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Abstract 11 
 12 
Autonomous point-to-point shuttles are an emerging paradigm of a future mobility-on-demand ecosystem. 13 
However, the traffic and environmental impacts of their operation are largely under researched especially in 14 
relation to influential infrastructure related factors and service-related specifications. The scope of this study is to 15 
reveal the factors that may affect the degree and magnitude of the road segment level impacts of an autonomous 16 
urban shuttle service (AUSS) operating in a city using microsimulation and structural equation modeling (SEM). 17 
For the purposes of this research, a systematic framework is developed and applied in the city center of Athens 18 
(Greece), which encompasses different scenarios of operations including: (i) Baseline (no AUSS operation), (ii) 19 
AUSS operation with a dedicated lane during peak hour, (iii) AUSS operation mixed with regular traffic during 20 
peak hour and (iv) AUSS operation mixed with regular traffic during off-peak hour. Two connected automated 21 
vehicle (CAV) profiles were used to model the advent of automation in the overall traffic: a cautious profile is 22 
introduced first, followed by a more aggressive profile. SEM findings indicate that the AUSS operation has a 23 
significant effect on cumulative travel time per segment and CO2 emissions per segment only during the scenario 24 
of mixed operation with traffic during off-peak hours. Additionally, the influence of the network geometry is 25 
correlated with reduced travel time and with increased CO2 emissions. Road traffic density was found to be 26 
positively correlated with both travel time and CO2 emissions, while the penetration of both cautious and 27 
aggressive CAVs was found to be negatively correlated with both indicators. 28 
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1. Introduction 32 
 33 
In the coming decades connected autonomous vehicles (CAVs) are expected to progressively circulate on city 34 

road networks. The market penetration of level 3-5 automated vehicles is expected to be below 50% by 2030 35 
(Boghani et al. 2019). This innovative technology and all its components are projected to dominate in all 36 
transportation sectors such as road, rail, maritime and aviation, while drivers, passengers and all stakeholders 37 
(operators, authorities etc.) ought to be prepared for their advent. Several advantages and disadvantages of 38 
automation in transport have been highlighted (Ambühl et al., 2016; Moreno et al., 2018; Bahamonde-Birke, 2018; 39 
Soteropoulos et al., 2019; Paddeu et al., 2019; Blas et al., 2020; Ivanov et al., 2020). Researchers, engineers and 40 
automobile manufacturers are currently and incessantly working on mitigating the drawbacks and possible failures 41 
of the automation and on providing comfort and safety to drivers. 42 

The impacts of automation are expected to be in general positive and reflected in a wide range of operational 43 
and strategic levels in transportation, yet with a large degree of uncertainty. Regarding interaction with vulnerable 44 
road users, it is established that lower automation level (1 and 2) technologies improve road safety, otherwise for 45 
higher level (3, 4 and 5) technologies there is a lot of uncertainty and researches seem to focus on methods that 46 
mimic human functions (Ziakopoulos et al., 2019). Another projected benefit of automation is the reduction of the 47 
fuel consumption (Fagnant & Kockelman, 2015; Gruel & Stanford, 2016). Regarding CAV cost, according to 48 
Elvik (2020), the first commercially available autonomous cars will be not affordable to the majority of the 49 
customers, nevertheless over the time automated vehicles are consider to become inexpensive to most of the 50 
customers. However, these limitations should be considered in a different light in public transport planning, 51 
especially if other costs are suppressed (such as reductions in personnel costs or delays). 52 

The introduction of automation in urban areas is expected to overdraw the direct impacts on traffic flow and its 53 
usage (Fraedrich et al., 2019). Autonomous vehicles are expected to improve traffic flow by increasing network 54 
capacity (Shladover et al., 2012; Litman, 2014; Friedrich, 2016). More specifically, the road capacity will be 55 
increased causing less traffic congestion and offering decreased travel time values (Pinjari et al., 2013; Heinrichs 56 
& Cyganski, 2015). There are also studies anticipating detrimental effects to network capacity and overall traffic 57 
performance, though these projections assume more specific circumstances such as early stages of low-level 58 
automation (Calvert et al., 2017) or shared CAVs with short stops operations (Overtoom et al., 2020). In addition, 59 
many efforts have been devoted to investigate the assistance of the infrastructure to CAVs. Research conducted 60 
by Coll-Perales et al. (2021) illustrated that infrastructure-assisted traffic management solutions could improve 61 
road safety as well as traffic disruptions by reducing the distance that CAVs are driving at low speed. Moreover, 62 
simulation findings indicated that unmanaged Minimum Risk Manoeuvres (MRMs) can heavily affect traffic 63 
operations and induce traffic disruption while, successful Transition of Control (ToCs) can also reduce the traffic 64 
flow performance when the number of CAVs is high (Mintsis et al., 2019). In emergency traffic conditions, such 65 
as the existence of an obstacle on the road, CAVs might not be able to detect the situation properly without path 66 
information provided by ToC or MRM. In a traffic simulation analysis the corresponding information was given 67 
to CAVs and the overall traffic efficiency as well as CO2 levels remained constant, while critical events were 68 
significantly reduced up to 45% (Maerivoet et al., 2020). 69 

To date, the literature has focused almost exclusively on the impacts of automated passenger cars to traffic 70 
operations, whereas the potential impacts of autonomous transit and similar public transport services remain under-71 
researched with a limited focus on a microscopic level. Hence, more effort is required to project the impacts of the 72 
introduction of such systems as well as their integration by large-scale operations on a city level. This broad 73 
research gap is actively being addressed by the LEVITATE project, which provided the framework for several 74 
aspects of the present study. 75 

For this purpose, the present study aims to identify how the introduction of Connected and Automated Transport 76 
Systems (CATS) through the implementation of a point-to-point automated urban shuttle service (AUSS) in a 77 
large-scale network will impact different aspects of the network, with a focus on the transition towards higher 78 
levels of automation. The present study also aims to further enrich the research concerning the implementation 79 
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impacts of automated transit services by performing statistical analysis on the microsimulation inputs, in the form 80 
of structural equation modeling (SEM). 81 

The paper is organized as follows: in the next section the simulation methodology is presented, in which the 82 
microsimulation and statistical analysis are described. Afterwards, the methodological framework of structural 83 
equation models (SEM) is presented, and a SEM is fitted in the simulated data to investigate the impacts of AUSS 84 
operation and automation of overall traffic to cumulative travel time per segment and CO2 emissions per segment. 85 
Results from the SEM statistical analysis are then described and discussed. A summary of the present research 86 
results and their comparison with the results extracted from previous studies is included in following section while 87 
the key findings, proposals for further research and paper limitations are presented in the last section of the paper. 88 

 89 
2. State of the Art 90 

 91 
An amount of publications to date has focused on the CAVs infrastructure, while the impacts of CAVs have 92 

been already extensively investigated. More specifically, it is revealed that autonomous vehicles favor urban 93 
sprawl and may render public transport superfluous except for the dense urban areas (Meyer, 2017). In addition, 94 
an urban mobility system leads to increased total volume of travel and depends on the choice of vehicle type, the 95 
level of market penetration and the availability of high-capacity public transport to complement the autonomous 96 
shared vehicles’ fleet. Autonomous vehicles are estimated to decrease 80% greenhouse gas (GHG) emissions. The 97 
operations of small and efficient shared AVs, combining on-demand mobility services and AVs impacts improve 98 
respectively the GHG emissions using lower energy and achieve their adoption (Greenblat & Shaheen, 2015). 99 
Additionally according to Greenblatt & Saxena (2015), as shared AVs are likely to gain rapid early market shares, 100 
it is expected that GHG emissions will decrease by 87-94% for autonomous taxis comparing with conventionally 101 
driven vehicles in 2030, without including other energy-saving benefits of automation. Therefore, autonomous 102 
taxis could enable GHG reductions even if the total distance travelled and average speed are increased. 103 

Nevertheless, for the road sector perspective, automated shuttle services seem be the first in line of large-scale 104 
automated passenger transport. Several studies examined the user acceptance of such services; as automation 105 
suggests increased levels of trust and comfort for automated shuttle services and a belief that these services will 106 
be reliable, enjoyable, easy to use and of high service quality (Eden et al., 2017; Moták et al. 2017; Salonen, 2018; 107 
Salonen & Haavisto, 2019, Nordhoff et al., 2018; 2019). The user enjoyment of the system affects the desire of 108 
using it again, while the system performance, the resources that support its use and its social popularity are critical 109 
factors (Madigan et al., 2017). In addition, user feedback plays a vital role in the quality of the service, which is 110 
considered as the most relevant indicator. Moreover, fleet control is also a crucial operational indicator that offers 111 
the ability the timetables requirements to be met by ensuring high service quality (Földes et al., 2021). 112 

In addition, autonomous public transport is already a reality in some form in specific regions, for instance the 113 
autonomous buses developed by Navya, currently in service in Lyon (France), Michigan (USA) and at the 114 
Frankfurt airport (Germany). Moreover, many projects investigated the implementation of an autonomous shuttle 115 
service and revealed their attractiveness as many people use them on daily basis. Two shuttle bus lines were added 116 
in Netherlands, within Park Shuttles I and II projects, connecting airports with their parking spaces (Prokos, 1998; 117 
Pruis, 2000; Bootsma & Koolen, 2001; Ritter, 2017). Similarly, the CityMobil European Project implemented a 118 
shuttle service to Heathrow Airport in London. The CyberCars and CyberCars2 projects also designed an on-119 
demand service operating with small automated cars; the Railcab project proposed an autonomous shuttle 120 
providing on-demand service as well (Diethelm et al., 2005; Giese & Klein, 2005). 121 

Autonomous taxis and public transit services encourage vehicle sharing, while improving walking and bicycling 122 
conditions and reducing parking needs (Lovejoy et al., 2013). According to Arbib, et al. (2017), by 2030 the 95% 123 
of all U.S. passenger miles will be served by transport-as-a-service (TaaS) options that will offer higher levels of 124 
service, faster rides and increased safety at a cost up to 10 times lower. Shared rides have lower costs but, 125 
conversely, provide less convenience and comfort. Since trip duration is increased by stops, shared rides are not 126 
able to offer door-to-door service and passengers travel in confined spaces with strangers (Litman, 2020). More 127 
than 40% of current ride hailing vehicle travel is deadheading (Henao & Marshall, 2019). If sharing services 128 
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become common in an area, deadheading will not disappear, for instance in suburban or rural areas where 129 
destinations are longer. Automated shuttle transit services could also improve urban mobility and tourism services 130 
by implying complex transportation needs that require new mobility technologies (Bucchiarone et al., 2021). In 131 
addition, the introduction of autonomous public transit services provoked public reactions, as those that the 132 
CityMobil2 project has experienced, but at the end when passengers had the chance to try the service, it regarded 133 
so well that even the most enthusiastic comments received from the bus drivers who temporarily hired to be 134 
operators for the demonstrator (Alessandrini et al., 2015). 135 

The micro-level influence of automated shuttle buses through interactions with pedestrians have been the focus 136 
of few earlier studies, such as that of Gasper et al. (2018). In this study, RoboShuttles simulated in the SUMO 137 
software, by modelling a multi modal trip for pedestrians where they walk, board on the nearest RoboShuttle and 138 
disembark, and the results showed that there is a reduction in travel times for the pedestrians. In addition, apart 139 
from SUMO, multiple models have also been developed and applied for designing and testing autonomous shuttle 140 
bus services microscopically (Marczuk et al., 2015; Lima Azevedo et al., 2016; Lam, 2016; Zellner et al., 2016; 141 
Scheltes & Correia, 2017; Shen et al., 2018), in terms of waiting and travel times as well as their effect on road 142 
capacity and traffic conditions. So far, studies focus on microscopic traffic impact analysis, and considerable 143 
knowledge gaps exist in the literature concerning large, city-scale operations of automated public transport as per 144 
the purposes of the current study. 145 
 146 
3. Methodological Approach  147 

 148 
It is clear that considerable impacts can be expected from the advent of automation in regular traffic. However, 149 

there are considerable gaps of knowledge regarding the impacts of automated public transport. Thus, the main 150 
research question of the present study is formulated as follows: What are the factors that may affect road segment 151 
level impacts of a large-scale autonomous urban shuttle service (AUSS), and how are these relationships 152 
quantified?  153 

To address this research question, a two stage methodological approach is implemented based on (i) microscopic 154 
simulation and (ii) a statistical analysis based on advanced multiparametric modeling. In the first stage of the 155 
analysis, future mobility conditions that will be governed by a gradual substitution of conventional vehicles by 156 
CAVs are assumed. Several different scenarios of automating a public transit service are established and 157 
introduced in a simulation platform; subsequently, they are evaluated in relation to existing system’s conditions.  158 

The microscopic simulation method was selected to examine impacts mainly on traffic, environment and energy 159 
efficiency and provide insights into the impacts of microscopic flow characteristics of CAVs. More specifically, 160 
the main purpose of this methodology is to identify the impacts of the adoption of CATS on traffic, including 161 
travel time, traffic volume, and traffic emissions to the environment under several traffic simulation scenarios and 162 
to evaluate the influence of different CAV penetration rates on a microscopic level. Traffic microsimulation 163 
provides information related to single vehicles, whereas more macroscopic model refers to entire flow streams. 164 
The simulation inputs include data from various sources such as the road geometry and design, traffic volume, 165 
modal split, origin-destination (O-D) matrices etc.  166 

The data obtained by the microscopic simulation can provide an initial, descriptive estimation of the examined 167 
impacts. However, closer examination is required in order to discover and quantify the underlying relationships. 168 
To approach this modelling challenge, some assumptions are required regarding the impacts that are induced by 169 
automation and AUSS operations. Specifically, we assume with a high degree of realism that several impacts are 170 
systemic and complex, and that several of them depend predominantly on user choice. Additionally, secondary 171 
and tertiary correlations of impacts such as the amount of generated travel with network characteristics are quite 172 
difficult to foresee and measure beforehand. As a consequence, there are no parameters readily measurable that 173 
can directly express the impacts of CAV or AUSS operations. In other words, automation, whether as AUSS or as 174 
CAVs in the overall traffic, will introduce effects that are not necessarily directly measurable in the network.  175 

In an attempt to overcome this obstacle, an approach involving the introduction of both AUSS and automated 176 
traffic being measured by reflection on widely used aggregate indicators was adopted. Two key impacts that can 177 
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be readily simulated were selected as key performance indicators (dependent variables): Cumulative travel time 178 
of all vehicles per segment (utilize to gauge impacts on traffic flow) and CO2 emissions of all vehicles per segment 179 
(utilize to gauge environmental impacts).  180 

Therefore, the key performance indicators can be thought to not only be affected by directly observed variables, 181 
but also from unobserved, latent parameters. The effects from the operation of AUSS and CAVs was considered 182 
to be a latent, unobserved parameter. The examined structures involved both direct impacts from observed 183 
independent variables and impacts of latent variables, after their formulation from directly observed variables. 184 

Within the present study framework, initial candidates for the latent variables representing unobserved effects 185 
included: (i) the effects of the introduction of the AUSS, (ii) the combined effects of traffic parameters, such as 186 
flow and density, (iii) the effects of network characteristics and (iv) the effects of the advent of CAVs and the 187 
transition of conventional traffic to partly automated at first and fully automated at last. Additionally, the two key 188 
performance indicators were examined simultaneously. This approach constitutes a multiple-input-multiple-output 189 
model, also known as multiple-indicator-multiple-cause (MIMIC). Several structures were examined with varying 190 
numbers of latent variables, as the underlying data structure is not unambiguously evident a priori. The observed 191 
variables serving as components of latent variables that did not lead to functional models were also examined as 192 
directly influencing independent variables.  193 

Statistical tools that can accommodate latent concepts were thus considered. Structural Equation Models (SEMs) 194 
are a useful tool and their application can unearth more details about the underlying structure of simulated data, 195 
including any unobserved latent variables. As such, they were selected for the statistical analysis of this study and 196 
applied in the simulated network with the intent of capturing the influence of several unobserved effects. SEMs 197 
have been used on various instances in transport-related research (e.g. Karlaftis et al., 2001; Eboli et al., 2012; 198 
Barmpounakis et al., 2016; Song et al., 2016; Cao et al., 2019). Therefore, the approach adopted for this paper is 199 
to create a SEM model from simulated data to discover and quantify the underlying relationships of observed 200 
variables and unobserved latent variables with each other and, more importantly, with the two indicator variables.  201 

Lastly, it should be mentioned that issues of modal attractiveness and any shifts in demand which would lead to 202 
fluctuations in modal split are not presently considered. In this research, the addition of an automated shuttle bus 203 
service with four lines in a congested and dense network of 1,137 nodes and 2,580 road sections did not show any 204 
changes in the demand regarding to traffic impacts i.e. travel time, distance and delays. Hence, the traffic demand 205 
remained the same for all the simulation scenarios. In addition, this kind of analysis requires estimation of 206 
parameters that are dependent on too many factors, such as public acceptance, promotion, real-world design and 207 
implementation, pricing, and others; however, the measurement and accounting for these factors fall outside of the 208 
scope of the present research. 209 
 210 
4. Simulating Automated Shuttle Services in a large urban network 211 
 212 

The study network comprises the city center of Athens as shown on Figure 1 (left). This network was simulated 213 
in the Aimsun Next mobility modelling software as presented on Figure 1 (right) and consists of 1,137 nodes and 214 
2,580 road segments. In addition, the total length of road sections is 348 km and the network size reaches 215 
approximately 20 km2. 216 

The geometry of the study area was exported from the OpenStreetMap digital map platform (Haklay & Weber, 217 
2008) and its accuracy was verified with random sample comparison with additional maps. OpenStreetMap 218 
segmentation was retained for both the simulations and the statistical analysis. The data for each road segment 219 
concerned geometric as well as functional characteristics namely length, width, number of lanes, directions, free 220 
flow speed and capacity. The respective characteristics of nodes that were included in the model network were the 221 
following: allowed movements, number of lanes per movement, priority, traffic light control plans, free speed flow 222 
and capacity. Furthermore, the Athens transport network includes at present 95 bus and 14 trolley lines and 1,030 223 
public transport stations, which were also included in the simulation model as well as frequencies and waiting 224 
times at stops. 225 

 226 
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 227 
 228 

Figure 1: The city of Athens network in a conventional map (left) and in the Aimsun software (right) 229 
 230 
In addition, the microscopic model included data that were collected for the year 2019 from 107 detectors, which 231 

are recording traffic volume in main roads in Athens network. Additional data of field measurements was also 232 
considered. The field measurements were carried out in 2019 and were performed at selected nodes of the study 233 
area. At each junction, the number of vehicles in each direction exiting the junction was measured for fifteen 234 
minutes for the following vehicle categories: (a) cars and light vehicles, (b) trucks and (c) buses and trolleys. Those 235 
data were used in order the network travel demand to be created. More specifically, a scenario was simulated and 236 
created the routes that will be followed and the respective OD matrices were extracted. The OD matrices consisted 237 
of 358 centroids of the study network and the travel demand was 82,270 trips for cars and 3,110 trips for trucks 238 
for peak hour and respectively 49,300 trips for cars and 1,860 trips for trucks for off-peak hour. For all examined 239 
automated shuttle service scenarios, the travel demand was inelastic, as it was considered that a few lines would 240 
not significantly affect modal split on the city level. Finally for the validation of the model, a verification of 241 
estimated average travel times was conducted. For this purpose travel times were obtained using the 242 
GoogleMapsAPI application for specific routes within the study area and were compared with the respective travel 243 
times extracted of the model. 244 
 245 
4.1 The Automation Use Case 246 

 247 
For the present research, four point to point automated urban shuttle service (AUSS) bus lines were simulated 248 

as implemented in the city of Athens in order to complement the existing public transport as shown in Figure 2. 249 
The first AUSS line, Line 1, connects the metro station “Victoria” with the metro station “Panormou”, the second 250 
AUSS line, Line 2, connects the National Garden and Greek Parliament with the National Archeological Museum, 251 
the third, Line 3, connects Omonoia Square with Acropolis - Parthenon and the fourth, Line 4, connects metro 252 
station “Rouf” with metro station “Neos Kosmos” (Points A and points B respectively in Figure 2). The total 253 
length of the shuttle bus service routes are 8 km (Line 1), 6 km (Line 2), 6 km (Line 3) and 8 km (Line 4). 254 

In addition, the shuttle buses of the AUSS were considered to have a total capacity of 10 passengers. Their 255 
dimensions were 5 meters in length and 2.5 meters in width. The max operating speed of the buses was 40.0 km/h 256 
and the mean speed 25.0 km/h. The frequency of the service for the four bus lines was 15 minutes. The AUSS 257 
simulation scenarios included peak and off-peak hour traffic conditions and the use of a dedicated lane by the 258 
AUSS buses during peak hour. More specifically, in the second simulation scenario the shuttle buses are operating 259 
in mixed traffic conditions during peak hour, as well as in the fourth scenario that respectively concerns off-peak 260 
hour conditions. The third simulation scenario includes the shuttle bus service that operates using dedicated lanes 261 
in order for the impacts of a different implementation of the shuttle bus service to be captured. This scenario was 262 
considered only during peak hour conditions as the network is more congested and a provision of a dedicated lane 263 
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for the service is considered to be more reasonable. Regarding the dedicated lane scenarios, for each road segment 264 
that is included in AUSS bus routes and had a dedicated lane for public transport, the AUSS buses were able to 265 
use the existent dedicated lane, in order to evaluate the impact of this service policy without changing road 266 
geometry.  267 

 268 

 269 
 270 

Figure 2: The AUSS bus lines 271 
 272 
Overall, the following AUSS implementation scenarios were formulated: 273 

1. Baseline (no AUSS operation) 274 
2. AUSS operation with a dedicated lane during peak hour 275 
3. AUSS operation mixed with regular traffic during peak hour 276 
4. AUSS operation mixed with regular traffic during off-peak hour. 277 

 278 
4.2 Modelling Autonomous Vehicles 279 
 280 

For the modelling of connected and autonomous vehicles (CAVs) within the present research, two main driving 281 
profiles were simulated as in other researches (Sukennik, 2018; Mesionis, 2019) and are presented below: 282 

• Cautious: long clearance in car-following, long anticipation distance for lane selection, long clearance 283 
in gap acceptance in lane changing, limited overtaking, long gaps 284 

• Aggressive: short clearance in car-following, short anticipation distance for lane selection, short 285 
clearance in gap acceptance in lane changing, limited overtaking, no cooperation, small gaps. 286 

At this point, it is important to note that the cautious driving profile is more aggressive than the human driving, 287 
even though it is characterized as cautious. Shuttle buses of the service were simulated as cautious CAVs, as it 288 
was assumed that this profile was more appropriate for a public transport mode. In addition, the CAVs and the 289 
shuttle buses, as well, in this study were assumed to be exclusively electric. 290 

The behavior of the CAVs modelled by using the Gipps car following model (Gipps, 1981). This model is able 291 
to mimic the behavior of real traffic, the parameters involved correspond to obvious driver and vehicle 292 
characteristics and affect the behavior of the simulated flow in logically consistent ways. More specifically, the 293 
model predicts the response of the following vehicle based on the assumption that drivers set limits to their desired 294 
braking and acceleration rates. The Gipps car-following model was originally developed to simulate human-295 
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driving and was not able to simulate directly connected CAVs. For this reason, it was assumed that CAV reaction 296 
times at traffic lights and stops were 0.1 seconds in order to be simulated as connected vehicles with traffic lights 297 
and able to receive information. In addition, in modelling CAVs it was necessary to take into account their lane-298 
changing behavior as it is considered to be different than human driven vehicles behavior. For this reason, the 299 
Gipps lane changing model was applied in the present research (Gipps, 1986), as well. This model analyses the 300 
decisions that drivers have to make before changing lane and ensures that the simulated drivers behave logically 301 
in situations that are similar in real traffic conditions. The vehicle parameters of the car-following and lane-302 
changing behavior that were used in microsimulation are presented in Table 1. 303 

 304 
Table 1: Vehicle parameters used in microsimulation 305 
 306 

Models 

 
Factors Human Driven 

Vehicle 

Cautious  

CAV 

Aggressive  

CAV 

Car Following Model Sensitivity 

Mean 1.0 0.3 0.1 

Min 1.0 0.7 0.5 

Max 1.0 0.9 0.9 

Lane Changing Model 

Overtake Speed Threshold 90% 85% 85% 

Cooperate in Creating a Gap Yes No No 

Imprudent Lane change Yes No No 

Distance Zone 
Min 0.8 1.25 1.25 

Max 1.2 1.5 1.5 

Aggressiveness Level 
Min 0 0 0 

Max 0 1.0 0.25 

Safety margin 
Min 1.0 1.25 0.75 

Max 1.0 1.75 1.25 

Reaction times 

Reaction time in car following 0.8 sec 0.1 sec 0.1 sec 

Reaction time at stop 1.2 sec 0.1 sec 0.1 sec 

Reaction time at traffic light 1.6 sec 0.1 sec 0.1 sec 

 307 
In the lane changing model, the sensitivity factor controls the clearance distance and the overtake speed threshold 308 

is the percentage of the desired speed of a vehicle which decides to overtake. The cooperation in creating gap 309 
between the vehicles factor concerns if the vehicle creates a safe gap for another vehicle that change lane to enter. 310 
The imprudent lane change factor allows vehicles to enter into gaps that are too short and the distance zone factor 311 
determines where vehicles consider their lane choice for a forthcoming. Finally, the aggressiveness level allows 312 
vehicles to accept shorter gaps and the safety margin factor determines when a vehicle can move at a priority 313 
junction (for more information on the model’s structure and parameterization the reader is referred to Mesionis et 314 
al., 2019 and Casas et al., 2020). 315 

In order to investigate the implementation of CAVs, different penetration rate scenarios were simulated. These 316 
scenarios are presented in Figure 3. The cautious CAVs were considered to be the first generation of this 317 
implementation. For this purpose, they appear first in the scenarios and are then followed by aggressive CAVs until 318 
the last scenario included only autonomous connected vehicles. For each one of these scenarios, the impact 319 
assessment of the AUSS was analyzed for all simulation scenarios. Therefore, 44 scenarios were simulated in total: 320 
11 market penetration scenarios for each of the four AUSS implementation scenarios, with a simulation duration 321 
of one hour and simulation time step of extracting data of ten minutes. Each replication had a runtime of 322 
approximately 40 minutes on a workstation computer (CPU: Intel Core i7 8700 @ 3.2 GHz; RAM: 32 GB: 2x16 323 
GB DDR4 @ 2400 MHz). 324 

In addition, for each scenario 10 different replications with random seeds were simulated. According to the 325 
FHWA (2004), multiple replications of the same scenario are required, because microsimulation results vary 326 
depending on the random number seed used in each run. The random number seed is used to select a sequence of 327 
random numbers that are used in order to be make decisions throughout the simulation that affect the results 328 
obtained by the simulation. The results of each replication are close to the average of all replications, however 329 
each one is numerically different from the other.  330 
 331 
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 332 
 333 

Figure 3: The CAV penetration rate scenarios per profile type 334 
 335 

It should be noted that both CAV cautious and aggressive profile parameters and MPR scenario configurations 336 
were specifically formulated for the present research. Within the LEVITATE project, several additional 337 
configurations are being examined, but fall outside the scope of this paper. 338 

 339 

5. Structural Equation Modeling background 340 
 341 
The scope of this section is to provide the theoretical background and the results of the application of Structural 342 

Equation Models (SEMs) in the simulation data. The target of this approach is to create causal models in order to 343 
interpret the dependencies of two critical indicators, which are cumulative on a road segment level: travel time 344 
and CO2 emissions. 345 

Structural Equation Modelling belongs to the model family concerning latent variable analysis. SEMs comprise 346 
a widely used array of techniques used to capture effects of parameters that are unavailable or otherwise unable to 347 
be observed. In that capacity, SEM techniques serve to illustrate the form of the structure of the examined data 348 
and reduce overall model error by incorporating measurement errors into the modeling framework; in addition, 349 
they handle endogeneity among variables well (Washington et al., 2020).  350 

The underlying mathematical structure of SEMs can be defined as follows (following Washington et al., 2020): 351 

η = β η + γ ξ + ε           Eq. (1) 352 

Where:  353 
η is a vector expressing the dependent variables  354 
ξ is a vector expressing the independent variables  355 
ε is a vector expressing the regression error term 356 
β is a vector expressing the regression coefficients for the dependent variables 357 
γ is a vector expressing the regression coefficients for the independent variables 358 

The exogenous factor covariance matrix is expressed as Φ = COV[ε, εΤ] and the error covariance matrix is 359 
expressed as ψ = COV[ε, εΤ]. If a parameter vector θ is considered, which will create a model-based variance–360 
covariance matrix, Σ(θ), the variance–covariance matrix for the model in Equation 1 is: 361 

Σ(θ) = G(I-β)-1 γ Φ γT (I-β)-1T
 GT         Eq. (2) 362 

 363 
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Where G is a selection matrix containing either 0 or 1 to select the observed variables from all the dependent 364 
variables in η. Further details in the particulars of SEMs can be provided in relevant textbooks by Hoyle (1995) 365 
and Arminger et al. (1995). 366 

There are several proposed goodness-of-fit measures regarding SEMs. The topic has been a matter of some 367 
debate between experts; indicatively, the reader is referred to Mulaik et al. (1989), Kaplan (1990), MacCallum 368 
(1990) and Steiger (1990). Within this study, several of the most widely used metrics are adopted, specifically: (i) 369 
the Standardized Root Mean Square Residual (SRMR), (ii) the Root Mean Square Error of Approximation 370 
(RMSEA), (iii) the comparative fit index (CFI) and (iv) the Tucker-Lewis Index (TLI). Values less than 0.07 for 371 
SRMR and RMSEA and more than 0.95 for CFI and TLI are generally accepted as indications of excellent overall 372 
model fit. The Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) are also utilized 373 
to aid in the selection of a particular model over others by quantifying the information loss of each examined 374 
model structure and variable mix. 375 

As customary in latent variable/path analysis, the proposed model structure and all modelled coefficients and 376 
interrelationships can be visualized in a path diagram. Regarding the interpretation of results, SEMs and their 377 
respective path diagrams can be typically considered as a multi-stage regression process. Firstly, the coefficients 378 
for each independent variable that is a component of the latent variables (also known as factor loadings) are 379 
examined to ensure reasonably interpretable results. Afterwards, the influence of the latent variables on the 380 
examined indicators is examined with a similar scope. Thus, the components of the latent variables can be thought 381 
of as having a direct effect on the latent variables and, through them, an indirect effect on the indicators. Therefore, 382 
if an independent variable is (exclusively) positively correlated with a latent variable, and this latent variable is 383 
negatively correlated with an indicator variable, the independent variable is negatively correlated with the 384 
indicator. In addition to the previous, direct regressions from independent variables can be modelled on the 385 
indicators without any intervening latent variable. Lastly, covariances between parameters of the same role (i.e. 386 
independent variables, latent variables or indicators) can also be modelled if such correlating effects are included 387 
(Washington et al., 2020). 388 

 389 

6. Implementation and Findings 390 
 391 

6.1 Network Level Impacts 392 
 393 
For investigating the impacts of CAVs and the AUSS implementation, forty-four (44) scenarios were simulated. 394 

At this point, it is worth examining the simulation extracted results of these scenarios, in order to obtain a first 395 
description of this impact before the statistical analysis. The simulation duration of the scenarios was one hour and 396 
the simulation time step of extracting data was ten minutes. 397 

Table 2 shows some of the key traffic and environmental measurements on network level for each AUSS 398 
implementation and market penetration rate (MPR) scenario, respectively. In addition, the overall CAV MPR rate 399 
is distributed between the two CAV profiles in a fixed manner which is also shown on the table. 400 

The environmental measurements that obtained by the simulation, using the Aimsun Next software, were 401 
calculated applying the formula developed by Panis et al. (2006). This model computes carbon dioxide (CO2), 402 
nitrogen oxides (NOX), particulate matter (PM10) and volatile organic compound (VOC) emissions from 403 
instantaneous speed and acceleration. The model's parameters for each vehicle type and pollutant were configured 404 
for instantaneous emissions calculation and the corresponding emissions were computed for each vehicle trip. 405 

According to Table 2, several insights can be obtained for the network impact changes due to increasing CAV 406 
MPR and for each AUSS implementation scenario. Regarding AUSS implementations, all comparisons are made 407 
with the baseline (no AUSS across all MPRs). Specifically, for mixed traffic AUSS operation during peak hours, 408 
microsimulation results indicate that delay time and CO2 emissions are largely unaffected compared to the baseline 409 
across all MPR scenarios. Distance travelled is mostly unaffected as well, but slight increases are detected at the 410 
highest MPR levels (about 3km on average) compared to the baseline. For AUSS operation in dedicated lanes 411 
during peak hours, the results are almost identical with operation in mixed traffic across all MPR scenarios. 412 

413 
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Table 2: Impacts for different simulation scenarios  414 
 415 

Scenarios 

Market Penetration Rate Scenarios 

Aggregate 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Cautious CAVs 0% 10% 20% 30% 40% 50% 50% 50% 50% 50% 50% 

Aggressive CAVs 0% 0% 0% 0% 0% 0% 10% 20% 30% 40% 50% 

Impacts 

P
ea

k
 h

o
u

r 

N
o

 

S
h

u
tt

le
 

S
er

v
ic

e Delay Time (sec/km) 285 275 272 261 254 240 227 208 197 176 161 

Distance Travelled (km) 83.01 86.66 89.42 91.64 96.35 101.05 103.18 108.49 113.87 119.90 120.41 

CO2 Emissions (kg) 72.11 66.57 60.97 55.22 50.17 44.64 39.23 33.71 28.49 22.76 16.61 

M
ix

ed
 

tr
af

fi
c Delay Time (sec/km) 282 276 271 262 253 239 225 208 196 176 162 

Distance Travelled (km) 83.78 86.93 89.12 91.99 95.95 100.25 102.42 107.81 115.20 119.98 123.51 

CO2 Emissions (kg) 72.02 66.69 61.04 55.38 50.13 44.53 39.15 33.70 28.60 22.88 16.84 

D
ed

ic
at

ed
 

la
n

e 

Delay Time (sec/km) 284 278 272 263 253 241 226 207 196 177 162 

Distance Travelled (km) 83.94 86.93 89.12 91.99 95.95 100.25 102.42 107.81 115.17 120.02 123.39 

CO2 Emissions (kg) 72.19 66.69 61.04 55.38 50.13 44.53 39.15 33.70 28.58 22.88 16.88 

O
ff

 

P
ea

k
 

h
o

u
r 

M
ix

ed
 

tr
af

fi
c Delay Time (sec/km) 177 172 163 156 144 134 123 114 105 96 88 

Distance Travelled (km) 89.73 92.20 94.02 96.36 99.08 101.35 103.61 106.43 108.36 110.67 112.56 

CO2 Emissions (kg) 47.23 43.81 40.08 36.52 33.07 29.60 26.20 22.79 19.37 15.98 12.60 

 416 
The underlying cause for this lack of impact is likely the profile of the network of a large, congested metropolis, 417 

such as Athens. Due to the high traffic volumes presence during peak hours, a shuttle bus line operating within 418 
mix traffic does not influence network capacity at a significant level. Moreover, the existence of a dedicated lane 419 
does not significantly influence the outlying traffic conditions on a microsimulation statistics level. This result was 420 
contrary to those reported by Talebpour et al. (2017), who also investigated the effects of reserved lanes for CAVs 421 
and illustrated that if CAVs use dedicated lanes, congestion levels will be improved as well as their performance 422 
over other policies. That was also highlighted by Kyriakidis et al., (2019) who showed that roads which eliminate 423 
the interactions between CAVs and other vehicles or pedestrians are more suitable for the CAV deployment. Yet 424 
another different finding was reported by Chen et al. (2017), who showed that mixed-condition policies could 425 
succeed in providing higher capacity than the segregation of CAVs and conventional vehicles. It should be noted, 426 
however, that these studies considered only isolated segments or reported expert responses on generalized 427 
questionnaires, and not a large-scale network examination as conducted in the present study. 428 

Contrary to AUSS operation, the effects of the gradual automation of all traffic are considerable and must be 429 
underlined. As CAV MPRs increases, delay time was reduced for both peak and off-peak hour scenarios. On the 430 
other hand, total distance travelled displays significantly higher values when the number of autonomous vehicles 431 
is increased. Finally, increased CAV MPRs were found to reduce CO2 emissions during both peak and off-peak 432 
hour conditions. Peak hour conditions lead to higher CO2 levels in comparison with off-peak hours, which is 433 
expected due to the lower frequency of stops and conflicts, as well as the reduced size of queues in the off-peak 434 
period.  435 

However, as stated previously, the confinement of vehicles in fewer lanes due to the existence of a dedicated 436 
lane for the AUSS does not seem to affect emissions caused by total traffic compared to mixed-traffic AUSS 437 
operation, again possibly to large degrees of congestion in the system. In other words, based on microsimulation 438 
results, it can be concluded that the majority of network impact changes occur due to the advent of CAVs, and the 439 
operation of AUSS buses ultimately do not appear to have drastic effects in the network. 440 

The simulation data were then extracted from the simulation environment and statistically analyzed within a 441 
Structural Equation Modelling framework. A series of data cleaning and manipulation tasks was essential before 442 
the implementation of SEM statistical analysis, which can be briefly outlined as follows: 443 

1. Extraction and compilation of simulation data for all AUSS simulation scenarios. 444 
2. Filtering the values concerning vehicle type selecting those denoting average values of all vehicles and 445 

those concerning the time intervals removing the average of all time intervals from the dataset. 446 
3. Screening of incomplete/problematic cases of missing data and removal of such cases from the dataset. 447 
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4. Merging of the simulation datasets with the geometric dataset and obtaining a single unified dataset of 448 
simulation outputs per segment. 449 

5. Averaging of the numeric values of the ten different replications of each scenario referring to the same 450 
segment and for the same temporal intervals. Categorical values were kept constant during this step. 451 

6. Creation of the final dataset to be used for SEM analysis.  452 
The final output of this process appears on Table 3, which serves to provide a snapshot of the data from a 453 

descriptive statistics point of view. It should be noted that categorical variables, such as road type, were also 454 
processed via one-hot encoding and converted to single category dummy variables before the analysis. The 455 
resulting file had 642,845 observations; of these, 343,023 refer to unsignalized streets including on/off ramps and 456 
299,822 refer to signalized streets/arterials. 457 

 458 
Table 3: Descriptive statistics of the merged database 459 
 460 

 

Flow 

(veh/h) 
Travel 

time 

(sec) 

Delay 

time 

(sec) 

Mean 

speed 

(km/h) 

Flow/ 

section 

capacity 

Density 

(veh/km) 
Queue 

(veh) 
Virtual 

queue 

(veh) 

Number 

of stops 

CO2 

emissions 

(g) 

NOx 

emissions 

(g) 

PM 

emissions 

(g) 

Min 0.60 0.41 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 

Median 210.00 23.31 8.90 27.98 0.27 9.34 0.27 0.00 0.34 1196.28 5.65 0.21 

Mean 355.18 86.94 74.27 25.67 0.30 29.47 2.99 2.42 0.51 2496.08 12.17 0.41 

Max 3861.60 3939.84 3930.55 70.36 1.73 246.10 121.81 1404.20 18.82 115536.53 449.40 28.81 

St. Dev. 433.12 230.74 229.32 13.26 0.22 45.92 7.36 29.21 0.58 3882.62 18.53 0.67 

 461 

 

Number 

of lanes 

Number 

of main 

lanes 

Number 

of public 

transport 

lines 

Number 

of 

reserved 

lanes 

Number 

of 

signals 

Number of 

lane changes/ 

Number of 

vehicles 

Road 

segment 

free flow 

travel time 

Cautious 

CAV 

MPR 

Aggressive 

CAV  

MPR 

Min 1.00 1.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Median 1.00 1.00 2.00 0.00 0.00 0.00 224.26 0.50 0.00 

Mean 1.73 1.68 4.58 0.12 0.69 0.12 354.55 0.36 0.14 

Max 6.00 6.00 61.00 3.00 3.00 6.29 998.43 0.50 0.50 

St. Dev. 0.96 0.91 7.34 0.33 0.85 0.22 285.66 0.18 0.18 

 462 
Based on the descriptive statistics of the SEM input database, the profile of the simulated network and 463 

corresponding traffic can be examined in more detail. Firstly, it can be observed that traffic flow (in absolute 464 
terms) has a relatively small mean and median values compared to the maximum, and accordingly a large degree 465 
of dispersion, provided by the ratio of mean to standard deviation, is present in the measurements. This observation 466 
can also be made for travel time and delay speed, which register even larger dispersion, as the aforementioned 467 
ratio is lower. A more neutrally dispersed distribution is produced when flow is standardized as the parameter of 468 
flow/section capacity or when examining the number of stops per vehicle. The parameters of density and vehicles 469 
in queue also display heavily right-skewed distributions, consistent with their dependency on core traffic 470 
parameters. CO2, NOx and PM10 emissions appear to have analogous distributions with traffic flow and travel time 471 
as well.  472 

These observations are largely expected, because they include all simulated segments of Athens, smaller to 473 
larger. Smaller values typically refer to unsignalized, residential/access or tertiary-type segments on off-peak 474 
periods, while larger values typically belong to arterial or collector roads during peak hours, which feature 475 
considerably more traffic. In cases of peak hour ‘gridlock’ type congestion, certain densities and queues are 476 
expected to persist to higher levels in the simulation, until sufficient headway is available. 477 

Regarding network parameters, it can be determined that the majority of the examined segments feature a single 478 
lane functioning as main lane, with no reserved lanes and no signals. A large number of conventional public 479 
transport lines operate in the system, with 2 lines per segment as median value. Furthermore, vehicles appear to 480 
perform few lane changes on average, however this parameter is also heavily right-skewed, as a large number of 481 
lane changes appears to be happening in a select a few of the segments, possibly due to central positioning and/or 482 
network geometry. MPR values for the two profiles follow the progression of Figure 3 as per the study design. 483 
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6.2 Structural Equation Model Results 484 
 485 
The results of SEM analysis are presented in this section, showcasing only the final models. Apart from the 486 

previously aforementioned hard goodness-of-fit measures, the produced coefficient estimates were also checked 487 
to ensure that reasonable results are obtained based on their interpretation. Furthermore, care was taken to avoid 488 
model misspecification based on both the appropriateness of the proposed underlying theoretical structure and on 489 
the produced outcomes – for instance, models producing negative variance values for observed and latent variable 490 
were discarded as cases of poor/illogical model fit. During the modelling process it became apparent that certain 491 
model structures fitted the simulation data much more reasonably than others based on the following criteria; only 492 
the best overall models are presented herein. For variations within each different latent variable structure, model 493 
attempts were conducted with the backwards elimination technique. All statistical analyses were conducted in R-494 
studio (R Core Team, 2013) and SEM analysis in particular utilized the lavaan R package (Rosseel, 2012).  495 

Ultimately, the proposed SEM structure retained two latent unobserved variables:  496 
1. Network influence, expressing the influence of various network and geometric characteristics, defined 497 

from the number of signals per segment (the number of allowed legal movements per signalized 498 
segment, when the value is null the segment is unsignalized), the number of lanes per segment, the 499 
number of public transport lines per segment, the road type of the segment (arterial/signalized or 500 
unsignalized streets including on/off ramps) and the reservation type of the segment (reserved streets 501 
for public transport, pedestrian streets, streets with no reservation).  502 

2. Traffic mix influence, expressing the influence of the traffic mix regarding the penetration rates of the 503 
two different CAV profiles (cautious and aggressive), defined from the penetration percentages of the 504 
profiles and also from traffic density. 505 

Following SEM calibration, the produced model results are presented on Table 4; statistically significant p-506 
values (≤0.05) are shown in bold. 507 

 508 
Table 4: SEM model of travel time & emissions per segment  509 

 510 
SEM Components Parameters Estimate S.E. z-value P(>|z|) 

Latent  Network influence Number of signals 1.000 – – – 

Variables  Number of lanes 2.777 0.009 305.492 0.000 

  Number of public transport lines/100 0.158 0.001 293.874 0.000 

  Road type: Signalized/Arterial [ref:  unsignalized street] 1.029 0.004 290.522 0.000 

  Reservation Type: Public transport [ref: none] 0.351 0.002 232.273 0.000 

  Reservation Type: Pedestrian Street [ref: none] 0.080 0.001 120.384 0.000 

 Traffic mix influence Aggressive CAV MPR 1.000 – – – 

  Cautious CAV MPR 0.596 0.006 108.131 0.000 

  Density (veh/km/100) -0.079 0.003 -24.106 0.000 

Regressions Travel Time (s/100) Intercept -0.161 0.003 -55.717     0.000 

  Density (veh/km/100) 3.453 0.005 752.341 0.000 

  Network influence -0.739 0.007 -105.167 0.000 

  Traffic mix influence -0.203 0.012 -16.967 0.000 

  AUSS Mixed Off-peak hour [ref: Baseline] 0.038 0.005 7.827 0.000 

 CO2 emissions (g/10,000) Intercept 0.152 0.001 265.747 0.000 

  Density (veh/km/100) 0.351 0.001 411.962 0.000 

  Network influence 0.506 0.002 253.255 0.000 

  Traffic mix influence -0.323 0.004 -88.152 0.000 

  AUSS Mixed Off-peak hour [ref: Baseline] -0.029 0.001   -31.708 0.000 

Covariances AUSS Mixed Off-peak hour Density (veh/km/100) -0.036 0.000 -141.059 0.000 

 Reservation Type: Publ.Transp. 

Reservation Type: Publ.Transp. 

Number of public transport lines/100 0.004 0.000 186.564 0.000 

 Reservation Type: Pedestrian Street -0.006 0.000 -112.602 0.000 

 CO2 emissions (g/10,000) Travel time (sec/100) 0.055 0.001 84.435 0.000 

 Network influence Traffic mix influence 0.000 0.000 1.190 0.234 

Goodness-of-fit measures CFI 0.988    

  TLI 0.982    

  RMSEA 0.030   1.000 

  SRMR 0.014    
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All of the four examined goodness of fit measure values and the signs of the parameter estimated coefficients 511 
suggest excellent model fit. As an additional verification, the model AIC was the minimum reached within the 512 
examined combinations, and no negative variances were calculated by the model, which would suggest 513 
misspecification (variance outputs are not shown here for brevity). It is also important to note that several variables 514 
were scaled linearly by factors of 10 to reduce variance discrepancies and to allow better model fit without 515 
hindering the coefficient interpretation. 516 

Lastly, several covariances of the measured variables have been integrated in the model by an iterative process 517 
which involved comparing the observed and fitted covariance correlations. The largest shown differences were 518 
then addressed by including the relevant covariance pair in the model, provided that there were no major 519 
prohibitions from the underlying theoretical standpoint. This process aided in improving model fit. 520 

The path diagram of the present model is presented on Figure 4; green arrows denote positive correlations, 521 
while red arrows denote negative correlations. Several useful insights can be obtained from the produced SEM 522 
model results. First and foremost, it appears that AUSS implementation during peak hours does not have a 523 
statistically significant influence on the two examined indicators of travel time and CO2 emissions per segment. 524 
The dummy variables referring to these scenarios were not found to be significantly correlated with the indicator 525 
variables in any variation of the examined model structure, whether the scenarios were inserted in a latent variable 526 
or the indicators were directly regressed on them. This means that the insertion of an AUSS line on a large-scale 527 
network, both when a dedicated lane is utilized or when the shuttle buses are mixed with regular traffic, is not 528 
enough by itself to reduce travel time or emissions during peak hours, as the network is too congested for any 529 
difference to register statistically. This result is a confirmation of the initial intuitive estimates provided by 530 
microsimulation outputs, previously shown in Table 2. 531 

This trend does not apply, however, in the scenario when the AUSS operates in off-peak conditions. AUSS 532 
operation in mixed traffic conditions is positively correlated with travel time and negatively correlated with CO2 533 
emissions per segment. The corresponding marginal effects can be considered in order to interpret the effect of a 534 
unit change on the dependent variable (Washington et al., 2020). Specifically, implementing AUSS in mixed traffic 535 
during off-peak hours increases travel time by 0.038*100 s = 3.8 seconds, and reduces CO2 emissions by 0.029* 536 
10,000 g = 290 g. Therefore, results indicate that the operation of an AUSS bus line in off-peak conditions does 537 
not seem to affect travel time per segment significantly but reduces CO2 emissions compared to the baseline of no 538 
AUSS operation. However, as the baseline scenario concerns peak hour conditions and travel time remains 539 
constant in the AUSS implementation during off-peak hours as well, it is possible that the presence of the shuttle 540 
buses mixed with regular traffic introduces some delays in the network, which are correlated with lower speeds, 541 
which are in turn associated with lower engine workload and thus lower emissions. 542 

It is worth noting that the overall impact of higher traffic density is positively correlated with increases in both 543 
indicators (the contribution of density in the latent variable of traffic mix influence is consistently positive as its 544 
negative coefficient for the creation of the latent variable is multiplied by the overall negative latent variable 545 
coefficient). This is an intuitive and expected result. 546 

The results regarding the latent variable of traffic mix influence are equally interesting. The coefficient signs 547 
for travel time and CO2 are negative, denoting that this latent variable is negatively correlated with both indicators. 548 
Within the latent variable, both cautious and aggressive CAV profiles have positive coefficients; when they are 549 
multiplied with the overall negative coefficient an overall negative correlation is obtained with travel time and 550 
CO2 emissions. The increased advent of automation, in other words, the gradual substitution of conventional 551 
vehicles with CAVs, as modelled in the present study, is hereby shown to reduce both travel time and CO2 552 
emissions per segment. These results are consistent with the descriptive statistics observations of Table 2. 553 

All network characteristics contribute positively for the creation of the latent variable of network influence. In 554 
turn, network influence has opposite effects on each indicator variable: network influence (i.e. the combined effect 555 
of the network and geometric characteristics) is found to significantly reduce travel time but on the contrary 556 
increase CO2 emissions. In order to interpret the coefficients, it should be kept in mind that a large amount of 557 
predictor variance is interpreted by density and CAV MPR, as per the aforementioned. 558 
  559 
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Figure 4: Path diagram of SEM model for travel time & CO2 emissions  592 
 593 

Additionally, one can also consider the direct interpretation of latent variable components based on coefficient 594 
signs, as explained in Section 5. Larger numbers of signals, lanes, or public transport lines, arterial road type 595 
(compared to unsignalized roads) and road reservation type for pedestrians or public transport (compared to no 596 
reservation) all essentially decrease travel time. Larger numbers of signals denote a larger road class, with more 597 
regulated and optimized flows, while reserved segments also facilitate travel by reducing traffic conflicts between 598 
different transport modes. Conversely, direct interpretation of CAV MPR rates yields the fact that higher rates 599 
essentially reduce CO2 emissions.  600 

The model structures that were explored but ultimately discarded are of interest as well. The inclusion of traffic 601 
flow instead of density was found to lead to considerably worse performing model metrics, while the simultaneous 602 
inclusion of both traffic flow and density led to over-correlations and misspecified SEM models. The same 603 
outcome was obtained when attempting to create latent variables based on traffic flow and density. Likewise, the 604 
formulation of a latent variable formulated by the AUSS scenario dummy variables did not lead to viable model 605 
structures. An alternative model configuration involved creating latent indicator variables from the combination 606 
of travel time and CO2 emissions, but due to poor model performance was ultimately discarded.  607 

Finally, it is important to note that the projections and forecasting conducted in this research by the simulation 608 
and the SEM remains dependent on the assumptions regarding (i) the network, (ii) the automated operation of 609 
public transport and (iii) the automation profiles of the overall traffic. Naturally, any value changes in parameters 610 
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such as sensitivity or safety margins of driving profiles will have an effect on estimated impacts, though the SEM 611 
appears robust enough to outline the general expected trends. 612 
 613 

7. Conclusions 614 
 615 
7.1 Present research 616 
 617 

The advent of automation is expected to considerably transform the transport market. For transport researchers, 618 
practitioners and stakeholders alike, it is prudent to anticipate and plan for the impacts that the introduction of 619 
automation will introduce. The present research contributed to this effort by quantifying the impacts of 620 
implementing an Automated Urban Shuttle Service (AUSS) in a large-scale network regarding traffic conditions 621 
environment. To that end, shuttle bus routes were designed to operate in the road network of the city of Athens, in 622 
order to complement the existing public transport network. Different operating scenarios were established; peak 623 
and off-peak hour, existence of a dedicated lane for the shuttle bus and different penetration rates and profiles of 624 
autonomous vehicles. Furthermore, the advent of automation is modelled within the network by the examination 625 
of two connected automated vehicle (CAV) profiles: a cautious profile, projected to be introduced firstly, and an 626 
aggressive profile, projected to be introduced secondly. These profiles were considered to be gradually substituting 627 
conventional vehicles, until only CAVs are in the network in a 50% cautious and 50% aggressive ratio. Forty-four 628 
(44) scenarios were simulated in total: 11 market penetration scenarios for each of the four AUSS implementation 629 
scenarios, with a simulation duration of one hour and simulation time step of extracting data of ten minutes. The 630 
simulated data were then processed and modelled with a Structural Equation Model (SEM) approach. Travel time 631 
and CO2 emissions per segment were selected as key indicators in order to measure the impacts of automation.  632 

In order to shed more light into the statistical significance of the relationships and the underlying structure, 633 
SEM modelling examined an array of latent and observed variable combinations. The structure of the best 634 
performing SEM included two latent variables, one expressing the network influence, including road geometry 635 
and segment characteristics and one expressing the influence of CAV traffic mix and density. SEM findings 636 
indicate that the AUSS operation has a significant effect on travel time and CO2 emissions per segment only during 637 
the scenario of mixed operation with traffic during off-peak hours. Specifically, AUSS operation was found to 638 
statistically increase travel time per segment by 3.8 seconds and reduce CO2 emissions by 290 g per segment. 639 

Additionally, results indicate that the network influence is correlated with reduced travel time and with 640 
increased CO2 emissions. Road traffic density was found to be positively correlated with both travel time and CO2 641 
emissions, while the penetration of both cautious and aggressive CAVs was found to be negatively correlated with 642 
both indicators. The SEM goodness-of-fit measures indicate excellent model fit, thus supporting the qualitative 643 
conclusions as well as the quantifications provided by the model. 644 

 645 
7.2 Broader issues of AUSS implementation 646 

 647 
The outcomes of the microsimulations and SEM conducted in this study reveal several interesting lessons on 648 

AUSS implementation conditions and their respective limitations. The introduction and design of a new AUSS 649 
system in a large city should take into consideration several issues.  650 

Firstly, the inelastic behavior of delay time, distance travelled and emissions should be a guide on not to expect 651 
spectacular improvements from isolated public transport lines. AUSS services ought to be implemented intensely 652 
and in tandem, with precisely calculated optimization for operation, embarking and connection of passengers to 653 
other lines to be more attractive, more accepted and ultimately, popular with the public. This inelasticity can work 654 
both ways, however. It can provide an incentive to automate existing lanes one at a time with limited adverse 655 
impacts on a metropolitan scale. Once a bold decision has been taken to create dedicated AUSS lanes in a 656 
congested network, the transport planner can take advantage of the space by aiming for a high utilization rate, in 657 
other words increasing the number AUSS lines operating in the dedicated lane, without noticeable adverse effects 658 
to the network, compared to general traffic. 659 
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Naturally, the timing of the implementation of AUSS lines is critical, considering the state of automation and 660 
its market penetration on the general traffic. A critical factor for emissions and travel time is traffic density, as 661 
defined by the SEM. Traffic density, among other things, may be largely affected by driving culture, in the form 662 
of headway selection by drivers and overall driving aggressiveness. The smooth operation of an automated shuttle 663 
service will require education, and, to an extent, enforcement. The overall integration will occur with fewer 664 
resources in higher CAV MPRs, as road users will be more familiar with CAV operation, and may unlock hidden 665 
capabilities, such as the slight increase of distance travelled discovered in the present microsimulations. On the 666 
other hand, this implementation delay might offset the respective gains for the city, so careful cost-benefit analysis 667 
will be required on a case-study basis.  668 

The present results provide evidence that automation will work towards beneficially improving traffic and 669 
environmental conditions in cities. It is evident that automating a single AUSS public transport service is not 670 
panacea for congestion or environmental issues; critical indicators are not affected de facto, as the surrounding 671 
congestion continues to play the most crucial role. Nonetheless, the gradual increase in the penetration of 672 
automated transit services appears to have the capabilities of reducing travel time and CO2 emissions per segment, 673 
as simulated within the current research. 674 
 675 
7.3 Future research 676 

 677 
This research was carried out within the wider framework of the LEVITATE project. LEVITATE will endeavor 678 

to provide a new holistic impact assessment framework for CATS, by incorporating several methods (including 679 
the presented microsimulation method) within a freely available web-based policy support tool to enable city and 680 
other authorities to forecast impacts of CATS.  681 

Nonetheless, there is a plethora of pending issues for future research to focus on. Indicatively, the creation of 682 
a holistic approach for the impact assessment of automated transport on-demand mobility is a broad and ambitious 683 
research venue. There are several open questions regarding safety and security (including cybersecurity) issues on 684 
automated public transport. Transportation resilience issues, and the degrees of readiness of the various existing 685 
urban infrastructure measures should be explored as well. Finally, the critical role of connectivity and its various 686 
impacts in relation to simple automated services needs to be further investigated, taking into account the 687 
particularities of different areas, vehicle types, transport culture and modal split issues. 688 
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