driver being evaluated. The set of λ 

estimated from the linear program is positive only for those drivers who act as peers to the driver 

being evaluated and is used afterwards to estimate the efficient level of inputs for the inefficient 

drivers (driving efficiency <1) that each driver should reach to become efficient. The objective 

function of DEA is min 
iDriving_Efficiency  i.e. to determine the minimum efficiency of idriver  that 

satisfies the above conditions. This formulation denotes that the target of this linear problem is to 

find the minimum driving efficiency that satisfies all the above constraints and not to minimize 

driving efficiency itself. To benchmark the efficiency of each and every driver in the database, this 

linear programming (LP) problem should be solved for each idriver  of the sample or in other words, 

N times in total. Finally, in order to create the time-series of the driving safety efficiency for each 

driver, this methodology is applied on a sliding time window. 

3.2 Driver’s Behaviour Volatility Measure 

Observing how each driver alters everyday behaviour and whether or not there is a stability in his 

driving behaviour is crucial. To this end, the natural logarithm of the ratio of the performance of 

two consecutive time steps is estimated (37). This corresponds to the improvement or impairment 

of overall driving efficiency respectively, which changes according to the way he/she is driving 

over time. Let Et,i be the efficiency of a driver at the time step t, Et = (1,…, n), where t = (1,2,.., n) 

the number of time steps and I = (1,…, N) the ID of each driver. The improvement/ impairment 

ratio per time step is given by (3): 

t,i

t,i

t-1,i

E
r =ln( )

E
                  (3) 

This indicator has a positive value when driver’s overall driving efficiency is improving in the next 

time step and a negative value when driver’s overall driving efficiency is deteriorating. It is 
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highlighted that equation (3) provides a measurement of the improvement/ impairment of the 

driving efficiency per time step and not the effect of two consecutive harsh events (braking/ 

acceleration etc.). In other words, it shows whether driving efficiency index that is estimated for 

each trip is improved (i.e. increased) after each trip compared to the previous one. The equation 

estimates the natural logarithm of the ratio of the current to the previous driving efficiency index. 

The total driver’s behaviour volatility measure is estimated as the standard deviation of the 

improvement/ impairment ratio, in order to detect the instability in driver’s safety efficiency 

evolution as shown in (4): 

Driver’s behaviour volatility = 

n
2

t,i i

t=1

(r -r )

n-1


              (4) 

where ,t ir  is the gain/loss per trip corresponds to driver i , r  the average of gain/loss ratio and n  

the number of trips. 

3.3 Driving Efficiency Time Series Analysis 

Two of the most important concepts of time series analysis are used herein in order to create the 

rest of the critical driving behavior components that will be used as inputs in the clustering 

procedure. 

3.3.1 Stationarity 

Stationarity is a very important concept in time series analysis because time series models may 

apply only to stationary series. Therefore, before proceeding with time series modelling, no trend 

must be identified in the time series. Assuming the existence of a time series 
tY , where t  is the 

observation period, the time series is strictly stationary if the joint probability distributions of 

1 2
( , ,..., )

nt t tY Y Y  and 
1 2

( , ,..., )
L L n Lt t tY Y Y

  
 are the same for all 

1 2, ,..., nt t t  and L (length 
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of seasonality). This implies that the joint distribution of 
1 2

( , ,..., )
nt t tY Y Y  is time invariant, a 

strong condition that requires verification in practice (38). 

When both the mean of 
tY , and the covariance between 

nt
Y , and 

nt LY   are time invariant (for an 

arbitrary L ) weak stationarity applies, which is a weaker notion of stationarity. For 1n  , the 

univariate distribution of 
1t

Y  is the same to that of 
1t LY  . Accordingly, ( ) ( )t t LE Y E Y   and 

( ) ( )t t LVAR Y VAR Y   implying that the mean  and variance 
2  of the time series are 

constant over time (39). For 2n  , the joint probability distributions of 
1 1

( , )t tY Y and 

1 1
( , )

L Lt tY Y
 

are the same and their covariances are equal (40) such that 

   
1 2 1 2t t t +L t +LCOV Y , Y =COV Y , Y                  (5) 

When a time series is not stationary, stationarity is usually obtained through first-order differencing 

in transportation research (40) i.e. tY  is t t t-1Z =Y -Y . In this case, the original series tY  are 

called unit-root non-stationary. Several tests for non-stationarity (unit-root tests) have been 

proposed in literature (41) with the most satisfactory among them to be the Dickey–Fuller tests. 

The null hypothesis of this test is that the time series tY , is non-stationary and it requires at least 

first-order differencing to become stationary whereas the alternative is that the time series is already 

stationary. 

3.3.2 Trend 

The trend of a time series can be defined as the “long-term” movement in a time series without 

calendar related and irregular effects, and is a reflection of the underlying level. It may appear as a 

result of an alteration in several factors that affect the time series e.g. price inflation, general 

economic changes and population growth. It is necessary thus in time series analysis to estimate 
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the magnitude of this change in time. There are five main methodological approaches to quantify 

the trend of a time series namely, least squares linear regression (42), Theil-Sen regression (43), 

Delta approach (44), The Hodrick-Prescott Trend approach (45) and the Rotemberg Trend approach 

(46). 

Literature review revealed that if there is no prior knowledge of the time series characteristics, then 

the simplest function to fit is probably a straight line with the data plotted vertically and values of 

time (t = 1, 2, 3, ...) plotted horizontally (47). This is the case when solving an online driving 

efficiency problem; there is no prior knowledge of the time series characteristics of each driver 

because a) these attributes are not known when a new driver is included in the analysis and b) even 

if they were, they are affected by the rest of the driving sample since efficiency is relatively 

estimated in each time step. Additionally, it is generally preferable to use the same approach for all 

drivers for the sake of simplicity and, therefore, this study makes use of the least squares linear 

regression methodology for the determination of the time series trend. It should be noted though, 

that the optimal choice would be to investigate the trend estimation approach that fits each time 

series best, but this is beyond the scope of this paper. 

3.4 K-means Clustering Analysis 

K-means clustering is a type of unsupervised learning, which aims to find the optimum way to 

group given data, with the number of groups represented by the variable k that is given as input. 

The algorithm iteratively assigns each data point to one of the k groups on the basis of the features 

provided. Data points are grouped based on the similarity of their features. The results of the k-

means clustering algorithm are the centroids of the k clusters, which can be used to label new data 

and the labels for the training data (each data point is assigned to a single cluster). Clustering allows 

finding and analysing the groups that were formed naturally, instead of defining groups prior to 

looking at the data. The section below describes how the number of groups can be determined. The 

centroid of each cluster is a collection of feature values that defines resulting groups. When the 
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centroid feature weights are examined, the kind of group each cluster represents can be qualitatively 

interpreted. 

An iterative refinement is used by the k-means clustering algorithm to produce the final result. The 

inputs used by the algorithm are the number k of clusters to be created and the data to be clustered. 

Data are a collection of features for each data point or in other words each data point has several 

attributes that account for its features. Initially, the algorithm randomly assigns the k centroids, 

which are randomly either generated or selected from the dataset. Afterwards, the algorithm iterates 

between two steps, data assignment and centroid update. During the first step, each data point is 

assigned to the nearest existing centroid in this step, based on the squared Euclidean distance while 

during the second, the centroids are re-estimated by taking the mean of all data points assigned to 

that centroid's cluster. 

The algorithm iterates between the two steps until one of the stopping criteria is met or in other 

words, no data point changes cluster and the sum of the distances is minimized or the maximum 

number of iterations set is reached. These algorithmic steps are guaranteed to converge to a result. 

The result though is likely to be a local optimum and not the optimum solution and therefore a 

better outcome might be reached by assessing more than one algorithm run with randomized 

starting centroids (48). 

The algorithmic steps presented above result to k clusters for a particular pre-determined k. To 

estimate the optimum number of clusters arising, it is necessary to run the algorithm for a range of 

k values and compare the results. In general, there is not a methodology to determine the exact 

value of k, but the techniques presented below can be used to obtain an accurate estimate. One of 

the most commonly used metrics for comparing results across different values of k is the mean 

distance between cluster centroids and the data points assigned to each one of them. Increasing the 

number of clusters will always lead to a reduction of this distance, to the extreme of reaching zero 
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when the number k is equal to the number of data points. Therefore, the minimization of this metric 

cannot be used as the sole target. Instead of that, the mean distance to the centroid is plotted as a 

function of the number of clusters k and the "elbow point," which appears at the point where the 

rate of decrease sharply shifts, can be used to estimate k. 

4. EXPERIMENTAL DATA COLLECTION 

OSeven Telematics (49) has developed an integrated platform for the recording, transmission, 

storage, evaluation and visualization of driving behaviour data using a smartphone application, 

statistical and advanced machine learning (ML) algorithms. Recorded data come from various 

smartphone sensors (including the accelerometer, the gyroscope, the GPS and the compass) and 

data fusion algorithms provided by Android and iOS. The application transmits all data to a central 

database after the end of each trip via Wi-Fi or cellular network. Data are stored in the cloud server 

for central processing and data reduction and thereafter processed using big data mining techniques 

and machine learning algorithms. This results to outlier detection and removal, data cleaning, 

smoothening and filtering, identification of repeating patterns, detection of aggressive behavior of 

the driver in the form of harsh events, mobile phone distraction, travel mode identification, 

identification of speed limit exceedance as well. 

On a high-level, harsh events (braking and acceleration) are detected by identifying the relatively 

higher absolute values of acceleration (positive acceleration for harsh acceleration and negative 

acceleration for harsh braking) during each trip. As for the mobile phone usage, it is detected 

through the identification of the driving time during which unusual movement or rotation of the 

mobile device is recorded inside the vehicle. The steps described above for data processing are 

exclusively performed by OSeven Telematics and no raw data processing was implemented in this 

study (e.g. converting data from the gyroscope and accelerometer to harsh braking events). 

Therefore, they do not constitute part of this study. Unfortunately, more details on the data 
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processing steps cannot be provided since they are intellectual property of the company. The main 

risk exposure indicators are: 

 total distance travelled (between the start point and the end point of the trip), 

 driving duration (time difference between the trip start time and trip end time), 

 type(s) of the road network used (urban, rural, highway), and 

 time of the day driving (morning peak/ rest of the day). 

It is clarified that at the present study, those motorways with a speed limit of 90km/h and higher 

are taken into account as highways. The above are combined with other data sources (e.g. google 

maps service). The main driving behavior indicators are: 

 speeding (percentage of time driving over the speed limits), 

 mobile phone use while driving (identifying any movement of the smartphone device), 

 number and severity of harsh events: 

o harsh braking, 

o harsh acceleration and 

o harsh cornering. 

The descriptive statistics of the cumulative values of the driving metrics used in this study are 

shown in table 2.  

<Table 2> 
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Aggregated data are analyzed and filtered to retain only those indicators that will be used as inputs 

for the analysis conducted in this research. This analysis is performed in Python programming 

language and more specifically, using the python packages of Pandas and Numpy for numeric 

calculations and transformations, Scipy that features Quickhull algorithm and pulp for linear 

programming problem construction and solving. 

A significant amount of data is recorded using the platform of OSeven Telematics described above. 

The application records a random sample of drivers in terms of gender, age, education etc. in their 

everyday driving activities that have agreed to be recorded. The drivers are advised to use the 

application during their everyday activities and to drive normally as if they were not recorded. The 

application is used for a long period of time, e.g. more than 3-6 months, in order for the drivers to 

get used to being recorded and avoid monitoring a biased behaviour, e.g. a more cautious behaviour, 

because of the fact that they know they are being monitored. Drivers may place their mobile devices 

anywhere in their vehicle such as on a seat, the mobile phone holder or the cup holder etc. or store 

it in a personal item such as their pocket, pursue, bag etc. and sensor data are processed after 

collected to identify the characteristics of the vehicles’ movement such as headway, longitudinal 

and lateral acceleration, speed. 

The data are stored in the OSeven backend system using advanced encryption and data security 

techniques, in compliance with the national laws and EU Directives for the protection of personal 

data. The APIs (Application Programming Interfaces) used support user authentication and 

encryption to prevent unauthorized data access. The data used in this research were derived from 

the OSeven database and provided by the company for the purposes of this study. Data are 

anonymized before provided by OSeven so that driving behavior of each participant cannot be 

connected with any personal information. This is a data exploitation approach that is user-agnostic 

and therefore not user intrusive. The approach followed in this study aims to identify the main 

driving patterns without having any prior knowledge on the demographics of the sample collected. 
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The advantage of such an approach is that behaviors can be studied and drivers can be categorized 

based on their driving behavior even in cases where demographic data of a driving sample are not 

available or cannot be collected. 

To achieve the goals of this research, large-scale driving data of 38,000 trips are randomly selected 

from the OSeven database of which 23,000 trips took place in urban road by one hundred (100) 

drivers and 15,000 trips took place in rural road by one hundred (100) drivers. All drivers were 

passenger vehicle drivers and trips took place between August 2016 and April 2017. In order to 

create time series of the same length for all participants, 230 urban and 150 rural trips are collected 

for each driver. In order to acquire a reliable measure for analyzing driving patterns and changes in 

drivers’ behavior over time, driver’s sample size is specified based on (50, 13). Moreover, drivers 

selected have a zero input attributes (i.e. zero harsh acceleration, braking, speed limit violation, 

mobile phone usage) since this is a limitation of DEA. This is because the business equivalent of a 

zero input driver is a factory that produces a product without making use of any material and/or 

workforce, which is practically impossible. 

5. IMPLEMENTATION AND RESULTS 

5.1 Components of the Efficiency Time Series 

Driver’s efficiency is estimated for each time step of a sliding time window, following exactly the 

same procedure described above in the estimation of total driving efficiency. This allows for 

studying the evolution of the average driving efficiency over different timeframes from the 

beginning of the recording time until the end of each timeframe. The length of the time window is 

estimated using specific statistical tests that identify the convergence of the driving analytics of 

each driver to a certain behavior (13). Results on the specific dataset indicate that this time window 

is 75 and 82 trips for urban and rural road types respectively. 
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The estimation of the driving efficiency in a sliding time window results to a sequence of driving 

efficiency indexes from which, the volatility measure of the time series is estimated. Table 3 

illustrates the results of the volatility analysis performed, which indicate that although there is a 

higher range of volatility in rural road type, the average is approximately the same in both road and 

sample types. Based on driving volatility’s definition, it is inferred that when it is equal to zero, a 

driver demonstrates a solid performance throughout monitoring. As a result, drivers with steady 

unit efficiency exist only in rural road since the minimum value of volatility is found to be higher 

than zero in urban road. On the other hand, the rural road sample includes users with a more 

alterable behaviour, which is evident from maximum volatility that is twice as users in the urban 

road sample. 

<Table 3> 

Time series is afterwards decomposed to acquire trend and stationarity using the methodological 

approach described above. It is observed in Table 3 that the average trend is approximately the 

same between the two road types despite the fact that median trend is diverged. This indicates the 

existence of high outlier trend values in urban road and low outlier trend values in rural road that 

influences the average trend value. The negative skewness value of both road types of the 

anonymous sample indicates that the distribution’s left tail is longer, compared to the right, whereas 

the positive skewness value of the non-anonymous sample testifies the opposite. Regarding the 

number of differences required for a time series to become stationary, zero urban road users and 

five rural road users with a stationary driving behaviour were found. The number of required 

differences for a time series to become stationary is equal to one for the vast majority of users and 

therefore, this variable is not illustrated in Table 3 and not used in the clustering procedure. 

Figures 1 and 2 illustrate the driving efficiency time series of seven random drivers in the urban 

and rural sample respectively. Each color in these figures represents the evolution of the driving 
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efficiency time-series of a different driver ID and therefore, a legend would not add an extra value 

to the figure and this is why it is intentionally omitted. The observed time series fluctuation is 

indicative to the existence of different driving patterns. It is observed in both figures that drivers 

who are the least efficient in total, also appear to be the least volatile among the rest. The most 

efficient drivers also appear to be less volatile but not as much as the latter. On the other hand, 

medium efficiency drivers are the most volatile among the drivers’ sample. This is probably 

because in order to maintain either a very high or low efficiency level, efficiency cannot fluctuate 

that much because it will approximate the average efficiency. All these observations are also 

confirmed by the results illustrated below, where driving patterns identified are quantitatively 

discussed. Nonetheless, this does not affect the entire picture of the time series since the index 

values of all the other time series are relatively estimated at that time point or period. 

<Figure 1> 

It is also evident that there are some common local minimum and maximum points for most of the 

drivers, which is attributed to existing efficiency outliers at these time points or periods. These 

actually represent a time point or period when the most efficient drivers increases or decreases their 

driving metrics significantly and since efficiency is benchmarked, this results in an equally 

significant drop or increment in the efficiency of the other drivers. This might not have an impact 

on drivers’ efficient index, as it still remains equal to one, and therefore it is not always visualized 

in figures 1 and 2. 

<Figure 2> 

5.2 Clusters’ Driving Characteristics 

The k-means algorithm is applied to cluster drivers based on the total driving efficiency, volatility, 

and the trend of the time series. To prevent the results from being influenced by the outliers, all 
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variables are normalized before used as inputs. Driving characteristics of each cluster arose are 

presented and discussed in Table 4. 

The optimal number of clusters is determined using the elbow method. In most cases, the elbow 

appears to exist at k = 3 or 4 indicating that the optimal number of clusters is either 3 or 4. After 

several clustering tests performed using both (3 and 4), it was found that some of the clusters formed 

in most cases included a significantly low number of users (e.g. 2) when k is set to 4 and therefore 

the results obtained were not representative. As a result, the number k of clusters is set to 3, which 

is rational considering the sample size used in this study. 

The macroscopic characteristics of the urban sample’s clusters that resulted from the analysis are 

illustrated in Table 4. Cluster 1 presents a very low positive trend compared to the rest of the 

clusters formed showing thus a slight tendency of these drivers to improve their driving behaviour. 

The volatility of their behaviour also seems to be medium to high and therefore an instability exists 

in behaviour. Drivers of this cluster also feature an average low total efficiency value, which shows 

a poor average behaviour. All the above along with the high number of drivers included in the 

specific cluster, lead to the conclusion that this cluster mainly represent the moderate driver. As for 

cluster 2, it features a medium positive efficiency trend indicating an overall improvement trend. 

This positive instability is also confirmed by the medium to high volatility presented. This cluster’s 

drivers also have a medium average efficiency index which along with all the aforementioned 

demonstrate that this cluster is comprised from unstable drivers with less risky behaviour and a 

constant trend of improvement. Drivers of cluster 3 present a medium negative trend and a low to 

medium behavioral volatility. They also feature a medium to very high average driving efficiency 

confirmed by the low crash frequency. Consequently, this cluster includes the most cautious drivers 

of the sample and the negative trend is probably because of the fact that it is extremely rare for a 

driver to be highly efficient and steadily improved at the same time. It can be named as the cluster 

of cautious drivers. 
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Table 4 also shows the macroscopic characteristics of the rural sample’s clusters arising from the 

analysis performed. Cluster 1 presents a low positive trend compared to the rest of the clusters 

formed showing thus a slight tendency of these drivers to improve their driving behaviour. A 

medium behavioral volatility also appears and as a result, an instable behaviour exists. Drivers of 

this cluster also feature an average low total efficiency value, which shows a poor average 

behaviour. All the above along with the high number of drivers included in the specific cluster, lead 

to the conclusion that this cluster mainly represents the moderate driver. In general, this cluster is 

very similar to cluster 1 obtained from the cluster analysis performed in urban roads. Drivers of 

cluster 2 present a high negative trend, a high behavioral volatility and a medium to high average 

driving efficiency and are generally unstable. Consequently, a significant deterioration of their 

behaviour is present while being monitored, which is the most important difference observed 

between the clustering results obtained from the analyses of the two road types. 

As for cluster 3, it features a high positive efficiency trend indicating an overall improvement trend. 

This positive instability is also confirmed by the medium to high volatility that is shown. This 

cluster’s drivers also have a high average efficiency index which along with all the aforementioned 

demonstrate that this cluster is comprised of cautious drivers with less risky behaviour and a 

constant trend of improvement. This cluster is also similar to the third cluster that results from the 

analysis of the anonymous sample in urban roads. 

<Table 4> 

6. DISCUSSION 

This paper provides a structured approach to investigate the evolution of driving efficiency in time, 

aiming to draw conclusions on the different existing driving patterns. Driving efficiency estimation 

is based on a methodology introduced in previous research using DEA (1). Based on driving 

analytics of a sample of two hundred (200) drivers during 7-months, the analysis of the efficiency 
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time series arising revealed that although there is a higher range of volatility in rural road type, the 

average driving efficiency is approximately the same in both road and sample types. The average 

trend is observed to be approximately the same between the two road types despite the fact that 

median trend is diverged. Finally, stationarity is not included in the final clustering procedure since 

all driver groups have similar characteristics and therefore this characteristic would not play an 

important role. All the above lead to the conclusion that when driving efficiency is benchmarked 

using DEA, the sample should be assessed on a regular basis to identify any alterations made in the 

efficiency frontier, which will result in a change in the ranking of the drivers. As a result, drivers 

should be continuously monitored and re-evaluated to capture these shifts and provide personalized 

advice on how their behaviour could be improved in the future. 

A potential is identified in this study for classifying drivers’ sample based on macroscopic temporal 

driving characteristics. The clustering analysis performed resulted to three main driving groups of 

the a) moderate drivers, b) unstable drivers and c) cautious drivers. The highlights of the analysis 

conducted for each category indicated considerable differences in driving characteristics between 

cautious drivers and the other two clusters in terms of driving performance. As mentioned in the 

introduction, the previous work of the authors (1) focused on the assessment of the aggregated 

driving behavior and therefore, the classification of the drivers as most efficient, weakly efficient, 

and non-efficient was made without taking into account how driving behavior evolves over time. 

The results of this research provide more information on the dynamic aspects of driving behavior, 

which are now taken into consideration in the driving behavior analysis. In other words, the 

quantified efficiency found in the previous work of the authors was incorporated in this study as a 

parameter for driver profiling. It becomes apparent that the results of the two studies are not directly 

connected and consequently, they cannot be compared. However, as mentioned in the results 

section, the main common attribute between all clusters of cautious drivers is the high driving 
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efficiency index, which probably indicates that most of the drivers found in the class of the “most 

efficient” drivers can also be found in the class of “cautious” drivers. 

Apart from the high driving efficiency index, the main common attribute between all clusters of 

the cautious drivers is the low value of the crash frequency per year value regardless of the fact that 

it was not included as a factor in the cluster analysis. On the other hand, all clusters of the moderate 

drivers feature a high driving efficiency index and an insignificant low positive trend indicating a 

steadily poor driving behaviour. Finally, the unstable drivers of the second cluster present a medium 

to high volatility, which is found to be the only common characteristic between them. The rest of 

the clusters show similar characteristics regarding all attributes. It is highlighted that no statistical 

testing for the results obtained is undertaken since both DEA and k-means clustering are neither a 

statistical/ econometric method for forecasting future observations of a variable/time-series nor a 

supervised method in general, and therefore no validation technique could be applied (e.g. cross-

validation, testing different datasets etc.). 

In a real case scenario, drivers could be monitored for a certain period to analyze and evaluate their 

driving behavior. Thus, the riskiest driving traits that significantly influence crash probability 

would be recognized. Those results can potentially feed a platform’s service and provide feedback 

and recommendations to drivers on their driving characteristics that need further improvement to 

become less risky. To this end, gamification policies based on this approach such as competitions, 

learning goals and awards could contribute to this scope. The results of this research could also be 

exploited in order to create innovative insurance pricing schemes that will be based on driving 

characteristics (e.g. Pay-How-You-Drive driving insurance schemes) and not mainly on 

demographics. 

The main driving characteristics of the clusters that result from the analysis such as mobile usage, 

speed limit violation and number of harsh events should be further analyzed in the future to acquire 
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a clearer picture on the dominant driving patterns that exist. Future research should also focus on 

larger drivers’ samples with a representative sample collected from the entire population or from 

many countries so that more generalized conclusions can be drawn. It is a fact that models become 

more representative of the average characteristics of each cluster as more trips and drivers are 

aggregated. On the top of that, it would be beneficial to collect the crash record of the participants 

and include it in the clustering procedure in order to check if results arising are also representative 

of the individual driving risk. Finally, more driving metrics influencing crash risk should be used 

and test whether or not driving behavior models are improved. 
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Table 1: Variables Recorded During the Experiment 

Model Type Name Short description 

1 

Input haurban number of harsh acceleration events in urban road 

Input hburban number of harsh braking events in urban road 

Input mobileurban total seconds of mobile phone usages in urban road 

Input speedingurban total seconds of speed limit violation in urban road 

Output distanceurban total distance driven in urban road 

2 

Input harural number of harsh acceleration events in rural road 

Input hbrural number of harsh braking events in rural road 

Input mobilerural total seconds of mobile phone usage in rural road 

Input speedingrural total seconds of speed limit violation in rural road 

Output distancerural total distance driven in rural road 
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Table 2: Descriptive statistics of the cumulative per driver values of the variables recorded 

  Distance (km) HA HB Mobile (secs) Speeding (secs) 

  Urban 

Min 288 31 18 902 3971 

Max 5224 2033 1033 84677 81640 

Average 2238.6 633.8 226.7 18109.7 26134.3 

Standard 

Deviation 
1061.8 485.4 184.5 17547.4 15164.7 

Median 2166.5 477.5 150.5 11403 23621.5 

Kurtosis 0.5 1 5.3 3.7 1.9 

Skewness 0.7 1.2 1.9 1.8 1.1 

  Rural 

Min 391 45 14 39 1802 

Max 7209 1566 1213 65623 68405 

Average 2274.6 342.5 173 10735.7 21214.3 

Standard 

Deviation 
1363.4 308.4 198.3 14155.8 14862.7 

Median 2165.5 235 108 6420.5 19547 

Kurtosis 3.2 3.8 15.5 7.5 0.7 

Skewness 1.5 1.8 3.6 2.8 1 

  Highway 

Min 180 2 1 37 23 

Max 6932 185 98 27979 48367 

Average 1512.7 30.3 16.4 2841.8 9126.4 

Standard 

Deviation 
1209.5 35.2 18 4384.8 10204.4 

Median 1147.5 16 9.5 1604.5 5357.5 

Kurtosis 6 8.4 7.4 19 4.1 

Skewness 2 2.8 2.4 3.8 1.9 

 



Table 3: Descriptive Statistics of the Driving Efficiency Volatility and Trend of the Drivers’ Sample. 

Sample type Volatility Trend (*10e-3) 

Road type Urban Rural Urban Rural 

Min 0.022 0.000 -4.56 -8.79 

Max 0.152 0.379 4.09 8.46 

Average 0.119 0.111 0.68 0.66 

Standard 

Deviation 

0.021 0.055 1.25 2.69 

Median 0.123 0.095 0.51 0.80 

Kurtosis 7.245 6.393 3.820 3.696 

Skewness -2.388 2.102 -0.222 -0.550 
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Table 4: Macroscopic Characteristics of the Drivers’ Clusters. 

Road 

type 
Cluster 

Statistical metric Trend (*10e-3) Volatility Efficiency index Number of 

drivers 

U
rb

a
n

 

C
lu

st
er

 1
  

(m
o

d
er

a
te

 

d
ri

v
er

s)
 

Min -1.045 0.066 0.122 

79 

Max 1.686 0.152 0.725 

Average 0.516 0.123 0.340 

Standard Deviation 0.534 0.013 0.108 

Median 0.486 0.124 0.328 

Kurtosis 0.303 4.969 0.944 

Skewness -0.123 -1.438 0.713 

C
lu

st
er

 2
  

(u
n

st
a

b
le

 d
ri

v
er

s)
 

Min 2.032 0.066 0.448 

13 

Max 4.085 0.141 1.000 

Average 3.006 0.119 0.673 

Standard Deviation 0.628 0.022 0.206 

Median 3.067 0.125 0.608 

Kurtosis 0.334 -1.815 -2.281 

Skewness 0.209 -1.278 0.732 

C
lu

st
er

 3
  

(c
a
u

ti
o
u

s 
d

ri
v
er

s)
 

Min -4.557 0.022 0.367 

8 

Max 0.322 0.122 1.000 

Average -1.512 0.080 0.746 

Standard Deviation 1.530 0.038 0.263 

Median -0.937 0.090 0.813 

Kurtosis -1.027 0.925 -1.154 

Skewness -1.053 -0.385 -0.237 

R
u

ra
l 

C
lu

st
er

 1
  

(m
o
d

er
a
te

 

d
ri

v
er

s)
 

Min -1.987 0.048 0.127 

72 

Max 3.375 0.228 0.664 

Average 0.764 0.099 0.363 

Standard Deviation 1.040 0.035 0.120 

Median 0.778 0.091 0.356 

Kurtosis -0.639 2.144 -1.806 

Skewness -0.252 1.437 0.410 

C
lu

st
er

 2
  

(u
n

st
a
b

le
 d

ri
v
er

s)
 

Min -8.785 0.072 0.323 

12 

Max -1.545 0.379 1.000 

Average -4.288 0.155 0.716 

Standard Deviation 2.530 0.088 0.246 

Median -3.811 0.125 0.685 

Kurtosis 0.412 2.323 -0.250 

Skewness -0.824 1.490 -0.042 

C
lu

st
er

 3
  

(c
a

u
ti

o
u

s 
d

ri
v

er
s)

 

Min 0.000 0.000 0.483 

16 

Max 8.455 0.306 1.000 

Average 3.904 0.133 0.847 

Standard Deviation 2.573 0.072 0.160 

Median 4.295 0.115 0.880 

Kurtosis -0.712 1.167 -0.268 

Skewness 0.398 0.789 -0.802 
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Figure 1: Efficiency time series of 7 random drivers of the anonymous urban sample. 
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Figure 2: Efficiency time series of 7 random drivers of the rural sample. 

 


