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ABSTRACT 

Objective: Road safety data are often in the form of counts and usually temporally correlated. 

The objective of this research is to investigate the distributional assumptions of road safety data 

in the presence of temporal correlation. 

  

Methods: Using the generalized linear model framework, four distributional assumptions are 

considered: normal, Poisson, quasi-Poisson and negative binomial, and appropriate models are 

estimated. Monthly casualty and police enforcement data from Greece for a period of six years 

(January 1998 – December 2003) have been used. The developed models include sinusoidal 

latent terms to capture the temporal serial correlation of observations. Several statistical 

goodness-of-fit diagnostic tests have been performed for the results of the estimated models, 

and the predictive capabilities of the models are investigated.  

 

Results: The residuals of the quasi-Poisson and negative binomial models do not show any 

serial correlation. The signs of the estimated coefficients for all models are consistent and 

intuitive. In particular, a negative coefficient value for the number of breath alcohol controls 

indicates that the number of persons killed and seriously injured decreases as the intensity of 

breath alcohol controls increases. The Poisson model fails to capture the overdispersion in the 

data, thus underestimating the standard errors of the estimated coefficients. 

 

Conclusions: The results suggest that the quasi-Poisson and negative binomial outperform the 

normal and Poisson models in this application. The findings of this research demonstrate a 

clear link between the intensification of police enforcement and the reduction of traffic accident 

casualties. In particular, an increase in the number of breath alcohol controls in Greece after 

1998 contributed to a reduction in the number of persons killed and seriously injured from traffic 

accidents. 

 

Keywords:   road safety, enforcement, serial correlation, generalized linear models, Poisson, 

negative binomial 



   

  3 

 

INTRODUCTION 

Many statistical techniques assume independence of observations. Road safety data, however, 

are often in the form of time-series of counts observed during successive time periods, e.g. 

days, months or years. In practice, such observations often tend to be correlated with the 

respective observations from previous years, months or days, i.e. are usually temporally 

correlated. The linear regression model -an attractive and simple method- has stringent 

assumptions that are therefore usually violated when applied to road safety data. In this 

research, alternative modeling assumptions are evaluated within the more flexible generalized 

linear modeling framework. The presented approach is demonstrated through models capturing 

the impact of the intensification of police enforcement on the reduction of traffic accident 

casualties.  

 

While the linear regression model is simple (to run and interpret), elegant and efficient, it is 

subject to the fairly stringent Gauss-Markov assumptions (Washington et al., 2003). If these 

assumptions hold, it can be shown that the solution obtained by minimizing the sum of squared 

residuals (‘least squares’) is BLUE, i.e. best linear unbiased estimator. In other words, it is 

unbiased and has the lowest total variance among all unbiased linear estimators.  

 

The basic Gauss-Markov assumptions require: 

 Linearity (in the parameters; nonlinearity in the variables is acceptable); 

 Homoscedasticity; 

 Exogenous independent variables; 

 Uncorrelated disturbances; and 

 Normally distributed disturbances 

 

These assumptions, however, are often violated in practice. In this research, two of these 

violations are explicitly considered, in particular correlated disturbances; and non-normal error 

structures. The choice of these two violations is not arbitrary; instead it is motivated by the fact 

that these two violations are more relevant to the nature (time-series count data) of the road 
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safety data. Generalized linear models (GLM), a generalization of the linear regression, can be 

used to overcome the restriction on the normality of the error structure (McCullagh and Nelder, 

1989, Dobson, 1990, Gill, 2000). Specific treatment of the application of GLM in the presence of 

serially correlated count data is also presented. 

 

The objective of GLM is to allow for more flexible error structures, besides the Gaussian which 

is assumed by –linear and nonlinear– regression. A further discussion of the distributional 

assumptions allowed by the GLM, as well as an overview of the approach are deferred until the 

next section. 

 

The Poisson distribution has been considered suitable to counts of car crashes for a long time 

(Nicholson and Wong, 1993). However, the Poisson model -while arguably more appropriate 

than the Gaussian- is not without weaknesses and technical difficulties. For example, the 

assumption of a pure Poisson error structure may prove inadequate in the presence of 

"overdispersed" data (Maycock and Hall, 1984). Overdispersion reflects more variation in the 

response than what is expected by the Poisson assumption, which assumes that the variance 

equals the mean. An implication of overdispersion is that the estimates of the standard errors of 

the parameters will not be correct, and in fact the standard errors will be underestimated. 

 

A straightforward approach to overcome this issue is to use a quasi-Poisson model; i.e. 

estimate a dispersion parameter for the Poisson model, thus allowing it to take values other 

than one. Maycock and Hall (1984) showed that the negative binomial model could also be 

used as an extension to the Poisson. Miaou (1994) and Wood (2002) have also used the 

negative binomial model for road safety applications. Maher and Summersgill (1996) mention 

that, quite often, the two approaches (quasi-Poisson and negative binomial) may provide very 

similar estimation results. One may then be tempted to think that the two models are equivalent 

and that it does not really matter which model is selected. Maher and Summersgill further warn 

that this may not be the case, as the two models may have different prediction properties, as 

measured, e.g. by the prediction error variance. Lord et al. (2005) examine the applicability of 
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different models, including Poisson, negative binomial (or Poisson-gamma) and zero-inflated 

Poisson and negative binomial models, to the modeling of accident data.  

 

Furthermore, few processes are adequately modeled by linear models in practice. For example, 

several researchers have shown that conventional linear regression models lack the 

distributional property to adequately describe collisions. This inadequacy is due to the random, 

discrete, non-negative, and typically sporadic nature that characterize the occurrence of vehicle 

collisions. Several researchers (including Hauer et al.1988, Hakim et al., 1991; Cameron et al., 

1993; Newstead et al., 1995), using road accident statistics, have presumed that the 

explanatory variables have a multiplicative effect on accidents, i.e. 



y  ax1
b x2

c
 (as opposed to 

e.g. additive, i.e. 



y  a bx1  cx2).  

 

Examples of road safety applications involving the use of GLM in temporally correlated data 

include before/after analysis on the impact of red-light camera presence in crashes (Retting and 

Kyrychenko, 2001), investigation of relationships between accidents, flows and road or junction 

geometry, allowing for the presence of a trend over time in accident risk (Maher and 

Summersgill, 1996), traffic safety comparisons among several counties in France, where the 

time trend of each index (incidence and severity) is the same across counties and across road 

types (Amoros et al., 2003), and estimation of expected junction accidents (both in total and 

disaggregated by severity, road surface condition and lighting condition), which allow for the 

possibility of accident risk varying over time (Mountain et al., 1998). White and Washington 

(2001) developed a logistic regression model to gain insight into the relationship between 

enforcement and the use of safety restraint.  

 

In this research, the suitability of several distributions for modeling road safety data that are 

temporally correlated is investigated using casualty data from Greece. More precisely, the 

correlation between accident casualties and police enforcement data is examined. An overview 

of generalized linear models is presented first, while specific issues that relate to the application 

of GLMs in the presence of serially correlated data are discussed next. The model data and 
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specification are described next, followed by model fit and diagnostics. In the last section the 

obtained results are discussed.   

 

GENERALIZED LINEAR MODELS 

Generalized linear models facilitate the analysis of the effects of explanatory variables in a way 

that closely resembles the analysis of covariates in a standard linear model, but with less 

confining assumptions. This is achieved by specifying a link function, which links the systematic 

component of the linear model with a wider class of outcome variables and residual forms. 

 

A key point in the development of GLM was the generalization of the normal distribution (on 

which the linear regression model relies) to the exponential family of distributions. This idea was 

developed by Fisher (1934). Consider a single random variable y whose probability (mass) 

function (if it is discrete) or probability density function (if it is continuous) depends on a single 

parameter . The distribution belongs to the exponential family if it can be written in the form 

(Eq. (1)): 



f y;  s y t  ea(y)b( )
 (1) 

 

where a, b, s, and t are known functions. The symmetry between y and  becomes more 

evident if Eq. (1) is rewritten as Eq. (2): 



f y;  exp a(y)b() c   d y   (2) 

 

where s(y)=exp[d(y)] and t()=exp[c()]. If a(y)=y then the distribution is said to be in the 

canonical form. Furthermore, any additional parameters (besides the parameter of interest ) 

are regarded as nuisance parameters forming parts of the functions a, b, c, and d, and they are 

treated as though they were known. Many well-known distributions belong to the exponential 

family, including –for example– the Poisson, normal, and binomial distributions. On the other 

hand, examples of well-known and widely used distributions that cannot be expressed in this 

form are the student’s t-distribution and the uniform distribution. 
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The generalized linear model can be defined in terms of a set of independent random variables 

y1, … , yn, each with a distribution from the exponential family with the following properties: 

1. The distribution of each yi is of the canonical form and depends on a single parameter i 

(not necessarily the same parameter for all variables) (Eq. (3)): 



f yi;i  exp yibi(i) ci i  di yi   (3) 

 

2. The distributions of all the yi s are of the same form (e.g. all normal or all binomial) so 

that the subscripts on b, c, and d are not needed. 

 

The joint probability density function of y1, … , yn is then (Eq. (4)): 



f y1,...,yN ;1,...,N  exp yib(i) c i  d yi  
i1

N










 

(4) 

 

When specifying a model, the N parameters I are usually not of direct interest. Instead, for a 

GLM, a smaller set of p parameters 1, …, p is considered (where p < N), such that a linear 

combination of the s is equal to some function of the expected value i of yi, i.e. (Eq. (5)):  

g(i)=xi
T
 (5) 

 

where  

g is a monotonic, differentiable function called the link function;  

xi is a (p x 1) vector of explanatory variables (covariates and dummy variables for levels of 

factors); and  

=[1, …, p]
T
 is the (p x 1) vector of parameters.  

 

To recapitulate, in the univariate case, a generalized linear model has three components: 

1. A response variable y assumed to follow a distribution from the exponential family 

(which is a generalization of and includes the normal distribution); 

2. A set of parameters  and explanatory variables X=[x1
T
, …, xN

T
]
T
 

3. A monotonic link function g such that g(i)=xi
T
, where i=E(yi) 
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GENERALIZED LINEAR MODELS IN THE PRESENCE OF SERIALLY CORRELATED DATA 

Generalized linear models require uncorrelated observations. Time-series data require special 

consideration, since the observations typically fail to meet this assumption, as neighboring 

observations are likely to be correlated. It is often possible to include a large number of 

explanatory variables in a linear regression model, resulting in seemingly serially uncorrelated 

residuals (and, therefore, the linear model theory would apply). This strategy, however, is 

problematic, as it may not be easy to identify the appropriate explanatory variables that would 

reflect the serial correlation.  

 

In a very different (with respect to road safety) context, Zeger (1988) introduced a method for 

regression when the outcomes are a time series of counts (as is often the case in road safety 

applications). Zeger concludes that generalized linear models with linear and log links can be 

extended to parameter-driven models that capture serial correlation. The serial correlation in the 

observed data is captured in this model through some unobserved (or latent) process. 

Conditional on this unobserved process, the counts are assumed to be independent. This is a 

reasonable assumption for road safety data, since the occurrence of an accident (or a fatality or 

injury) is usually not directly caused by another.  

 

The data, however, are serially correlated because they are ordered in time, and other factors 

(also ordered in time) are affecting the underlying risk. A discussion on these properties, albeit 

in a totally different context, can be found in Campbell (1994), who also presents a practical 

application of the approach, where the only assumption that is made on the distribution of the 

error structure is that it is mean stationary. A process is called mean stationary if the mean of 

the process is stationary, i.e. 



E(y t )  E(y tm ) for any t and m (Pindyck and Rubinfeld, 1997). 

Davis et al. (2000) developed a practical approach to diagnose the existence of a latent 

stochastic process in the mean of a Poisson regression model.  
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For the Poisson model, the covariance matrix, and hence the standard errors of the parameter 

estimates, are estimated under the assumption that the Poisson model is appropriate. 

Occasionally one may observe overdispersion, i.e. more variation in the response than what is 

expected by the Poisson assumption, which assumes that the variance equals the mean. An 

implication of overdispersion is that the estimates of the standard errors of the parameters will 

not be correct, and in fact the standard errors will be underestimated. Underdispersion (less 

variation than expected) is also possible, although not as common. 

 

MODEL DATA AND SPECIFICATION 

The use of generalized linear models for road safety research is demonstrated using accident 

casualties (persons killed or seriously injured) and police enforcement data from Greece. Data 

from Athens and Thessaloniki were excluded because traffic conditions in these large 

agglomerations are much more complex as are the parameters potentially describing the road 

safety phenomenon. The number of vehicles in circulation in the studied areas is also added 

into the model specification as an offset (i.e. its coefficient is not estimated but is constrained to 

one). Ideally, one would consider vehicle-kilometers instead of vehicles. However, this data is 

not available. Average vehicle-kilometer data collected from the SARTRE 2 and SARTRE 3 

projects in 1996 and 2002 respectively (SARTRE 3, 2004), however, suggest that the number of 

kilometres travelled does not present a statistically significant change during this period 

(average kilometres travelled was equal to 15 231km in 1996 and 15 070 in 2002) and 

therefore, their use is acceptable for the purposes of the specific research. 

 

Monthly data from January 1998 to December 2003 have been used for this research (Figure 

1). The data of the first five years (60 observations) are used for the model estimation, while the 

data for the last year (12 observations) are used for the validation of the estimated model. 

 

The model specification comprises three main effects: trend, seasonal effects, and explanatory 

variables. The trend captures the evolution of the dependent variable over time. This is captured 

in the specification by the addition of the "Month" variable, which ranges from 1 (for the first 

month, i.e. January 1998) to 72 (for December 2003). This variable was shown to be statistically 
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insignificant and has not been retained in the final model, detailed in the next section. Seasonal 

effects are captured by the incorporation of sinusoid components (similar to those used e.g. by 

Zeger, 1988, and Campbell, 1994). Several frequencies have been investigated (from 1 to 15 

months), but the most useful proved to be the annual and its first (six month) harmonic.  

 

Furthermore, besides specifying trend and seasonal components, the impact of explanatory 

variables is also tested, with an emphasis on enforcement data (number of breath alcohol 

controls per month) and (the log of) vehicles in circulation. Acknowledging that there may be a 

lot of other intervening parameters, it could be argued that police enforcement could in some 

cases be influenced by total traffic flow, which might be indirectly affected by vehicle fleet. To 

account for the delayed impact of enforcement in road safety (as the word-of-mouth spreads) 

the number of breath alcohol controls has been lagged by two intervals, capturing the impact of 

enforcement intensification two months after it occurs. The log of vehicles in circulation has 

been entered as an offset. Naturally, the two major Greek urban areas excluded from the 

casualty data have also been excluded from the data of breath alcohol controls and registered 

vehicles. The number of registered vehicles has been interpolated from annual figures. Finally, 

a high number of casualties was observed during the month of August. Therefore, a dummy 

variable has been introduced, that takes the value of one for August and zero otherwise. Further 

exploration of the available monthly data did not reveal any new insight in the seasonality of the 

road safety phenomenon.  The "August phenomenon" remained predominant. 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Seasonality (August peak) observed mainly in the persons killed and seriously injured but also 

on the enforcement can be attributed to increased summer traffic in Greece as a holiday 

destination. The exceptional enforcement low value on December 2001 cannot be explained by 

any other reason than the internal enforcement programming of the Police. 

 

MODEL FIT AND DIAGNOSTICS 
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In this section, different error structures -that are allowable within the GLM framework and are 

also theoretically supported- are applied. Model estimation and analysis has been performed 

using the R Software for Statistical Computing (RDCT, 2006). First, the Gaussian (Normal) 

distribution is used. If the identity link function was used, then as the model specification is 

linear additive, this would be equivalent to the linear regression model. A Poisson model is also 

fitted, along with a quasi-Poisson that relaxes the assumption that the dispersion parameter is 

equal to one. Finally, a negative binomial model is fitted. A log link function is used for all 

models. 

Estimation results and model fit for the four model families are shown in Table 1. A sinusoid 

term with an annual frequency and its (6 month) harmonic capture periodicity. A negative 

coefficient value for the number of breath alcohol controls indicates that the number of persons 

killed and seriously injured decreases as the intensity of breath alcohol controls increases, 

which is an intuitive result. More visible police presence on the roads results in safer driver 

behavior (less speeding, less aggressive driving, etc.).  However, police enforcement results 

require some time before becoming significant, as driver perception of enforcement grows by 

the continuous visibility of policemen; e.g. a lagged effect of two months was revealed in this 

paper. 

 
[INSERT TABLE 1 ABOUT HERE] 
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A dummy variable, taking the value of one for August and zero otherwise, was also found to be 

significant. General traffic increase over years refers to the overall network with emphasis on 

urban and suburban areas (often congested), resulting in lower speeds and less accidents and 

related casualties.  However, summer traffic increase refers to rural - often not congested - 

areas, where speed is not necessarily reduced.  Furthermore, a large proportion of this traffic 

refers to Greek and foreigner tourists not acquainted with the local network and traffic patterns 

and with more accident prone trip characteristics (late night entertainment, alcohol consumption, 

etc.). The macroscopic relation between accident casualties and traffic volumes is a very 

complex phenomenon, which certainly requires further investigation. 

 

Other explanatory variables (such as the number of speeding violations) were also originally 

entered into the model. However, explanatory variables relating to enforcement were highly 

correlated (in particular the number of breath alcohol controls and speeding violations had a 

correlation of 0.97). Therefore, while using either variable resulted in intuitive results, their 

combination resulted in multicollinearity problems. 

 

The coefficient signs, however, are consistent for all models and all retained parameters are 

significant at the 1% level (with the exception of the enforcement data in the quasi-Poisson and 

negative binomial models, which are still significant at the 10% level). Due to the use of the log 

link function in all models, the magnitude of the estimated coefficients is rather close for all four 

models. A comparison of the computed standard errors shows that the values obtained for the 

Poisson model are significantly lower than those obtained from the normal, the quasi-Poisson 

and the negative binomial. Therefore, the z-values obtained for the Poisson model seem 

unusually high. A closer look at the model statistics suggests that the data may be 

overdispersed.  

 

Potential overdispersion can be identified by dividing the residual deviance (defined -up to a 

constant- as twice the log-likelihood ratio statistic) by the residual degrees of freedom (i.e. the 

number of observations minus the number of parameters in the model). The resulting measure 

is an approximately unbiased estimator of the dispersion parameter (Venables and Ripley, 
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2002). If the deviance is equal to the degrees of freedom then there is no evidence of 

overdispersion.  Note that a dispersion parameter not equal to one does not necessarily imply 

overdispersion, but could also indicate other problems, such as an incorrectly specified model 

or outliers in the data. An incorrectly specified model can be due to an incorrectly specified 

functional form, e.g. an additive error term (



y  f (x)) rather than a multiplicative error term 

(



y  f (x)   ) may be appropriate, or, more likely, that important explanatory variables (or 

interactions) are missing from the model. However, overdispersion can also be a property of the 

data, typically indicating a lack of independence or heterogeneity among observations, sampling 

issues, etc. 

 

The dispersion factor for the data at hand is equal to 151.11/51=2.96, which is significantly 

different from one. The assumption of a Poisson model (with a dispersion parameter equal to 

one) is therefore unlikely to be realistic. A quasi-Poisson model (an extension of the Poisson 

model, in which the dispersion parameter is allowed to vary from one) has also been estimated. 

The estimation is based on the iterative algorithm proposed by Breslow (1984) for fitting 

overdispersed log-linear Poisson models. The magnitude of the estimated coefficient values is 

similar to that obtained by the Poisson model, and the signs are the same. The significance of 

the coefficients, however, has significantly decreased, indicating that in the Poisson model the 

standard errors were underestimated due to the overdispersion. As expected, the dispersion 

parameter for the quasi-Poisson model is 51.38/51=1.01, i.e. very close to one. 

 

Finally, a negative binomial model has been fitted. The estimated coefficients were similar to 

those obtained from the quasi-Poisson. This confirms the findings of Maher and Summersgill 

(1996) who state that the two approaches may provide similar estimation results. Slightly lower 

standard errors for the binomial, however, lead to more significant statistics. 

 

Further model diagnostics are presented in Figures 2 through 5. Normal scores plot (QQ plot) of 

standardized deviance residuals is presented in the top subfigure of each figure. The x-axis 

represents the standardized deviance residuals, while the y-axis represents the quantiles of the 

standard normal. The dotted line in the QQ plot (top) is the expected line if the standardized 
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residuals are normally distributed, i.e. it is the line with intercept 0 and slope 1. If the deviance 

residuals were normally distributed, all points on the plot would fall on this dotted line. The 

deviance residuals of the normal model are far from normally distributed. The Poisson model is 

a slight improvement, but still far off. The quasi-Poisson and the negative binomial model 

deviance residuals, on the other hand, are practically normally distributed. 

 

On the bottom subfigure is a plot of the Cook statistics against the standardized leverages. The 

standardized leverage of the i-th observation xi can be computed as (Belsley et al., 1980, Eq. 

(6)): 

 



hi 
1

n


xi  x i 
n 1 sx

2
 (6) 

 

where n is the number of observations, the overbar indicates the predicted value, and 



sx  is the 

standard error. There are two dotted lines on each plot. The horizontal line is at 8/(n-2p) where 

n is the number of observations and p is the number of parameters estimated. Points above this 

line may be points with high influence on the model. The vertical line is at 2p/(n-2p) and points 

to the right of this line have high leverage compared to the variance of the raw residual at that 

point. If all points are below the horizontal line or to the left of the vertical line then the line is not 

shown. For example, in the quasi-Poisson (Figure 4) and negative binomial (Figure 5) plots, the 

horizontal line is not present, since no point lies above it. 

 

The number of (high) leverage points is the union of points to the right and top of the two 

dashed lines. Therefore, most observations in the Gaussian model (Figure 2) appear to be 

leverage points (as they are above the horizontal line). For the Poisson case (Figure 3), the 

points that are either above the horizontal dashed line or to the right of the vertical dashed line 

are seven. Only three points are to the right of the vertical dashed line for the quasi-Poisson 

(Figure 4) and negative binomial (Figure 5) models (the horizontal dashed line is not drawn in 

these two figures as no point lies above it), which provides additional evidence that (a) these 
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models are more appropriate for this application and (b) that they provide comparable fit in this 

application.   

The estimation results and the model diagnostics suggest that the quasi-Poisson and the 

negative binomial assumptions are more valid for the considered problem (while this may not be 

always the case). The output of the resulting models is very similar and therefore a clear 

decision regarding the most appropriate model cannot be made. One observation relates to the 

estimated standard errors, which are higher for the quasi-Poisson. Choosing to err in the side of 

caution, one could retain this model. 

 

It should be noted that the usual tests for comparing nested models estimated using maximum 

likelihood estimation, such as the Akaike Information Criterion, AIC, (Akaike, 1973) or the 

Schwarz/Bayesian Information Criterion, BIC, (Schwarz, 1978), are not suitable for comparison 

across these (non-nested) models. For example, AIC or BIC could be used to compare models 

with different numbers of parameters and the same likelihood function (except for the number of 

parameters), e.g. two normal or two Poisson models, but not one normal and one Poisson. 

 

[INSERT FIGURES 2 THROUGH 5 ABOUT HERE] 

 

An important consideration when dealing with serially correlated data is the autocorrelation of 

the residuals. Residual plots for the four estimated models reveal that while there is still some 

autocorrelation present in the Gaussian model, the residuals of the quasi-poisson and negative 

binomial models do not show any serial correlation. The lack of serial correlation for the quasi-

Poisson and the negative binomial models has also been confirmed from plots of residuals vs. 

time, as well as appropriate autocorrelation (ACF) and partial autocorrelation function (PACF) 

plots.  

 

Figure 6 shows the values predicted by the quasi-Poisson model. The dashed line shows the 

actual observed number of persons killed and seriously injured in Greece (excluding the two 

major metropolitan areas of Athens and Thessaloniki). The thick solid line represents the model 

predictions and 95% confidence intervals are also shown with thinner solid lines. The fitted and 
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predicted values confirm the hypothesis that the summer peak is captured through the "August" 

variable. 

 

[INSERT FIGURE 6 ABOUT HERE] 

 

Elasticities are another useful tool in interpreting the impact of the model parameters on the 

response variable. Unlike estimated coefficients, elasticities are dimensionless. Among the 

estimated model parameters, meaningful and interpretable elasticities can be computed for the 

alcohol controls, and not for the intercept, the vehicles in circulation (which have been entered 

as an offset), the dummy variable for August, and the sinusoidal/cosinusoidal curves (a change 

in which would different to conceptualize). For the quasi-Poisson model (with a log link) the 

elasticity for parameters that enter the formulation linearly (such as the alcohol controls) is 

obtained as Eq. (7):  



Exik

i 
i

i


xik

xik

 k  xik  (7) 

 

where E represents the elasticity, xik is the value of the kth independent variable for observation 

i, k is the estimated parameter for the kth independent variable and i is the expected 

frequency for observation i (Washington et al., 2003). A common way, however, to report a 

single elasticity figure is to average these elasticities. Such an approach yields an elasticity for 

the (lagged) alcohol controls equal to -0.15, i.e. a 1% increase in the number of alcohol controls 

would result in a 0.15% decrease in the number of killed and seriously injured two months into 

the future.  

 

CONCLUSION 

The impact of different distributional assumptions for the dependent variables on the model 

estimation results is demonstrated in this research within the unified framework of generalized 

linear models. Due to the time-series nature of the data, a modeling approach to capture serial 

correlation through the introduction of sinusoid latent processes has also been demonstrated. 
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The estimated coefficients for the Poisson model are close to those estimated by the other three 

models, but the standard errors are severely underestimated (due to overdispersion), leading to 

artificially high z-statistic values. Even though these values were indeed significant in this 

application, this issue could have led to incorrect retention of insignificant variables in the 

Poisson model. Furthermore, even though the magnitude of the estimated coefficients for the 

quasi-Poisson and negative binomial is very similar, the different models may have different 

predictive properties and therefore may not –in general- be used interchangeably. 

 

The estimated model includes an intercept, a zero-one dummy for the month of August, two 

sinusoid terms, an enforcement-related explanatory variable about the number of breath alcohol 

controls and the log of the vehicles in circulation (entered as an offset). A positive intercept 

captures the baseline number of casualties (persons killed and seriously injured). A positive 

coefficient for the dummy variable for August confirms that there is a higher number of fatalities 

and serious injuries in the month of August. While it is not easy to directly interpret the 

coefficients for the sinusoid terms, it becomes evident that the two corresponding latent 

processes are appropriate for this model.  

 

The significant negative coefficient associated with the number of breath alcohol controls 

suggests that there is a negative correlation between the number of alcohol controls and the 

number of persons killed and seriously injured in road accidents. An increase in the number of 

breath alcohol controls can therefore lead to a reduction of the persons killed and seriously 

injured due to traffic accidents. This is a useful empirical finding that supports the argument that 

intensification of police enforcement can lead to an improvement in road safety.  

 

The calculation of elasticities allowed for the quantification of the comparative impact of the 

parameters examined to the improvement of road safety at the national level.  For example, 

policy makers can consider in their decisions the fact that in order to obtain a 10% decrease in 

the number of killed and seriously injured an enforcement increase of 66% is necessary. In this 

way, decision makers can better judge the importance of their actions and better adjust them 

into the overall transport environment. 
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Any type of count data where change over time might be observed can be modeled using these 

distributions. For example, traffic volume and headways can be modeled by the use of 

generalized linear models (especially negative binomial and quasi-Poisson distributions). Tolle 

(1976), Cowan (1975) and Leuzbach (1988) are some of the researchers that used the negative 

exponential distribution for modeling headway distribution in the uncongested regime, whereas 

variations of the negative binomial distribution (Akcelik and Chung, 1994, Griffiths et al., 1991) 

can be used under congested conditions.  In conclusion, the researcher could be assisted by 

the methodological findings of this research, in order to select the model that better suits the 

particularities of each case. 
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Table 1. Estimation results 

 

 Normal 

Coefficient Estimate Std. error t-value 
Intercept -7.9608 0.1175 -67.763 
Trend -0.0154 0.0017 -9.054 

August dummy 0.1995 0.0355 5.628 
sin(pi*Month/6) -0.2279 0.0215 -10.580 
sin(pi*Month/12) -0.5326 0.1826 -2.917 

cos(pi*Month/6) -0.4434 0.0781 -5.674 
Laggedx2 alcohol controls (x100,000) -0.2949 0.1481 -1.992 

Null deviance:  1 077 519 (57 d.o.f.) 

Residual deviance:  52 892 (51 d.o.f.) 

 Poisson 

Coefficient Estimate Std. error z-value 
Intercept -7.9881 0.0641 -124.548 
Trend -0.0157 0.0010 -15.921 
August dummy 0.1919 0.0241 7.963 
sin(pi*Month/6) -0.2229 0.0123 -18.162 
sin(pi*Month/12) -0.4859 0.0985 -4.932 

cos(pi*Month/6) -0.4214 0.0430 -9.803 
Laggedx2 alcohol controls (x100,000) -0.2629 0.0821 -3.201 

Null deviance:  3 127.47 (57 d.o.f.) 

Residual deviance:  151.11 (51 d.o.f.) 

 Quasi-Poisson 

Coefficient Estimate Std. error z-value 
Intercept -8.0038 0.1066 -75.068 
Trend -0.0159 0.0017 -9.470 
August dummy 0.1838 0.0466 3.949 
sin(pi*Month/6) -0.2206 0.0212 -10.427 
sin(pi*Month/12) -0.4582 0.1623 -2.824 

cos(pi*Month/6) -0.4087 0.0718 -5.692 
Laggedx2 alcohol controls (x100,000) -0.2410 0.1368 -1.761 

Null deviance:  1 004.67 (57 d.o.f.) 
Residual deviance:  51.38 (51 d.o.f.) 

 Negative binomial 

Coefficient Estimate Std. error z-value 
Intercept -8.0027 0.1007 -79.434 
Trend -0.0159 0.0016 -10.022 
August dummy 0.1843 0.0436 4.229 
sin(pi*Month/6) -0.2208 0.0199 -11.071 
sin(pi*Month/12) -0.4602 0.1534 -2.999 

cos(pi*Month/6) -0.4096 0.0678 -6.038 
Laggedx2 alcohol controls (x100,000) -0.2425 0.1293 -1.875 

Null deviance:  1 183.74 (57 d.o.f.) 
Residual deviance:  58.07 (51 d.o.f.) 

 


