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Autoregressive nonlinear time-series modeling of traffic fatalities in Europe 

ABSTRACT 

Purpose The objective of this paper is to provide a parsimonious model for linking 

motorization level with the decreasing fatality rates observed across EU countries 

during the last three decades. 

Methods A macroscopic analysis of road-safety in Europe at the country level is 

proposed through the application of non-linear models correlating fatalities and 

vehicles for the period between 1970 and 2002. Given the time series nature of road 

safety data, these models result in auto-correlated residuals, thus violating at least one 

of the assumptions of non-linear regression. Autoregressive forms of the considered 

models that overcome these limitations and provide superior predictive capabilities 

are also considered.  

Results An autoregressive log-transformed model seems to outperform the base 

autoregressive non-linear model in this respect. The use of these models allowed for 

the identification of the best and worst performing countries.  

Conclusions The proposed models can prove useful for assessing the road safety 

performance of the examined countries, as well as for obtaining some insight on the 

current and future trends of less developed countries. 
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1. INTRODUCTION 

Road traffic injuries represent a major global public health crisis, requiring concerted 

efforts for effective and sustainable prevention. Worldwide, the number of people 

killed in road traffic accidents every year is estimated at 1.2 million, while the number 

of those injured could be as high as 50 million – the combined population of five of 

the world’s largest cities [37]. Furthermore, while the number of accidents in 

developed countries is reducing, unless decisive action is taken globally, the total 

number of road traffic deaths and injuries is forecast to rise by some 65% between 

2000 and 2020 [36], with deaths in low-income and middle-income countries 

expected to increase by as much as 80% [37] due to their upcoming growth and 

associated consequent traffic.  

 

Macroscopic modeling can provide insight into this problem and help policy-makers 

in both under-developed and developing countries adjust their policies in reaction to 

the changing conditions. Older studies focused primarily on developed countries. 

Within the current research, data from countries from various parts of Europe are 

analyzed thus highlighting differences between countries that can be used to 

anticipate traffic safety trends in less developed countries. The interest of such an 

analysis may become more pronounced when considering that the EU includes 

different groups of countries with different socioeconomic characteristics presenting 

different road safety cultures and performances (i.e. western European countries, 

southern Mediterranean countries, eastern new member states) and requiring 

potentially different road safety measures, programmes and strategies. 

 

Several researchers [9,14,24,26], using road accident statistics, have presumed that 

the explanatory variables have a multiplicative effect on accidents (as opposed to e.g. 

additive). Henning-Hager [17] presented a non-linear regression model to express the 

relationship between traffic fatalities, traffic volumes and the quality of transportation 

supply and demand in urban areas. Qin et al. [31] showed that the relationship 

between crashes and the daily volume (AADT) is non-linear and varies by crash type, 

and is significantly different from the relationship between crashes and segment 
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length for all crash types.  A macroscopic road-safety model commonly used in the 

late 60s was proposed by Smeed [33] linking the number of fatalities with the number 

of vehicles and the population. Jacobs [18] repeated this analysis for a number of 

developed and developing countries using data between 1968 and 1975 while 

Gharaybeh [13] applied the same formula to assess the development of road safety in 

Jordan, relative to that of other middle-eastern and developing countries. 

 

It should be noted, however, that many studies have criticised Smeed’s model because 

it only concentrates on the motorisation level of country and ignores the impact of 

other variables (cf. [3,8]). An implication of this is that effectiveness assessment of 

road safety measures would have little meaning because road fatalities can simply be 

predicted from population and vehicle numbers in any country and any year, at least 

at macroscopic level. Andreassen [3] criticised the model’s accuracy because there 

would always be a decline in traffic risk for any increase in the number of vehicles, 

but generally in a non-linear way, and proposed using country-specific parameters to 

distinguish between countries with a similar degree of motorisation. The main 

criticism of Andreassen, however, seems to be targeted at the way that the Smeed 

formula was manipulated algebraically (instead of a new regression being fit to the 

resulting transformation). Smeed’s formula expected the downtrend in fatalities rate 

but not the number of absolute fatalities, which occurred in the highly motorized 

countries in the seventies [8].  

 

A critical review of a number of approaches for modeling road safety trends can be 

found in [14, 27]. Al-Haji [2] provides a review of these concerns, as well as several 

alternative approaches for the development of road safety models. Another useful 

review [10] provides a detailed analysis of the debate surrounding Smeed’s formulas 

and analysis. One of the conclusions is that “there is general agreement now among 

researchers, that models describing traffic safety developments should have time-

dependent parameters.” In this paper, we contribute to this discussion by exploring the 

development of models that explicitly treat the temporal correlation of the road safety 

data.  Within this alternative approach, time is not treated as an explanatory variable, 

but instead its negative impact (temporal serial correlation) is factored out by the use 

of appropriate statistical procedures in order to focus on road safety related predictors. 
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The comparison of time series of road safety among different countries has been an 

interesting research topic. Lassarre [22] applies the local linear trend model to ten 

European countries and uses the estimated trend and elasticities to make inference 

about the relationship between traffic flow and number of fatalities.  Page [28] 

presents a statistical model to compare road mortality in OECD (Organisation for 

Economic Co-operation and Development) countries, combining cross-sectional and 

panel data. Models with several exogenous variables are developed and countries are 

ranked based on their road mortality level. Beenstock and Gafni [5] show that there is 

a relationship between the downward trend in the rate of road accidents in Israel and 

other countries and suggest that this reflects the international propagation of road 

safety technology as it is embodied in motor vehicles and road design, rather than 

parochial road safety policy. Van Beeck et al. [35] examine the association between 

prosperity and traffic accident mortality in industrialized countries in a long-term 

perspective (1962-1990) and find that in the long-term the relation between prosperity 

and traffic accident mortality appears to be non-linear. Kopits and Cropper [21] use 

linear and log-linear forms to model region specific trends of traffic fatality risk and 

per income growth using panel data from 1963 to 1999 for 88 countries. Abbas [1] 

compares the road safety of Egypt with that of other Arab nations and G-7 countries, 

and develops predictive models for road safety. Yannis et al. [38] fit piece-wise linear 

regression models to identify changes in macroscopic road accident trends. Lessons 

from the analysis of the past road safety patterns of developed countries provide some 

insight into the underlying process that relates motorization levels with personal risk 

and can prove to be beneficial for predicting the road safety evolution of developing 

countries that may have not yet reached the same breakpoints. 

 

Taking into account the road safety macroscopic modeling background presented 

above, the objective of this paper is to provide a parsimonious model for linking 

motorization level with the decreasing fatality rates across EU countries observed 

during the last three decades.  Models used in the late 60's to describe the - at the time 

- increasing relationship between motorization and traffic fatalities were adjusted in 

order to describe the decreasing relationship observed in the last three decades. Time-

series methods are applied to remove the temporal trends (and autocorrelation) from 

the modeling of traffic fatality risk, thus allowing for capturing the impact of 

macroscopic road safety related model parameters on traffic risk. 
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On that purpose, a macroscopic analysis of road-safety in Europe at the country level 

(16 EU countries) is proposed through the application of non-linear models 

correlating fatalities and vehicles for the period between 1970 and 2002.  Road safety 

trends can be attributed to various parameters, some of which can be modeled 

explicitly, while others may be handled indirectly.  Within this analysis, the 

motorization level has been chosen as the single explanatory variable, as elaborate 

models that would include some of the other prevailing parameters (e.g. vehicle 

quality, traffic safety measures and regulations, intensity of police enforcement) are 

less macroscopic and thus fall outside the scope of this research.  

2. METHODOLOGY 

While the linear regression model is simple (to run and interpret), elegant and 

efficient, many interesting processes may be more adequately modeled by non-linear 

models in practice. Linear regression models might have been a practical necessity in 

the past, but theoretical and computational developments have made the use of more 

elaborate (appropriate, accurate) methods practical. This can also be seen in road 

safety research, where while early work used multiple linear regression modeling 

(assuming normally distributed errors and homoscedasticity), over the past two 

decades there has been a departure from this model. Generalized linear models 

(GLM) allow for some nonlinear relationships to be modeled and relax some 

restrictions on the distributional assumptions of linear regression [12,25]. Although 

many scientific and engineering processes can be described well using linear models, 

or other relatively simple types of models, there are many processes that are 

inherently nonlinear. Non-linear models can then be used. The biggest advantage of 

nonlinear regression over many other techniques is the broad range of functions that 

can be fit.  

 

A non-linear regression model can be written as: 

Ym = f xm,q( )+Zm (1) 

where f is the expectation function, xm is a vector of associated regressor variables or 

independent variables for the nth case, Ym is the dependent variable,  is a vector of 

parameters to be estimated and Zm are random disturbances. This model is of the same 

general form as the linear model, with the exception that the expected responses are 
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nonlinear functions of the parameters. More formally, for non-linear models, at least 

one of the derivatives of the expectation function with respect to the parameters 

depends on at least one of the parameters. The presentation of non-linear models on 

the following sections relies on Bates and Watts [4]. Non-linear regression has been 

widely used in road-safety related research. 

 

The Gauss-Markov assumptions from ordinary least square (OLS) procedures 

(normal, i.i.d. disturbances etc) still apply in non-linear regression. Therefore, 

whenever time or distance is involved as a factor in a regression analysis, it is 

important to check the assumption of independent residuals. When the residuals are 

not independent, the model for the observations must be altered to account for 

dependence (e.g. moving average or autoregressive models of variable order).  

 

Road safety data are often correlated in space or time, raising the suspicion of 

correlated data (and hence residuals), which violates one of the underlying 

assumptions (that of independent disturbances). In order to provide a clear distinction 

with the previously defined data m=1, …, M, potentially correlated data are denoted 

by n=1, …, N. Serial correlation of the disturbances can be detected from an ordered 

time series plot of the residuals versus time or from a lag plot of the residuals on the 

(n)th case versus the residuals on the (n-1)th case. If a violation of independent 

disturbances is detected, then the model needs to be altered to account for this. 

Common forms for dependence, or autocorrelation, of disturbances are moving 

average or autoregressive models of variable order [6].  

 

A moving average process of order 1 can be written as: 

Zn =en -w en-1
 (2) 

 

while an autoregressive process of order 1, can be expressed as: 

Zn =en +j Zn-1
 (3) 

where en, n =1,2,… ,N  are white noise terms (i.e. independent normal error terms 

with zero mean and constant unit variance). While both processes could be used, 

within this research, the autoregressive process was selected in order to account for 

correlated residuals.  
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A macroscopic road-safety model commonly used in the late 60's, is based on 

Smeed's original relationship [33]: 

Fm

Vm
=a

Vm

Pm

æ

è
ç

ö

ø
÷

b

+ Zm  
(4) 

where F is the number of fatalities, V is the number of vehicles (in thousands), P is 

the population (in thousands), m indicates the country,  and  are model parameters 

to be estimated and Zm are the disturbances. Using data for road fatalities, vehicles 

and population from 20 (mostly European) countries, Smeed [33] estimated the values 

of  and  as 0.0003 and -0.66 respectively. Jacobs [18] repeated this analysis for a 

number of developed and developing countries using data between 1968 and 1975 and 

obtained values of 0.000204 and -0.84 for  and  respectively. Gharaybeh [13] 

applied Smeed's formula to assess the development of road safety in Jordan, relative 

to that of other middle-eastern and developing countries. 

 

In this paper, Equation 4 forms the base model from which all the others are 

developed and against which they are benchmarked. Within this research, V/P was 

chosen as a macroscopic predictor of traffic fatalities, which can be safely calculated 

by the use of data available and comparable across several EU countries (Vehicles 

and Population).  Traffic, road expenditure, driver behaviour and other road safety 

related parameters may also affect traffic fatalities' trends but cannot easily be 

calculated in a uniform way across the EU. 

2.1 An Autoregressive Non-linear Model 

The model to be fitted is  

Yn = f xn,q( )+Zn  (5) 

where Zn =en +j Zn-1
. In order to solve this problem by reducing it to a non-linear 

least squares problem, one can subtract j  times the equation for Yn-1 from Yn, thus 

obtaining: 

Yn -j ×Yn-1 = f xn,q( )-j × f xn-1,q( )+Zn -j ×Zn-1
 (6) 

which is equivalent to  

Yn =j ×Yn-1 + f xn,q( ) -j × f xn-1,q( )+en  (7) 
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Substituting Equation 4 into Equation 7, the autoregressive non-linear model that 

corrects for temporal correlation is: 

F

V
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(8) 

 

2.2 A Log-transformed Model 

The original non-linear model (Equation 4) can be converted to a similar (but not 

equivalent) linear model through a simple log transformation. Taking the log of both 

sides of Equation 4 (temporarily ignoring the additive error term), the following linear 

model is obtained: 

log
Fn

Vn

æ

è
ç

ö

ø
÷ =a + b log
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(9) 

 

Adding an additive error term, the equation becomes: 

log
Fn

Vn

æ

è
ç

ö

ø
÷ =a + b log

Vn

Pn

æ

è
ç

ö

ø
÷+ Zn  

(10) 

This equation is similar, but not equivalent to Equation 4. The difference is in the 

error term. If one takes the exponent of Equation 10, the resulting equation is: 

Fn

Vn
=a '

Vn

Pn

æ

è
ç

ö

ø
÷

b

Zn ' 
(11) 

i.e. there is a multiplicative error term ( )nn ZZ exp'=  (as opposed to an additive error 

term in Equation 4). The log transformations lead to some more transformations of 

model parameters, e.g. ’= exp() in Equation 11.  

2.3 An Autoregressive Log-transformed Model  

An autoregressive version of Equation 10 can be constructed in a similar way to 

Equation 8: 

log
F

V
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= j × log
F

V
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P
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V

P
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F

V
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V

P
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V

P
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+en

 

(12) 
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Note that the above model (Equation 12) is not linear in the parameters, due to the 

second and fourth right-hand terms (in particular (1-j) ×a  and j ×b ). Furthermore, 

unlike the model in Equation 8 (which is also not linear in the parameters, but can 

easily be transformed into a linear model through taking the logarithm, as shown in 

Equation 4), this model cannot be easily transformed into a linear model. 

 

In the remainder of this research, the four models represented by Equations 4, 8, 10, 

and 12, are estimated and assessed through a variety of tests, including lack-of-fit 

tests and portmanteau tests. Furthermore, the predictive ability of the models has been 

assessed using the root mean square percent error (RMSPE) statistic [30]. In order to 

be able to validate the predictive ability of the estimated models, the data-set was split 

to an estimation part and a validation part.  

 

All models in this research have been estimated using the R Software for Statistical 

Computing v. 2.11.0 [32]. 

 

3. DATA OVERVIEW 

Aggregate fatality, population and vehicle data from European countries between 

1970 and 2002 have been used. Data for years 1970-1994 have been used for the 

model estimation and years 1995-2002 have been used for validation. Choosing 

different splits for the data set (e.g. setting aside fewer or more data for the validation) 

might lead to different results. The particular choice is based on the fact that as many 

as possible data should be allocated for estimation, while still keeping more than a 

few data-points for validation. The data have been obtained primarily from IRTAD 

(International Road Traffic and Accident Database). Official representatives of the 

countries with missing data were contacted directly, and several responses with 

additional data were incorporated to the database. In the end, out of the 25 countries 

of the enlarged EU, sufficiently complete data have been available for 16 of them, for 

which this model has been applied. Fatalities data refer to the 30-day definition of 

fatality for all countries, i.e. include all persons who died within 30 days of being 

involved in a traffic accident. The timeframe used in this research was decided during 
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the Safety-Net project in 2006, when this work initiated [34]. The presented models 

are general and could be applied to newer data.  

 

The final data that were used in this research are shown in Figure 1. The variables 

defined as fatalities/vehicle and vehicles/population exhibit opposite trends (the 

former is mostly decreasing in this time period, while the latter is in general 

increasing). In this application, in order to be able to compare among countries, ratios 

of fatalities per vehicles and vehicles per population have been used instead of 

absolute numbers. The vehicle ownership is increasing consistently for all countries. 

The fatality rates show the opposite trend, i.e. they all decrease, especially in the 

earlier years.  

 

One of the assumptions of the (linear and nonlinear) regression is that the data follow 

a normal distribution and aim to minimize the sum of squares (least-squares 

regression). Outliers can have a dominant effect in this process and therefore can be 

of particular interest in this analysis. On the other hand, one needs to be very cautious 

in easily removing data points that are suspected outliers, as this process can also 

artificially affect the model properties. 
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Figure 1. Presentation of the data set: fatalities per vehicle (decreasing trend) 

and vehicles per population (increasing trend) 

 
 

4. RESULTS AND MAIN DIAGNOSTICS 

The model presented in Equation 4 was estimated for the 16 countries mentioned 

above and the estimated coefficients and statistics are shown in Table 1. All 

parameters are very significant.  
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Table 1. Non-linear model estimation results (top: base, bottom: after correcting 

for correlation) 

 
 Coefficient  Coefficient      

 

Estimate 

Standard 

t-test Estimate 

Standard 

t-test 

   

 error error    

AT 0,099 0,007 14,962 -1,962 0,054 -36,252    

BE 0,080 0,006 13,215 -2,068 0,069 -30,091    

CY 0,219 0,018 12,262 -0,770 0,108 -7,158    

DK 0,012 0,004 3,204 -3,477 0,291 -11,958    

FI 0,026 0,006 4,597 -2,475 0,162 -15,263    

FR 0,083 0,006 13,151 -2,153 0,073 -29,698    

DE 0,070 0,006 12,469 -2,012 0,070 -28,597    

EL 0,288 0,016 18,252 -0,711 0,023 -31,058    

HU 0,172 0,028 6,260 -0,984 0,082 -11,987    

IE 0,035 0,008 4,540 -2,075 0,151 -13,762    

IT 0,081 0,006 14,078 -1,677 0,060 -27,834    

LU 0,156 0,018 8,626 -1,542 0,104 -14,815    

NL 0,017 0,002 8,384 -2,844 0,091 -31,123    

PT 0,290 0,039 7,398 -0,956 0,075 -12,753    

ES 0,212 0,017 12,716 -0,876 0,049 -17,784    

UK 0,030 0,003 11,403 -2,210 0,076 -28,933    

          

 Coefficient  Coefficient  Coefficient  

 

Estimate 

Standard 

t-test Estimate 

Standard 

t-test Estimate 

Standard 

t-test  error error error 

AT 0,090 0,010 9,303 -2,051 0,096 -21,484 0,3387 0,1255 2,699 

BE 0,077 0,012 6,215 -2,111 0,158 -13,396 0,4487 0,197 2,277 

CY 0,214 0,027 7,994 -0,815 0,180 -4,524 0,2047 0,2905 0,705 

DK 0,015 0,010 1,550 -3,227 0,617 -5,228 0,5686 0,1695 3,355 

FI 0,021 0,009 2,209 -2,687 0,370 -7,273 0,4647 0,1429 3,252 

FR 0,068 0,016 4,329 -2,382 0,251 -9,494 0,5339 0,1798 2,970 

DE 0,069 0,011 6,215 -2,034 0,153 -13,329 0,5282 0,1752 3,015 

EL 0,294 0,025 11,740 -0,701 0,037 -19,013 0,3005 0,2131 1,410 

HU 0,155 0,062 2,516 -1,045 0,218 -4,794 0,5825 0,1784 3,265 

IE 0,034 0,015 2,295 -2,119 0,309 -6,865 0,6081 0,152 4,001 

IT 0,071 0,009 8,243 -1,818 0,116 -15,687 0,3571 0,1819 1,964 

LU 0,131 0,015 8,521 -1,757 0,114 -15,438 0,2458 0,1454 1,691 

NL 0,015 0,003 4,986 -2,969 0,163 -18,200 0,3247 0,1364 2,380 

PT 0,219 0,068 3,230 -1,154 0,196 -5,893 0,5303 0,1314 4,037 

ES 0,135 0,054 2,473 -1,306 0,418 -3,122 0,7992 0,0688 11,619 

UK 0,025 0,006 4,244 -2,374 0,230 -10,333 0,5916 0,2184 2,709 

 

Figure 2 shows the main diagnostics for the estimated models, as per Equations 4, 8, 

10 and 12. Indicative results are shown for two of the largest European countries, 

namely France and Germany. For each country, the residuals per observation are 

plotted, followed by the autocorrelation function (ACF) and the partial ACF (PACF). 

Note that PACF plots start at lag 1, while ACF plots start at 0. Subfigure 2A shows 

the diagnostics for France for the non-linear model, while Subfigure 2E shows the 

same diagnostics for Germany. These results are representative of the other countries 
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as well and suggest that the assumption of independent disturbances is violated. The 

residual plots suggest that residual observations depend on the previous residual. In 

most of the ACF plots, the correlation decays quickly and falls below the limits 

(computed using Bartlett’s formula and indicated with the dotted lines) after one or 

two intervals. Please note that lag-0 autocorrelations have a value of 1 by definition. 

Therefore the fact that these values exceed the limits should not be interpreted as a 

violation of assumptions.  

 

An analysis of the correlograms indicates that serial correlation exists and -if 

untreated- the independence assumption of the regression is violated. Both the 

apparent exponential decay of the autocorrelations and the presence of a significant 

partial autocorrelation of order 1 suggest that a first order autoregressive process may 

be able to capture the serial correlation of the residuals. This is confirmed, as the 

autocorrelation is mostly dealt with in the residuals of the autoregressive models (as 

per Equation 8), diagnostics for which are provided in Subfigures 2B and 2D (for 

France) and 2F and 2H (for Germany).  
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Figure 2. Model diagnostics for two countries (France, Germany) 
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Table 2. Log-transformed model estimation results (top: base, bottom: 

autoregressive model) 
 Coefficient  Coefficient     

 

Estimate 

Standard 

t-test Estimate 

Standard 

t-test 

   

 error error    

AT -2,395 0,057 -42,122 -2,031 0,057 -35,857    

BE -2,521 0,074 -33,904 -2,056 0,077 -26,896    

CY -1,555 0,083 -18,642 -0,818 0,120 -6,808    

DK -4,004 0,278 -14,423 -3,047 0,273 -11,160    

FI -2,985 0,188 -15,884 -1,916 0,166 -11,528    

FR -2,565 0,091 -28,050 -2,236 0,100 -22,443    

DE -2,715 0,068 -40,134 -2,056 0,073 -28,224    

EL -1,210 0,048 -25,150 -0,694 0,024 -28,465    

HU -1,647 0,172 -9,569 -0,919 0,096 -9,567    

IE -3,353 0,224 -14,995 -2,073 0,164 -12,682    

IT -2,395 0,051 -46,635 -1,558 0,054 -29,118    

LU -1,994 0,071 -27,923 -1,671 0,082 -20,433    

NL -4,187 0,088 -47,684 -2,928 0,078 -37,472    

PT -1,340 0,078 -17,150 -1,012 0,053 -19,184    

ES -1,558 0,094 -16,500 -0,878 0,070 -12,540    

UK -3,566 0,117 -30,529 -2,248 0,112 -20,050    

          

 Coefficient  Coefficient  Coefficient  

 

Estimate 

Standard 

t-test Estimate 

Standard 

t-test Estimate 

Standard 

t-test  error error error 

AT -2,452 0,097 -25,263 -2,100 0,103 -20,420 0,451 0,155 2,910 

BE -2,509 0,159 -15,772 -2,045 0,173 -11,850 0,539 0,188 2,862 

CY -1,581 0,109 -14,456 -0,865 0,167 -5,191 0,079 0,300 0,263 

DK -3,526 0,662 -5,324 -2,540 0,675 -3,765 0,688 0,150 4,594 

FI -1,871 1,036 -1,805 0,149 0,713 0,209 0,940 0,040 23,539 

FR -2,954 0,571 -5,177 -2,697 0,711 -3,795 0,748 0,185 4,035 

DE -2,567 1,269 -2,022 0,738 1,270 0,581 0,961 0,020 49,141 

EL -1,184 0,087 -13,568 -0,680 0,045 -14,979 0,431 0,205 2,097 

HU -1,977 0,508 -3,896 -1,110 0,304 -3,653 0,709 0,165 4,290 

IE -2,817 5,391 -0,522 -0,523 0,582 -0,898 0,980 0,066 14,977 

IT -2,360 0,126 -18,768 -1,521 0,149 -10,193 0,686 0,165 4,165 

LU -2,053 0,063 -32,483 -1,760 0,075 -23,359 -0,033 0,184 -0,178 

NL -4,219 0,134 -31,500 -2,963 0,122 -24,254 0,358 0,177 2,030 

PT -1,437 0,145 -9,879 -1,094 0,109 -10,010 0,548 0,158 3,472 

ES -1,948 0,687 -2,837 -1,216 0,760 -1,601 0,849 0,191 4,451 

UK 0,123 2,283 0,054 0,044 0,766 0,057 1,040 0,040 26,168 

 

The estimated coefficients of the log-transformed models are shown in Table 2. The 

model shown in Equation 10 is shown on top, followed by the model presented in 

Equation 12. Similarly to the non-linear model (Table 1), the estimation results are 

unreliable for models with estimated values for j  very close to 1 (such as Finland, 

Germany, Ireland and United Kingdom, highlighted in the table). The term 

"unreliable" here is used to convey inconsistency with expectations about these 

values, i.e. in terms of sign and magnitude. 
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One of the observations that can be made from Tables 1 and 2 is that the base non-

linear regressions provide lower standard errors (respectively higher t-test statistics) 

than their counterparts that have been corrected for serial correlation. Since the 

autoregressive models provide superior fit (as indicated by both the summary 

goodness of fit statistics), as well as satisfy the assumption of independent residuals 

(as indicated by the graphical diagnostics), it may be concluded that the “ordinary” 

non-linear models underestimate the standard errors. An exhaustive discussion of this 

issue in the context of OLS is provided in Petersen [29]. This is a serious potential 

issue with models that ignore violations of the independence assumption, as it could 

lead to the acceptance of non-valid models as true.  

 

The significance of the coefficient b  associated with the motorization level reinforces 

the indications about the validity of this model. Even when correcting for 

autocorrelation, the obtained t-statistics suggest that this coefficient is very 

significant. Therefore, it is inferred that the negative relationship between the 

motorization level and the fatality risk is not circumstantial. In the two following 

sections, further statistical tests will be performed to provide additional insight into 

the properties of the developed models. 

5. MODEL ASSESSMENT 

5.1. "Portmanteau" tests 

In the previous section, the autocorrelations for the various lags have been considered 

individually. A different way to test this type of lack-of-fit of a model is to consider 

the first e.g. 12 autocorrelations as a whole. It should be noted that this value depends 

on the data. A lag of 4 or 5 might be sufficient, and using a lower lag might not 

illustrate the temporal dependency. Larger lags do not add to the inference, but are 

also rather harmless in this context. Denoting the first K autocorrelations as rk â( ) 

(k=1,2,…K) Box and Pierce [7] showed that if the fitted model is appropriate then 

Q = n rk
2 â( )

k=1

K

å  
(13) 

is approximately distributed as c 2 K - p-q( )  where n is the number of residuals used 

to fit the model, p and q are the number of the autoregressive (AR) and moving 
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average (MA) coefficients. On the other hand, if the model is inappropriate, the 

average values of Q will be inflated. Therefore a so-called "portmanteau" test of the 

hypothesis of model adequacy can be obtained by comparing the value of Q against a 

standard c 2  table. Small p-values would imply evidence of serial correlation. Ljung 

and Box [23] argued that the chi-squared distribution does not provide an adequate 

approximation of the distribution of the Q-statistic under the null hypothesis for short 

time-series, while Davies et al. [11] provided empirical evidence to support this 

argument. Ljung and Box [23] proposed a modified statistic (Ljung-Box-Pierce 

statistic): 

Q = n(n+ 2) n- k( )
-1
rk

2 â( )
k=1

K

å  
(14) 

A more detailed presentation of these tests is available in several texts, including Box 

et al. [6], on which this section is based. In the following application, Equation 14 is 

used. 

 

Figure 3 visually presents the portmanteau test results for the four groups of models. 

While the interpretation of the obtained p-values cannot be easily quantified, smaller 

p-values indicate violation of the assumption of independent residuals. Both the non-

linear and the log-transformed models show mostly low p-values (and consequently a 

violation of the assumption of independent residuals). A threshold of 5% (indicated 

by a horizontal dashed line) exceeds several models' lines for the non-linear model 

and all-but-three (Cyprus, Luxemburg and the Netherlands) for the log-transformed. 

The situation is substantially improved for the autoregressive models, with the p-

values being considerably increased. Actually, only a couple of models (Finland and 

Spain) fall below the 5% threshold for the non-linear AR model, and only one (Spain) 

for the log-transformed AR model. 
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Figure 3. Portmanteau test p-values 

5.2.Comparison of predictive results 

Summary statistics of prediction for years 1995-2002 using all four models are 

presented in Figure 4. This data is different from the data-set that was used for 

estimation (1970-1994). The root mean square percent error (RMSPE) statistic [30] is 

used for Figure 4: 

RMSPE =
1

N

xn
0 - xn

1

xn
0

æ

è
ç

ö

ø
÷

n=1

N

å
2

 

(15) 
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where x is the variable of interest, N is the number of observations (years) and 

superscripts 0 and 1 denote observed and fitted measures respectively. RMSPE is one 

of many measures that can be used to assess the predictive accuracy of the various 

models. RMSPE has several desirable properties, e.g. it penalizes larger errors and is 

converted to a percentage, which makes it easier to comprehend, as it is unit and 

variable independent. 

 

Figure 4. Summary goodness-of-fit statistic (RMSPE)  

 

The impact of the autoregressive process in the prediction results is clear, with both 

autoregressive models almost consistently outperforming the base models. The non-

linear AR model performs on average 39% better than the nonlinear model (i.e. the 

average reduction in the RMSPE of the models for the 16 countries that have been 

considered is 39%), while the autoregressive log-transformed model performs on 

average 49% better than the log-transformed model. This is a substantial improvement 

at the cost of just one extra parameter (the AR coefficient j ). Also, the AR log-

transformed model performs on average more than 13% better than the AR non-linear 

model.  
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In absolute numbers, the non-linear and log-transformed models provide sometimes 

inaccurate predictions, ranging between 0.1 and 0.4 in terms of RMSPE. The 

performance of the autoregressive models, on the other hand, is a lot more consistent 

with most models providing predictions well below 0.1. Only two models (Cyprus 

and Luxemburg) have a higher RMSPE (i.e. lower predictive ability). An explanation 

may be found in the fact that these are by far the smaller of the considered countries 

(in terms of population) and hence the sample (not in term of annual observations, but 

in terms of fatalities per year) is smaller for them. 

 

Figure 5 visually presents the prediction performance of the various models for three 

of the larger countries (France, Germany and Italy) as a sample.  
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Figure 5. Visual comparison of predictive performance (France, Germany, Italy) 
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6. MODEL INTERPRETATION 

Figure 6 presents a plot of the estimated model parameters per country, on the basis of 

the non linear AR model. It is noted that, while the log-transformed AR model 

seemed to provide a superior overall performance in terms of RMSPE, the non-linear 

AR model parameters are more intuitive in terms of sign and magnitude. A discussion 

about this point is provided in the conclusion. Subfigure 6A illustrates the parameter 

values of the non-linear base model, while Subfigure 6B reflects the parameters of the 

non-linear AR model. A visual comparison of the two subfigures indicates that the 

two models do not produce vastly different parameter values (with the exception of 

Spain and Portugal, that show a substantial decrease of the value of parameter ). 

Therefore, while the autoregressive model resolves some of the issues due to the 

correlated residuals in the data, the changes in the final model results are not dramatic. 

 

The interpretation of parameter  is fairly straightforward, as it is a positive 

multiplicative parameter, and as such it can be considered as an indicator of the level 

of traffic risk in the country.  Naturally, these parameters are not always directly 

comparable, as the value of the second parameter  also affects the total number of 

fatality rate. As the base of the exponent term is the car ownership rate, which is 

usually less than one, a larger negative value implies a higher overall term. One can 

deduce that parameter  is the dominant parameter, and as such a simplified 

categorization of the countries in terms of their traffic fatalities status could be based 

on that parameter (i.e. their position along the x-axis). Consequently, better 

performing countries are those presenting lower fatality rate combined with increasing 

effect of motorization rate. Several topics can be further investigated. For example, an 

interesting question is the influence of the general level of motorization on the models 

and the values of their parameters. 
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Figure 6. Interpretation of parameters (non-linear AR model) 

 

Combining these observations, safer countries should be to the left and top of Figure 6 

and less safe countries should be in the right and bottom. No countries are located in 

the lower right triangle of the plot, which is a reflection of the fact that, despite their 

differences, the considered countries are developed and have a decent level of road 

safety. It is expected that developing countries may be located closer to the lower 

right corner of the plot. Their objective should be how to move towards the top left 

corner of the plot. This trend might –to a degree- occur due to the increased 

motorization level resulting in lower speeds, but also in a better overall road safety 

culture. However, it would be possible for road safety experts and policy makers in 

these countries to also study the successful policies and measures from the more 
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advanced (from a road safety point of view) countries and try to adapt them and 

incorporate them into their road safety strategies. 

 

Among the countries considered, the least safe countries in terms of safety in Europe 

today are Greece, Portugal, and Cyprus and indeed the respective points are located 

closer to the right and top of the plot. Similarly, the United Kingdom, Finland, the 

Netherlands and Denmark (some of the safest countries in Europe) are closer to the 

left and bottom, without necessarily providing the exact ranking between them. These 

findings provide further validation for the ability of this model to capture existing 

road safety trends. 

7. CONCLUSION 

Modeling road safety is a complex task, which needs to consider both the quantifiable 

impact of specific parameters, and the underlying trends that cannot always be 

measured or observed. The sensitivity of users to road safety campaigns, the improved 

quality of the vehicle fleet, the improvement of the driving skills of the general 

population, and the overall improvement of the condition of the road network are only 

some of the aspects that cannot be easily modeled directly. Therefore, modeling 

should consider both measurable parameters and the dimension of time, which 

embodies all remaining parameters.  

 

In the present research, the development of macroscopic models using both time and 

vehicle fleet as explanatory variables would have also been a meaningful approach. 

However, an alternative approach was opted for, for several reasons. First of all, time 

has some limitations as an explanatory variable as it is not really explaining road 

safety trends but instead reflects indirectly the changes in other parameters. 

Furthermore, a parameter representing time is linear (and uniform across countries) 

and thus limited in the amount of information that it can add to the model.  

 

On the other hand, vehicle fleet may affect the number of fatalities, given that an 

increase in the vehicle number leads to higher average traffic volumes, which in turn 

may translate to a reduction in average speeds. Moreover, an increase of the vehicle 

fleet and total mileage in a country increases the need for more and safer road 

environment, in which the drivers' behaviour tends to be also better [19-20]. Besides, 
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vehicle fleet is acknowledged as a useful alternative measurement of exposure, when 

traffic data are not available. Therefore, there is a causal macroscopic relationship 

between the number of fatalities (or fatality rates) and vehicles (or vehicle 

ownership). In this research, this relation has been investigated and modeled in the 

context of European countries. 

 

Time-series methods have been used to account for and correct temporal correlation 

of the data. It is recognised however that traffic fatality risk also depends on other 

parameters, such as vehicle quality, traffic safety initiatives and regulations, and 

intensity of police enforcement. However, there are a number of reasons that make 

collection of these data across countries very difficult and –even when such data 

exist– they are often not directly comparable. Another important consideration is that 

some of these variables may be endogenous and thus might require special treatment 

in order to not impair the model. 

 

The value of a simple model that could be used for cross-country comparisons can be 

easily motivated, without however claiming to fully explain the road safety 

phenomenon. Therefore, this paper provides a parsimonious model for linking 

motorization level with fatality rates across EU countries and possibly some insight 

on the existing or future trends in other, especially less developed countries, which 

still have not reached the motorization level of EU countries. Examining the road 

safety patterns of countries in this motorization level, policy makers and road safety 

experts in developing countries could foresee these developments and incorporate 

them into their strategies and policies.  

 

Using fatality rate and vehicle ownership data from 16 EU countries for a period of 33 

years (1970-2002) several models were developed, fitted, validated and compared, 

including simple non-linear models, their log-transformations and the related 

autoregressive models. The autoregressive versions of the models were proved to 

overcome the correlation of the residuals and also exhibit superior predictive 

properties. For a couple of countries (Italy and the Netherlands), however, the 

autoregressive model performed poorer than the base non-linear model. Log-

transformed versions of the model also suffer from correlated residuals, and with the 

exception of few cases (especially Finland, Greece, and Hungary) have better or 
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similar predictive capabilities than the non-linear models. The autoregressive log-

transformed models also overcome the issues with the correlated residuals and 

provide superior predictive performance.  

 

However, the estimated coefficients of the AR log-transformed model for five of the 

16 countries are sometimes questionable (in terms of magnitudes and signs), 

suggesting that this model should be applied with caution, taking into account the 

particularities of the case examined. The autoregressive non-linear models therefore 

seem to be a more robust choice for prediction of macroscopic road safety trends, as 

they provide desirable predictive properties, satisfy the assumptions of the model (e.g. 

uncorrelated residuals) and provide intuitive model parameters (in terms of magnitude 

and sign).  

 

The models presented in this research are regression based models and therefore have 

modest data requirements. Considering that annual road safety time-series are often 

small, such models are suitable for this analysis. The length of the time-intervals 

should be such that they provide adequate data for the model estimation and still 

allow for a reasonable validation data set. The choice of the boundaries of the time 

intervals can be important if the time series data exhibit sudden changes that could 

shift the regression line. If such changes are observed in the data then it is 

recommended that the modelers try alternative definitions of the time intervals, in 

order to determine the sensitivity/robustness of the models to the inclusion of one or 

more additional data points. 

 

The results of the presented models can be used to evaluate the road safety 

performance of various countries, identifying poor performers, as well as traffic safety 

leaders. Indeed, as exhibited in the previous section, the model accurately determines 

the poor performers among the considered countries (Greece, Portugal, Cyprus), as 

well as those countries that are leading in terms of their road safety performance 

(United Kingdom, Finland, Netherlands, Denmark). At individual country level, given 

estimates of a country's expected performance, the actual road safety performance of 

that country over the past few years may be assessed. Moreover, by applying the 

models, the expected road safety situation in a country in a "do-nothing" scenario is 

described, so that the potential impact of adopted road safety strategies may be 
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assessed at macroscopic level (e.g. target setting). Furthermore, the study of more 

advanced (in terms of road safety and in general) countries may be applied to predict 

the future evolution of less developed or successful (in terms of traffic safety) 

countries. However, it is stressed that the use of the developed models for prediction 

should be limited within the currently applied domain, as their applicability in ranges 

for which data is not available cannot be verified. 

 

Further research directions include the enrichment of the model with additional 

macroscopic parameters, as well as the investigation of other functional forms and 

model specifications. Additional parameters (such as the Gross Domestic Product, 

GDP) may help separate exogenous effects and isolate road safety trends. Other 

functional forms may also provide valuable insight into the road-safety problem. One 

relevant question is whether road safety trends are similar for best and worst 

performing countries and subsequently to find the inflection points defining the 

thresholds between the changing trends. An alternative modeling approach would 

have been the use of state-space models and structural time-series models, such as 

those proposed by Harvey and Shephard [15], Harvey [14], which belong to the 

family of unobserved component models. One of the advantages of this type of 

models is that they can explicitly model interventions or external road safety measures 

and campaigns. 
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