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Trip characteristics impact on the frequency  

of harsh events recorded via smartphone sensors 

 

 
Abstract 

 

The Internet of Things (IoT) constantly offers new opportunities and features to monitor and analyze driver behavior 

through wide use of smartphones, effective data collection and Big Data analysis, resulting in assessment and 

improvement of driver behavior and safety. The objective of the present study is to investigate the impact of detailed 

trip characteristics on the frequency of harsh acceleration and harsh braking events through an innovative smartphone 

application developed within the framework of BeSmart project. A 200-driver naturalistic experiment spanning 12 

months is carried out since July 2019. During the first two months, participants were asked to drive in the way they 

usually did, without receiving any feedback on their driving behavior from the application. Over the subsequent two 

months, participants were provided with personalized feedback, a trip list and a scorecard regarding their driving 

behavior, allowing them to identify their critical deficits or unsafe behaviors. Some of the most important risk factors, 

such as speed and driving above the speed limit, usage of mobile phone while driving and harsh events (acceleration 

and braking) are recorded through the application and subsequently analyzed. Generalized Linear Mixed-Effects 

Models were fitted to the trips of car drivers who made frequent trips for both experiment phases in order to model 

the frequencies of harsh events. Results indicate that maximum speed, the percentage of speeding duration and total 

trip duration are positively correlated with both harsh acceleration and harsh braking frequencies. On the other hand, 

the exposure metric of total trip distance was found to be negatively correlated with both harsh event types. A small 

positive correlation of the percentage of mobile use duration with harsh accelerations was also detected. 
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1. Introduction 

 

Measuring driving efficiency has been the focus of many studies in driving behavior literature in the past [1, 2]. From 

a road safety perspective, it is extremely significant to identify the parameters that affect driving behavior and therefore 

crash risk. It is only when these parameters are quantified that proper road safety measures can be effectively taken.  

 

There is a significant number of risk factors affecting crash probability identified in literature. The most important 

risk factors recognized in the literature [3, 4] are human factors (speeding, distracted driving, driving under the 

influence of alcohol and other psychoactive substances etc.), unsafe road infrastructure, unsafe vehicles and inadequate 

law enforcement of traffic laws. Among them, human factors are likely to be the most crucial cause of road traffic 

fatalities and injuries every year and therefore the importance of studying how these factors can affect crash risk is 

high [5]. The predominance of human factors as crash causes is indicated by the respective percentage, which has 

been estimated to amount to up to 94% [6]. 

 
1.1. Human risk factors 

 

Distracted driving, as one of the most important human factors that influence crash risk, has been attracting the 

attention of researchers the past decades. Mobile phone use (handheld or hands-free) and complex conversation (at 

mobile phone or with passengers) appear to be the most critical in-vehicle distraction factors [7]. Given that mobile 

usage is an inevitable part of everyday driving process and is expected to increase over the years [8], its impact on 

driving behavior in traffic and road safety is particularly crucial and merits further investigation. The literature so far 

has showed that when drivers are using mobile phones while driving, several impacts manifest on their behavior 

expressed in terms of loss of control, response to incidents, or crash occurrence [9, 10]. 

 

Speeding has also been the subject of extensive research in the transportation field. Excess and inappropriate speed 

are responsible for a high proportion of the mortality and morbidity that result from road crashes [11, 12]. In high-

income countries, speed contributes to about 30% of deaths on the road, while in some low-income and middle-income 

countries, speed is estimated to be the main contributory factor in about half of all road crashes [13]. Elvik et al. [14] 

engaged in relevant research by first questioning whether speed is still as important for road safety as it was in the 

past, taking into account the penetration of constantly evolving vehicle safety systems in the global automotive market. 

After reviewing recent research studies regarding the impact of speed on road safety, they conclude that speed remains 

an important risk factor both for crash occurrence and for injury severity. 

 
Furthermore, apart from speeding and distracted driving, more recent studies highlight the importance of investigating 

the phenomenon of harsh events in greater detail, as they have been associated with driving risk assessment, risk level 

correlation and classification [15, 16, 17]. This is because harsh driving events, such as harsh accelerations and harsh 

brakings, indicate an overall aggressive and unsafe driving behavior; unsafe distance from adjacent vehicles, possible 

near misses, lack of concentration, increased reaction time, poor driving judgement or low level of experience. From 

a research scope, during recent years harsh or safety-critical events have been adopted as crash surrogate measures 

and the understanding of related opportunities and challenges in their interpretation is under increased examination 

(e.g. [18, 19]). 

 

Although both harsh accelerations and harsh brakings are associated with unsafe driving behavior, they constitute two 

different types of event and should therefore examined as such. More specifically, harsh acceleration events may 

reveal high levels of anxiety and anger while driving [20, 21] leading to a risky driving behavior characterized by 

drivers’ involvement in situations of high risk. Harsh brakings may indicate driver struggle to anticipate the occurrence 

of a critical situation, which most of the times would not have occurred at the first place if it were not for driver’s 

inattention, high speed development, inadequate distances from adjacent vehicles and other unsafe behavior indicators. 

As a result, harsh breaking events harsh are often used to locate safety critical events in Naturalistic Driving (ND) 

data [22, 23]. 

 

Additionally, given the strong correlation between harsh events and driving risk, it is not surprising why harsh 

accelerations and harsh brakings have been investigated by insurance industry in the context of usage-based motor 

insurance (UBI) schemes [24, 25], allowing for more behavioral parameters being used in UBI models. Harsh events, 

in combination with other driving behavioral indicators such as speeding and distracted driving are being increasingly 
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used by Pay How You Drive (PHUD) Usage Based Insurance schemes as the critical risk factor indicators in terms of 

driving behavior [26]. 

 

1.2. Smartphone data exploitation 

 

The importance of driver monitoring is progressively established in the transportation field; despite that, researchers 

have been struggling with the difficulty of collecting accurate real-time driving data by adopting low-cost collection 

and processing methods. In that environment, the high penetration rate of smartphones and social networks nowadays 

provide new opportunities and features to monitor and analyze driver behavior. Apart from the wide smartphone 

application capabilities and the low cost and ease of use in data collection, experiments under naturalistic conditions 

with the use of smartphones allow for drivers to be recorded under normal driving conditions and without any 

influence from external parameters, resulting at being considered as one of the most appropriate methods for the 

assessment of driving behavior [27]. 

 

Smartphones are equipped with a variety of sensors, such as motion sensors (e.g. accelerometer and gyroscope), 

position sensors (e.g. magnetometer), global navigation satellite system (GNSS) receivers, environmental sensors 

(barometers, photometers, and thermometers), microphone, cameras, etc. As a result, the exploitation of the various 

sensors for the purpose of transportation and road safety research allows for continuous, inexpensive and fast data 

collection, with plenty of studies confirming and even improving the reliability of smartphone measurement data 

implementing state-of-the-art machine learning and big data algorithms [28, 29]. Vlahogianni and Barmpounakis [30] 

examined the use of smartphones as an alternative for driving behavior analysis and they concluded that the 

smartphone-based algorithms may accurately detect four distinct patterns (braking, acceleration, left cornering and 

right cornering) with an average accuracy comparable to other popular detection approaches based on data collected 

using a fixed position device.  

 

Many studies have shown promising results using data collected through smartphone sensors under naturalistic driving 

conditions. By conducting naturalistic driving experiments by means of mobile phone, researchers aim either at 

examining the effect of various driving behavior indicators on driver performance and cash risk [31, 32, 33] or at 

identifying aggressive and dangerous driving profiles through a clustering approach [34, 35, 36]. Going one step 

further, smartphones have proven to be an extremely useful feedback tool, allowing drivers to get informed about their 

weak points in regards with safety, namely speeding and aggressive driving style [37] as well as eco-driving [38, 39]. 

The ultimate objective when providing feedback to drivers is to trigger their learning and self-assessment process and 

enable them to gradually improve their performance and monitor their evolution [40]. Toledo and Shiftan [41] found 

that feedback can lead to a reduction of 8% in safety incidents, and 3–10% in fuel consumption, with a higher reduction 

obtained for large vehicles. 

 

In light of the aforementioned, the aim of the current research is the utilization of high-resolution smartphone data for 

the investigation of the impact of detailed trip characteristics on the frequency of harsh acceleration and harsh braking 

events. To that end, a naturalistic driving experiment was carried out in order to examine driving behavior as expressed 

by the frequencies of harsh accelerations and harsh brakings. 

 

2. Methodology 
 

2.1. Overview of the experiment  

 

Within the framework of BeSmart Project, a 200-driver naturalistic experiment spanning 12 months is conducted 

starting from July 2019. The objectives of the experiment include primarily the identification of critical risk factors 

through driver monitoring via an innovative smartphone application (described in the following section), and 

subsequently, the development of driver feedback features allowing to inform, notify and motivate the drivers to 

improve their critical skills and reduce their driving errors and therefore their crash risk.  

 

More specifically, the designed experiment consists of 6 different phases differing in the type of feedback provided to 

drivers. In the present paper, the authors focus exclusively on the two first phases of the experiment. The first phase 

lasted for 12 weeks; participants were asked to drive in the way they usually did, without receiving any feedback on 

their driving behavior from the smartphone application. At this phase, only the Trip List and the vehicle 

characterization were accessible to the application user (Figure 1a). The purpose of this phase, referred to as “Phase 
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1” in the following, was to identify the naturalistic driving characteristics of drivers, which are used to formulate a 

baseline for future comparison. An initial analysis of car driver trips during the first phase of BeSmart can be found 

in Ziakopoulos et al. [42]. The second phase, referred to as “Phase 2” in the following, lasted for 10 weeks; participants 

were provided with personalized feedback, a trip list and a scorecard regarding their driving behavior, enabling them 

to identify their critical deficits or unsafe behaviors (Figure 1b).  

 

The respective feedback was provided to participant smartphones through the application, each time a trip was 

completed. More specifically, Figure 1b (left) demonstrates the Trip List which now enables the per trip score on a 0-

100 rating scale. As shown on the right side of Figure 1b, the Scorecard is subsequently introduced, allowing for 

additional feedback score on the four driving behavior indicators (from the left to the right); speeding, mobile phone 

use, harsh breaking and harsh acceleration. As a note, the BeSmart Project is conducted in Greece, therefore the 

original application has an exclusively Greek interface. However, for the purposes of this paper, the application 

interface has been translated in English. 

 

 
Figure 1 – Example screenshots from the application features in: (a) Phase 1 (Baseline) and (b) Phase 2 (Feedback) 

 

2.2. The BeSmart Application 

 

In order to achieve the research objective, an innovative smartphone application was developed aiming at the 

assessment and improvement of driver behavior and safety. The application is developed by OSeven (www.oseven.io), 

aiming to record driver behavior using the hardware sensors of the smartphone device. Furthermore, a variety of APIs 

is exploited to read sensor data and temporarily store them to the smartphone’s database before transmitting them to 

the central (back-end) database. Data collected from the application has been utilised in earlier research papers which 

also feature additional details regarding the application [33]. 

 

The standard procedure that is followed every time a new trip is recorded by the application is clearly presented in 

Figure 1. The data collected are highly disaggregated in space and time. Once stored in the backend cloud server, they 

are converted into meaningful driving behavior and safety indicators, using signal processing, Machine Learning (ML) 

algorithms, Data fusion and Big Data algorithms. This is achieved by using state-of-the-art technologies and 

procedures, which operate in compliance with standing Greek and European personal data protection legislation 

(GDPR). 

http://www.oseven.io/
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Fig. 2. The OSeven data flow system. 

 

Α variety of different metadata are eventually calculated, including indicatively the following exposure indicators: 

 Total distance (mileage) 

 Driving duration  

 Type(s) of the road network used (given by GPS position and integration with map providers e.g. Google, 

OSM) 

 Time of the day driving (rush hours, risky hours) 

 

The driving behavior indicators that are also calculated from the data include indicatively: 

 Speeding (duration of speeding, speed limit exceedance etc.) 

 Number and severity of harsh events 

 Harsh braking (longitudinal acceleration) 

 Harsh acceleration (longitudinal acceleration) 

 Distraction from mobile phone use (mobile phone use is considered any type of phone use by the driver e.g. 

talking, texting etc.). 

 

Harsh event frequencies are the response variable of this research; harsh events are determined by the OSeven 

algorithms where the authors do not have access due to intellectual property protection of these algorithms. More 

specifically, OSeven uses data from all the axes of the accelerometer as well as GPS for the determination of harsh 

events. Harsh events are calculated via data fusion and machine learning algorithms and not a rule-based approach 

using as input the values of the accelerometer as well as values from additional sensors (e.g. orientation, 

magnetometer, GPS, gyroscope). These algorithms evaluate the processed time series from the smartphone sensors of 

the complete trip. Although the applied algorithms increase the accuracy of harsh events detection; by nature, they do 

not include specific threshold values or explicit explanations that could be presented in the existing paper for 

verification purposes. The reliability of the OSeven algorithms has been extensively evaluated against literature data, 

OBD data, on-road experiments by certified experts on the assessment of driving behavior, and experiments on driving 

simulators [43, 44]. It is noted that the OSeven product has already been adopted and used by major insurance 

companies in several countries, which is evidence regarding the acceptance of the OSeven algorithms. 

 

3. Theoretical Background 
 

This analysis aims to examine the impact of detailed trip characteristics on event frequencies across drivers (i.e. the 

number of harsh accelerations and harsh brakings per trip). Since harsh events can be considered as instances similar 

to road crashes, but more frequent, a statistical method suitable for dealing with frequency data (in other words, count 

data) can be implemented. Therefore, Generalized Linear Models (GLMs) which are used when dealing with event 

count data [45] were selected for the statistical analysis. Previous studies have also used similar analytical methods 

when dealing with harsh events [46, 47] 

 

However, one may also consider that in the present dataset there are repeated measurements (trips) over the same units 

(drivers). Due to these repeated measurements, the observations are no longer independent, as required by the 

assumptions of linear models. Unless accounted for, this dependency may affect the accuracy of the modelling results. 

In fact, it is necessary to account for random heterogeneity due to differences between drivers, so as to make sure that 

the effects identified in the model are true effects of the independent variables on the dependent, and do not reflect 

unobserved differences between drivers. 

 

Therefore, in order to capture personal driver traits, such as personality and experience, which affects their driving 

style, and thus the frequencies of events they exhibit that are unobserved, random effects are introduced to GLMs in 
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order to extend them to Generalized Linear Mixed-Effects Models (GLMMs). In other words, GLMMs are formulated 

by using the fixed effects GLMs as basis and then adding random effects to the equation of the linear predictor. 

GLMMs were introduced by Breslow & Clayton [48]. 

 

The general form of the GLM models the log odds via the linear predictor. Following McCulloch [49], if 𝑦 are the 

observed frequencies of harsh events per trip 𝑖 (harsh brakings and harsh accelerations separately), and 𝜆 are the 

expected frequencies of harsh events to be predicted, then the model is specified as: 

 

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)                                                                                                                                                                       (1)  

 

And the linear predictor is: 

 

𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽𝑛𝑥𝑛 + 𝜀                                                                                                                                                        (2) 

 

Where 𝛽 are the fixed-effect parameters (constant and coefficients) for 𝑛 independent variables, and 𝜀 is the error 

term. The GLM is then extended into a GLMM by adding random effects. Random effects in GLMMs are expressed 

as random variable coefficients (random slopes) or random intercepts. For a GLMM containing a random intercept 

and a random slope for a single independent variable 𝑗 of the total 𝑛, Equation (2) would be formulated as:  

 

𝑙𝑜𝑔(𝜆𝑖) = 𝛽0𝑖 + 𝛽𝑗𝑖𝑥𝑗𝑖 +  𝛽𝑛−1𝑥𝑛−1 + 𝜀                                                                                                                             (3) 

 

Where 𝛽0𝑖 and 𝛽𝑗𝑖  follow normal distributions centered at the value of their fixed counterparts: 

 

𝛽0𝑖  ~ 𝑁(𝛽0, 𝜎𝑠,0
2 )                                                                                                                                                                       (4)  

𝛽𝑗𝑖  ~ 𝑁(𝛽𝑗 , 𝜎𝑠,𝑗
2 )                                                                                                                                                                         (5)  

 

Coefficient result interpretation is more intuitive when using relative risk ratios (sometimes called incidence rate 

ratios). Relative risk ratios are obtained by transforming the predictor to obtain the frequency. For an increase of one 

unit in one specific variable, 𝑘, with all other parameters remaining equal, the predicted original frequency 𝜆𝑖 is 

multiplied by: 𝜆𝑘𝑖 = exp(𝛽𝑘𝑖) ∗  𝜆𝑖 

 

As McCulloch [50] mentions, random effect models may use correlated independent variables as input, circumventing 

the limitations of traditional GLMs. Furthermore, it should be mentioned that for computational reasons during the 

GLMM fitting, the trip data underwent z-score scaling, a common standardization process which does not affect the 

obtained coefficients. Mathematically, for every parameter 𝑥 with a mean 𝑥̅ and a standard deviation 𝑆 a scaled value 

is obtained:   

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑥 − 𝑥̅)/𝑆                                                                                                                                                                  (6) 

 

The best-fitting model which contains the more informative variable combination and explains the highest degree of 

variance per given dataset is selected as the one with the minimum Akaike Information Criterion (AIC). It is critical 

to note that the added value of any random effects is assessed by conducting a custom ANOVA (log-likelihood test) 

between the fixed effects GLM and any formulated GLMMs. 

 

4. Analysis and Discussion 

 
4.1 Descriptive Statistics 

 

Overall, during the first two phases of the experiment, 26,619 trips from a sample of 147 car drivers have been 

recorded. However, for the present analysis it was decided that the final sample should consist of drivers who have 

participated equally in both phases only. An additional criterion was set; all drivers chosen to be included in the 

analysis were required to have driven at least for 40 trips. This number approximately equals the typical monthly 

number of working trips for a driver assuming that each driver drives 2 trips per day for 5 working days per week. 

This number is reasonable to filter out drivers for which there are not enough observations, and it is also the 'industrial' 

criterion set by OSeven to start providing driver evaluation. As a result, from the 147 car drivers, 65 were ultimately 



7 

 

selected creating a large dataset of 21,167 trips. Demographic information regarding the drivers’ gender and age are 

shown in Table 1. 
Table 1. Overview of the selected sample 

Age groups  
 

 <25 25-55 >55 Total% 

Male 0 27 3 46% 

Female 3 31 1 54% 

Total % 5% 89% 6% 100% 

 

The key indicator, and response variable for the purpose of this research is the frequency of harsh acceleration and 

harsh braking events during the two first experiment phases. Additional basic road safety indicators (i.e. possibly 

suggesting risky or reckless behavior) are the following: exceeding the speed limit (percentage of time driving over 

the speed limits per trip driving duration), and mobile usage (percentage of driving time using the mobile phone per 

trip driving duration). On the basis of the literature review results [15,16], it is assumed that the occurrence of harsh 

events is partly correlated with drivers’ speeding behavior and mobile phone use, and thus some of its variance may 

be explained by changes in those variables. 

 

Table 2 provides a description of the variables selected. Regarding the harsh event frequencies, it is noted that both 

during Phase 1 and Phase 2 drivers seem to incur more harsh brakings than harsh accelerations during their trip.  

 
Table 2. Description of the variables used in the analysis 

Variable Description 

Total Trip Duration [s] Total trip duration [sec] 

Total Trip Distance [km] Total trip distance [km] 

Average Speed [km/h] Mean driving speed per trip [km/h] 

Maximum Speed [km/h] Maximum of driving speed per trip [km/h] 

Percentage of Mobile Use Duration [%] Share of mobile use per trip [%] 

Percentage of Speeding Duration [%] Share of time over the speed limit per trip [%] 

Harsh accelerations [count] Harsh acceleration events per trip [count] 

Harsh brakings [count] Harsh braking events per trip [count] 

 

The descriptive statistics of the parameters that were recorded per trip for both experiment phases are shown in Table 

3 for Phase 1 and Table 4 for Phase 2.  

 
Table 3. Descriptive statistics of the per trip values of the variables recorded for Phase 1 

Variable Mean Minimum Median Maximum St. Dev. 

Total Trip Duration [s] 992.55 61.00 696.00 17642 1051.86 

Total Trip Distance [km] 10.17 0.50 4.8.00 387.20 20.14 

Average Speed [km/h] 37.27 14.00 33.00 59.00 15.35 

Maximum Speed [km/h] 68.64 19.00 64.00 206.00 26.68 

Percentage of Mobile Use 

Duration [%] 

4.00 0.00 0.00 93.80 10.00 

Percentage of Speeding 

Duration [%] 

5.00 0.00 1.00 70.00 9.00 

Harsh accelerations [count] 0.76 0.00 0.00 19.00 1.52 

Harsh brakings [count] 1.51 0.00 1.00 33.00 2.34 

 

Table 4. Descriptive statistics of the per trip values of the variables recorded for Phase 2 

Variable Mean Minimum Median Maximum St. Dev. 

Total Trip Duration [s] 950.00 61.00 687.00 11349.00 904.81 

Total Trip Distance [km] 8.25 0.50 4.30 325.50 14.09 

Average Speed [km/h] 34.55 14.00 30.00 56.35 14.07 

Maximum Speed [km/h] 64.90 18.00 59.00 228.00 26.42 

Percentage of Mobile Use 

Duration [%] 

3.00 0.00 0.00 93.20 10.00 

Percentage of Speeding 

Duration [%] 

3.00 0.00 0.00 65.00 7.00 

Harsh accelerations [count] 0.67 0.00 0.00 21.00 1.36 

Harsh brakings [count] 1.36 0.00 1.00 27.00 2.20 
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For further investigation, the differences between the two Phases were also explored with t-tests based on the drivers’ 

trips during Phase 1 and Phase 2, respectively. A t-test analysis, based on the 65 selected drivers’ trips, rejected the 

null hypothesis that both distributions of harsh events have an equal mean, demonstrating that the decrease in harsh 

events to be significant; both harsh accelerations (t-stat = 4.90, p < 0.001) and harsh brakings (t-stat = 4.82, p < 0.001). 

Additionally, results reveal that both the average speed (t-stat = 13.417, p < 0.001) and the maximum mean speed (t-

stat = 10.25, p < 0.001) seem to be statistically significantly reduced during Phase 2 of the experiment. This also 

applies to the percentage of time driving over the speed limits per trip driving duration, taking into consideration the 

significant reduction of the particular variable, namely from 5% to 3% (t-stat = 17.63, p < 0.001). Finally, although 

the percentage of time using the mobile phone per trip driving duration is also found to be reduced in Phase 2 of the 

experiment, from 4% to 3%, the reduction is not statistically significant (t-stat = 1.15, p = 0.248). 

 

4.2 Generalized Linear Mixed-Effects Models 

 
In order to model the expected frequency of events per trip for the participant drivers, models in a GLM framework 

were calibrated, as previously explained. Since the BeSmart application allows for a high resolution, big-data oriented 

collection scheme, it was attempted to include random effects in order to capture the unique driving behavior traits for 

each driver. This entails having a critical minimum sample of trips for each driver to achieve a meaningful outcome. 

Therefore, a screening was made among participant drivers, as described above, and drivers that had over 40 trips 

each were selected for the GLMM analysis.  

 

GLMMs were fitted in R-studio (with the lme4 package) via maximum likelihood and using z-factor scaling, following 

Bates et al. [51]. A number of models were tested with different configurations in the collected parameters in both 

fixed effects and random effects. The Poisson function with the log-odds link function was implemented. After 

conducting log-likelihood test (ANOVA) comparisons, the most informative configuration of random effects was the 

inclusion of both random intercepts and random slopes in the GLMMs to capture unique driver traits (lowest 

LogLikelihood and highest 𝜒2). It should be noted that conceptually, for harsh event frequencies, random slope models 

without random intercepts make little sense and are thus avoided. 

 

Results of mixed effect selection are shown on Table 5 for harsh accelerations and on Table 6 for harsh brakings: 

 
    Table 5. Log-likelihood comparison of mixed effect selection for harsh acceleration models for both phases 

Experiment 

Phase 

Model 

Family 

Model Configuration D.f. LogLikelihood 𝜒2 P(>𝜒2) Sig. 

Phase 1 GLM Fixed effects only [baseline] 6 -11078.6                           – – – 

 GLMΜ Fixed effects & Random Intercepts 7 -9929.5   2298.34   <2e-16 *** 

 GLMΜ Fixed effects, Random Intercepts & 

Random Slopes 

9 -9860.8   137.35   <2e-16 *** 

Phase 2 GLM Fixed effects only [baseline] 6 -10639.5                            – – – 

 GLMΜ Fixed effects & Random Intercepts 7 -9787.4   1704.32   <2e-16 *** 

 GLMΜ Fixed effects, Random Intercepts & 

Random Slopes 

9 -9741.7   91.34   <2e-16 *** 

Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 

 

Table 6. Log-likelihood comparison of mixed effect selection for harsh braking models 

Experiment 

Phase 

Model 

Family 

Model Configuration D.f. LogLikelihood 𝜒2 P(>𝜒2) Sig. 

Phase 1 GLM Fixed effects only [baseline] 5 -15634                           – – – 

 GLMΜ Fixed effects & Random Intercepts 6 -14352   2565.04   < 2e-16 *** 

 GLMΜ Fixed effects, Random Intercepts & 

Random Slopes 

8 -14158   388.04   < 2e-16 *** 

Phase 2 GLM Fixed effects only [baseline] 5 -15588                           – – – 

 GLMΜ Fixed effects & Random Intercepts 6 -14045   3086.73   <2e-16 *** 

 GLMΜ Fixed effects, Random Intercepts & 

Random Slopes 

8 -13965   159.73   <2e-16 *** 

Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 

The final models were selected as the ones with the lowest AIC values. Fixed effect results appear on Table 7 for 
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harsh acceleration frequencies and on Table 8 for harsh braking frequencies. A dash sign ('–') on the tables indicates 

that the specific variable was not used in the particular model. Furthermore, taking into account the value range of the 

examined data, the models do not yield any negative predictions, thus leading to no concerns for the negative value 

of the intercept which describes residual unexplained variance. 

 
  Table 7. GLMMs for harsh acceleration frequencies of 65 drivers (fixed effects) 

Trip characteristic 

GLMM for Phase 1 GLMM for Phase 2 

Estimate s.e. p-value Sig. 
Relative 

Risk Ratio 
Estimate s.e. p-value Sig. 

Relative 

Risk Ratio 

Intercept -0.927 0.091 0.000 *** 0.395 -1.127 0.085 0.000 *** 0.324 

Maximum Speed 0.321 0.022 0.000 *** 1.378 0.412 0.021 0.000 *** 1.509 

Percentage of 

Speeding Duration 
0.074 0.013 0.000 *** 1.076 0.035 0.012 0.003 ** 1.035 

Percentage of 

Mobile Use Duration 
0.042 0.011 0.000 *** 1.042 - - - - - 

Log(Total Trip 

Duration) 
0.848 0.051 0.000 *** 2.334 0.729 0.050 0.000 *** 2.073 

Log(Total Trip 

Distance) 
-0.231 0.050 0.000 *** 0.793 -0.087 0.046 0.047 * 0.916 

   Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 
 

  Table 8. GLMMs for harsh braking frequencies of 65 drivers (fixed effects) 

Trip characteristic 

GLMM for Phase 1 GLMM for Phase 2 

Estimate s.e. p-value Sig. 
Relative 

Risk Ratio 
Estimate s.e. p-value Sig. 

Relative 

Risk Ratio 

Intercept -0.182 0.067 0.006 ** 0.833 -0.313 0.075 0.000 *** 0.731 

Maximum Speed 0.327 0.016 0.000 *** 1.387 0.331 0.015 0.000 *** 1.395 

Percentage of 

Speeding Duration 
0.097 0.010 0.000 *** 1.102 0.081 0.009 0.000 *** 1.084 

Log(Total Trip 

Duration) 
0.885 0.045 0.000 *** 2.423 0.723 0.038 0.000 *** 2.061 

Log(Total Trip 

Distance) 
-0.298 0.036 0.000 * 0.742 -0.082 0.033 0.015 * 0.921 

   Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 

Modelling results regarding the harsh acceleration frequencies reveal some interesting findings; the parameters of 

maximum speed, percentage of speeding duration and total trip duration have all been determined as statistically 

significant and positively correlated with harsh acceleration frequencies for both experiment phases. In the same 

context, total trip distance is statistically significant and negatively correlated with harsh acceleration frequencies for 

both experiment phases as well. Mobile use duration was found statistically significant only for Phase 1 with a small 

positive correlation.  

 

More specifically, the aforementioned results could be further interpreted by calculating the relative risk ratio of every 

variable and thus measuring the increase in log-odds of the harsh acceleration frequencies. Maximum driver speed 

increases the frequencies of harsh accelerations; the effect appears to be higher in Phase 2 than Phase 1, as the 

respective estimates are 0.412 and 0.321, corresponding to risk ratios (in other words, incidence rate ratios for 

frequency frequencies) of 1.509 and 1.378. Exceeding the speed limit seems to increase the odds of harsh acceleration 

frequencies. A possible explanation is that certain drivers develop high driving speeds, reaching higher than the speed 

limit, they accelerate in a more abrupt way, allowing the application to detect a harsh acceleration event. In other 

words, overly aggressive drivers do not only exceed speed limits, they do so by accelerating harshly. When comparing 

the two phases, it is found that the effect of exceeding the speed limit is higher in Phase 1 than in Phase 2, with 

respective estimates of 0.074 and 0.035, corresponding to risk ratios of 1.076 and 1.035, respectively. Regarding the 

effect of mobile use while driving, it appears that 1% of mobile use duration per trip increases harsh acceleration event 

frequencies by 4% which makes it the least impactful variable among the examined ones, based on the respective 

estimate of 0.042. The fact that mobile phone use was not found significant for Phase 2 may be interpreted by the 

aforementioned reduction of the specific parameter during the two phases. Overall, it is noteworthy that all examined 

behavioral parameters (namely speed, percentage of speeding and mobile phone duration) are positively correlated 
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with harsh acceleration frequencies, confirming the strong correlation between harsh events and unsafe driving 

behavior [16, 17]. 

 

As for the exposure parameters (trip distance and duration), there is a remarkable finding similar for both experiment 

phases. Trip duration seems to increase the odds of harsh acceleration frequencies; 1 sec of driving time increases 

acceleration frequencies by 2.3 and 2.1 times in Phase 1 and 2, respectively; risk ratios originating from parameter 

estimates of 0.848 and 0.729, respectively. However, the exposure parameter of total trip distance was found to be 

negatively associated with the odds of higher harsh acceleration counts, possibly because drivers may be prepared 

more effectively, physically and psychologically, when they are aware of the fact that they will cover a long distance. 

More precisely, a single unit of total trip distance travelled appears to reduce harsh acceleration counts by a lower 

degree in Phase 2 compared to Phase 1, as the respective estimates are -0.087 and -0.231, corresponding to risk ratios 

of 0.916 and 0.793. 

 

With respect to harsh braking events (Table 8), apart from the mobile use variable, all the other variables, both driving 

behavioral and exposure ones, seem to have effects that are similar to the ones they have on the harsh acceleration 

events. The occurred finding is more obvious when it comes to both exposure parameters; trip distance and duration, 

where the effects appear to be identical. Specifically, trip duration appears to increase the odds of harsh braking 

frequencies; 1 sec of driving time increases braking frequencies by 2.4 and 2.1 times in Phase 1 and 2, respectively; 

risk ratios originating from parameter estimates of 0.885 and 0.723, respectively. On the other hand, similarly to the 

harsh acceleration models, the exposure parameter of total trip distance was found to be negatively associated with 

the odds of higher harsh braking counts; the effect seems higher in Phase 1 compare to Phase 2, as the respective 

estimates are -0.298 and -0.082, corresponding to risk ratios of 0.742 and 0.921. 

 

The examined behavioral parameters, namely the parameters of maximum speed and percentage of speeding duration, 

have all been positively correlated with harsh braking frequencies for both experiment phases. Maximum driving 

speed increases the frequencies of harsh brakings; the effect appears to be similar for both Phases, as the respective 

estimates are 0.327 for Phase 1 and 0.331 for Phase 2, corresponding to risk ratios of 1.387 and 1.395, respectively. 

In the same context, exceeding the speed limit appears to increase the odds of harsh braking frequencies; the effect 

appears to be higher in Phase 1 than Phase 2, as the respective estimates are 0.097 and 0.081, corresponding to risk 

ratios of 1.102 and 1.084. As already mentioned in the harsh accelerations models, aggressive driving, expressed by 

higher driving speeds and higher percentage of speeding while driving, increases harsh braking frequencies, 

confirming once again the close relationship between harsh events and unsafe driving behavior. The absence of mobile 

phone use in the statistical model could be interpreted by the fact that drivers reduce speed while distracted, and 

therefore are less prone to harsh brakings. In other words, drivers decelerate in order to compensate for the distraction 

from mobile use, so they have the ability to brake normally and avoid harsh braking. 

 

The visual representations of values of random intercepts and random slopes for the log of total trip duration per driver 

for both Phase 1 and Phase 2 are shown in the constructed caterpillar plots below for harsh acceleration frequencies 

(Figure 3) and for harsh braking frequencies (Figure 4), respectively. Personal differences per driver from the fixed 

effect intercept and slope are thus included in the linear predictor. 

 

To visualise these results, driver-level deviations are shown relative to the mean (0.00; vertical gray line) with 95% 

confidence intervals around each intercept (blue circle). With respect to harsh acceleration frequencies, shown on 

Figure 3, the visual comparison of the intercept estimates illustrates that overall prediction averages in Phase 1 are 

similar to the ones of Phase 2. This is an indication that the unexplained variance for harsh acceleration occurrence is 

somewhat constant for each driver between the two Phases. Estimates for random slope effects of the log of total trip 

duration show a more erratic effect during Phase 1 comparted to Phase 2. In Phase 1, the impact of total duration on 

harsh acceleration counts appears to be mathematically higher for certain drivers. In practice, this indicates that there 

are certain individuals for whom total trip duration plays very different roles for harsh acceleration occurrence when 

they are not provided with feedback, a trend that greatly diminishes when feedback is provided. 
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Figure 3: Random Intercepts and Random Slopes for log(total trip duration) 

[Both in the GLMM for harsh acceleration frequencies during Phase 1 (left) and Phase 2 (right)] 

 

However, different observations are drawn from the caterpillar plots when examining harsh braking frequencies, 

shown on Figure 4. The visual comparison of intercept estimates illustrates that prediction averages in Phase 2 overlap 

by a larger degree than in Phase 1. Furthermore, the gradient when connecting the blue data points of intercepts is 

steeper for Phase 2 if one takes the reduced range of the x-axis into account. Estimates for random slope effects of the 

log of total trip duration show little difference across the two Phases. It seems that the provision of feedback in Phase 

2 led to overall reductions of harsh braking events per trip duration unit if the driver sample is examined on an 

aggregate level. Nonetheless, these reductions seem to have a certain amount of divergence across individual drivers. 

 

As previously stated, the personal differences are captured in the random effects of the GLMMs. These differences 

may be parameters unobserved in the present models such as driver age, experience, aggressiveness, alertness and 

performance levels and other similar human factors. Since the dependent variables are harsh event frequencies, which 

also depend on the road environment, additional parameters which may affect harsh event occurrence can be thought 

to be integrated therein as well. Examples include temporal and spatial headways and more unforeseen events such as 

traffic conflicts or the presence of obstacles. 
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Figure 4: Random Intercepts and Random Slopes for log(total trip duration)  

[Both in the GLMM for harsh braking frequencies during Phase 1 (left) and Phase 2 (right)] 

 

5. Conclusions, Limitations and Future Research 
 

This paper aimed to investigate the impact of detailed trip characteristics on the frequency of harsh acceleration and 

harsh braking events recorded by smartphone sensors. In order to achieve that objective, an ongoing naturalistic 

driving experiment was carried out within the framework of the BeSmart project in order to examine driving behavior 

as expressed by the frequencies of harsh accelerations and harsh brakings. In the present research, the first two phases 

were considered; Phase 1, where participants were asked to drive in the way they usually did, without receiving any 

feedback on their driving behavior and Phase 2, where participants were provided with personalized feedback, a trip 

list and a scorecard regarding their driving behavior, allowing them to identify their critical deficits or unsafe 

behaviors. 

 

Generalized Linear Mixed-Effects Models were fitted to the trips of 65 car drivers who made frequent trips during 

both experiment phases in order to model the frequencies of harsh acceleration and harsh braking events. Results 

reveal correlations of harsh event frequencies with specific driving behavior and exposure metrics, at a more detailed 

level than existing studies (e.g. exceeding speed limit, trip duration). More specifically, results indicate that maximum 

speed, the percentage of speeding duration and total trip duration are positively correlated with both harsh acceleration 

and harsh braking frequencies. On the other hand, the exposure metric of total trip distance was found to be negatively 

correlated with both harsh event types.   

 

Results for Phase 1 and Phase 2 indicate that both types of harsh events are influenced by the same explanatory 

variables, with the exception of mobile use while driving, which is found statistically significant only for harsh 

acceleration models for Phase 1 of the experiment. Additionally, for the majority of the variables, coefficient values 

seem to change between the two experiment phases in a similar direction for both harsh acceleration and harsh braking 

events. Specifically, the effect of speeding was found to be higher for the frequency of harsh events in Phase 1 than 

Phase 2. On the contrary, the effect of maximum drive speed is higher in Phase 2 than Phase 1 for both acceleration 

and braking events. A similar pattern is noticed for the exposure parameters, as it seems that trip duration effect is 

higher in Phase 1 than Phase 2, while trip distance effect was found higher in Phase 2 than in Phase 1, for both types 

of events. 
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Although initial findings from descriptive statistics suggest that drivers improved their driving behavior with regards 

to all the recorded driving behavior metrics, namely maximum driver speed, percentage of speeding duration and 

using the mobile phone duration, the application of suitable statistical methodologies for before-after evaluation leads 

to more reliable and accurate results. As the experiment progresses, different types of personalised feedback will be 

communicated to all drivers allowing them to identify their critical deficits or unsafe behaviors, while incentives 

within a social gamification scheme, with personalised target setting, benchmarking and comparison with peers will 

also be developed and provided through the smartphone application.  

 

Alternative approaches to frequency modelling, such as the modelling of harsh event rates (harsh events per km), were 

considered. However, due to the nature of the data, they were ultimately discarded. Linear modelling led to negative 

predictions and very poor independent variable and overall model fits. Additionally, trips with zero harsh events in 

the dataset did not allow for log-normal transformations, and their subsequent removal would bias results. This paper 

does not explicitly focus on the evaluation of the effectiveness of driver feedback on improving driving behavior and 

increasing road safety levels from the smartphone application; this will be the dedicated focus of future research. It 

should be mentioned that this analysis is macroscopic overall, and should be treated as a high-level behavioral 

investigation. Within the present approach, there is no option to statistically examine if mobile phone use was exactly 

simultaneous with harsh events, but only to verify that they both occurred within the same trip. In other words, the 

temporal coincidence of data was not considered. Addressing these limitations will require the development of 

additional dedicated methodologies in the future, and the examination of in-depth datasets analyzing each trip per trip-

second. 

 

Another aspect that is worth investigating is the combined impact of traffic characteristics, road infrastructure and trip 

characteristics on the frequency of harsh events. Recent research suggest that there are strong correlations between 

road and traffic characteristics and harsh events [52], therefore the investigation of harsh events using multi-source 

data is a promising future research direction. Unfortunately, due to GDPR restrictions, the precise location of the trip 

data in the present research was not allowed, resulting in the lack of information regarding the road network. 

Nevertheless, the proposed methodology reaches noteworthy findings, even though the driving exposure and behavior 

metrics are solely based on smartphone sensors and no other methods, e.g. traffic video data. In this context, it is 

important to further explore the new possibilities for data collection and processing using such a portable and low-

cost device in order to identify new ways of tackling and mitigating the prominent risk factors and improve road 

safety. 

 

Finally, future research will also focus on the analysis of different driving behavior parameters identified by the road 

safety literature as risk factors (e.g. exceeding speed limit, mobile phone distraction) and their effect on driving 

performance and road safety. Furthermore, analyses per gender, age, crash history, self–assessment, driving 

experience and more demographic characteristics could be undertaken in order to capture any particular trends found 

in the categories of these parameters, possibly improving feedback processes, on the condition that this information 

can be provided while observing data protection laws.  
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