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Abstract 

Macroscopic modeling of traffic safety can provide insight into this global health 

problem and help policy-makers in both under-developed and developing 

countries adjust their policies in reaction to the changing conditions. The 

objective of this paper is to illustrate how macroscopic road safety data analysis 

can be useful in explaining road safety trends and patterns and thus supporting 

road safety policies and initiatives. Statistical techniques for the macroscopic 

analysis of road safety data are presented, followed by case study results from 

European countries. Practical issues, such as measures of goodness of fit and 

model diagnostics are also discussed. A discussion on emerging trends and state-

of-the-art in the field concludes the paper. 

Keywords road safety; macroscopic analysis; generalized linear models; non-

linear models; state-space models 
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Introduction  

Modeling road safety is a complex task, which needs to consider both the 

quantifiable impact of specific parameters, as well as the underlying trends that 

cannot always be measured or observed. The sensitivity of users to road safety 

campaigns, the improved quality of the vehicle fleet, the improvement of the 

driving skills of the general population, and the overall improvement of the 

condition of the road network are only some of the aspects that cannot be easily 

modeled directly. Therefore, modeling should consider both measurable 

parameters and the dimension of time, which embodies all remaining 

parameters.  

Macroscopic modeling can provide insight into this problem and support policy-

makers in developing countries to adjust their policies in reaction to the 

changing macroscopic conditions. For example, developing insight e.g. regarding 

the expected breakpoints in road safety fatality trends, as identified from the 

developed countries time series, can be applied to performing more accurate 

future predictions for developing countries (which have still not reached the 

motorization levels of developed countries). Macroscopic, in this context, implies 

to the analysis of aggregate (monthly or annual) accident and fatality data, rather 

than the more detailed and disaggregate (in-depth) analysis of individual 

accidents. 

The objective of this paper is to illustrate how macroscopic road safety data 

analysis can be useful in explaining road safety trends and patterns and thus 

supporting road safety policies and initiatives. Several types of models are 

presented in this context, including generalized linear models, non-linear models 

and state-space models. The paper follows a “why-how-what” approach, 

motivating the need for this analysis (why), showing which techniques can be 

used (how) and finally using selected case study results to illustrate typical 

results of the analysis (what). In this way, the reader is exposed to a thorough 

coverage of the models that can be useful in the context of macroscopic data 
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analysis, so that it is then possible to follow specific research directions of 

interest. 

The remainder of this paper starts with a literature review, summarizing the use 

of statistical techniques for the macroscopic analysis of road safety data, 

indicative examples of which are then presented, followed by a discussion of 

their key properties. The methods that can be used to analyze macroscopic road 

safety data are then presented; time series models are first introduced, with an 

emphasis on their functional form (linear, generalized linear and non-linear 

models). State-space models are also introduced, along with the concepts of 

multivariate and multilevel models. These approaches are then demonstrated 

using case study results from Greece and other European countries. A discussion 

on emerging trends and state-of-the-art in the field concludes the paper. 

Literature review 

A macroscopic road-safety model commonly used in the late 60s was proposed 

by Smeed (1968) linking the number of fatalities with the number of vehicles 

and the population. Jacobs (1986) repeated this analysis for a number of 

developed and developing countries using data between 1968 and 1975 while 

Gharaybeh (1994) applied the same formula to assess the development of road 

safety in Jordan, relative to that of other middle-eastern and developing 

countries. Many studies have criticised Smeed’s model because it only 

concentrates on the motorisation level of country and ignores the impact of 

other variables (cf. Broughton, 1991, Andreassen, 1991, while another useful 

review is provided by COST329, 2004, where a detailed analysis of the debate 

surrounding Smeed’s formulas and analysis is available). 

The comparative analysis of macroscopic trends in road-safety-related issues 

among countries and regions has attracted the attention of researchers for 

several decades. A critical review of a number of approaches for modelling road 

safety trends can be found in Hakim et al. (1991) and Oppe (1989). A review of 

these concerns, as well as several alternative approaches for the development of 

road safety models is provided by Al-Haji (2007). Lassarre (2001) presented an 
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analysis of ten European countries’ progress in road safety by means of a 

structural (local linear trend) model, yielding two adjusted trends, one 

deterministic and one stochastic. Intervention functions related to the major 

road safety measures were introduced, while an indicator of the rate of progress 

given risk exposure trends (vehicle-km travelled) was defined.  

Page (2001) presented an exponential formula that yields fatalities as the 

product of all explanatory variables’ influence, which could be transformed to a 

simple algebraic form (first order polynomial with an intercept) by taking the 

logarithm of both sides. Models with several exogenous variables are developed 

and attempts to rank countries based on their road mortality level were made. 

Beenstock and Gafni (2000) show that there is a relationship between the 

downward trend in the rate of road accidents in Israel and other countries and 

suggest that this reflects the international propagation of road safety technology 

as it is embodied in motor vehicles and road design, rather than parochial road 

safety policy. Van Beeck et al. (2000) examine the association between 

prosperity and traffic accident mortality in industrialized countries in a long-

term perspective (1962-1990) and find that in the long-term the relation 

between prosperity and traffic accident mortality appears to be non-linear. 

Kopits and Cropper (2005) use linear and log-linear forms to model region 

specific trends of traffic fatality risk and per income growth using panel data 

from 1963 to 1999 for 88 countries. Abbas (2004) compares the road safety of 

Egypt with that of other Arab nations and G-7 countries, and develops predictive 

models for road safety. 

Other analyses entail a specific road safety related problem, applying 

international macroscopic comparison techniques to a subset of road network 

users, such as novice or young drivers. Twisk & Stacey (2007) presented a 

general study of identified trends in young drivers risk and associated 

countermeasures in certain European countries. The relationship between 

general safety levels and young driver risks is stressed: the impact of general 

safety measures on the subgroup is greater than that of measures specifically 

targeting young drivers, especially for poorly performing countries. 
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Another big topic of research relates to the factors that affect road safety and the 

way that this impact is applied. Several researchers (Hakim et al., 1991; Cameron 

et al, 1993; Newstead et al., 1995, Lord, 2002), using road accident statistics, 

have presumed that the explanatory variables have a multiplicative effect on 

accidents (as opposed to e.g. additive). Henning-Hager (1986) presented a non-

linear regression model to express the relationship between traffic fatalities, 

traffic volumes and the quality of transportation supply and demand in urban 

areas. Qin et al. (2004) showed that the relationship between crashes and the 

daily volume (AADT) is non-linear and varies by crash type, and is significantly 

different from the relationship between crashes and segment length for all crash 

types.  On the other hand, vehicle fleet may affect the number of fatalities, given 

that an increase in the vehicle number leads to higher average traffic volumes, 

which in turn may translate to a reduction in average speeds. Moreover, an 

increase of the vehicle fleet and total mileage in a country increases the need for 

more and safer road environment, in which the drivers' behaviour tends to be 

also better (Koornstra, 1992, 1997).  

Clearly, the topic of macroscopic road safety modeling and forecasting is an 

active research area, where active debate is taking place and interesting 

developments are still being made.  

A look at the data – (Why?) 

In order to understand why it is useful (and practical) to analyze macroscopic 

road safety data, as well as some of the caveats involved in doing so, it is useful to 

look at some indicative data that can be used for demonstration purposes. Figure 

1 presents the number of persons killed and seriously injured per month in 

Greece for the period between 1998 and 2004 (demonstrating the clear road 

safety improvements obtained between 2000 and 2004 in Greece). Besides a 

rather clear decreasing trend, perhaps the most striking feature of this graph is 

the periodicity (annual seasonality) in the data. A failure to identify, capture and 

analyze this trend can result in loss of understanding of the underlying 

phenomenon.  
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Figure 1. Example of seasonal trends / periodicity in macroscopic road safety data 

Many statistical techniques assume independence of observations. Road safety 

data, however, as shown in Figure 1, are often in the form of time-series of 

counts observed during successive time periods, e.g. days, months or years. In 

practice, such observations often tend to be correlated with the respective 

observations from previous years, months or days, i.e. are usually temporally 

correlated. The linear regression model -an attractive and simple method- has 

stringent assumptions that are therefore usually violated when applied to road 

safety data. Another similar assumption is that of linearity (in the parameters). 

In later sections, alternative modeling assumptions are presented within the 

more flexible generalized linear modeling and non-linear regression frameworks.  

Figure 2 presents an overview of key road safety indicators (personal risk 

defined as fatalities per 100.000 population) in several European countries. The 

main observation that one can make from this data is that –in general- there 

seems to be an increasing trend in road accident fatalities/personal risk up to a 

point where this trend is reversed. Understanding why this breakpoint and trend 

reversal happens is clearly an important element of improving road safety in 

countries that have yet not experienced this level.  

Exposure data are very useful in road safety analysis, as they help illustrate the 

underlying trends that lead to the road safety situation. Key exposure measures 

are the vehicle-kilometers or the person-kilometers traveled, or the time 
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traveled. However, collecting or estimating exposure data is a much more 

difficult endeavor and these data are often unavailable for analysis. One way to 

overcome this limitation is to seek proxies, i.e. available (or more easily 

collectable) data that have a high correlation with the actual exposure data. 

Examples of these are the number of vehicles in circulation or the amount of fuel 

sold at gas stations. 

In this case, as shown in the bottom subfigure of Figure 2, motorization data can 

be used as a proxy to exposure data. The data suggest that there may be a point, 

as the motorization level increases, that personal risk stops increasing and starts 

to decrease. If this point can be located, then this may mean that road safety 

decision makers in countries that have not yet reached that breakpoint, might be 

able to foresee it and incorporate it in their strategies and policies. Alternatively, 

knowing about this breakpoint might protect road safety decision makers in 

countries that have not yet reached that point, from believing that they have 

achieved a road safety breakthrough, when they reach it. 

Furthermore, it is worth noting that several countries (such as the Czech 

Republic and Poland in Figure 2) show more than one clear peaks. (In this case, 

one could argue that they are due to the “opening” of their economies in the late 

80s/early 90s, but of course further exploration and verification is required.) 

Similarly, one can identify smaller peaks in all subfigures and explaining them 

could lead to the development of interesting insight into the road safety of these 

countries. 
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Figure 2. Breakpoints and trend reversals in road safety data (adapted from 

Yannis et al., 2011) 
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The increased understanding of trends and the systematic steering of road safety 

related policies and campaigns could improve their effectiveness. For example, 

previous research in Greece analyzing data at the county level has shown a 

significant 2-months time halo effect of enforcement (Agapakis and Mygiaki, 

2003), which – if not explicitly considered- may result in misleading 

observations regarding the effectiveness of the considered measures. Especially 

as regards the distance halo effect, this would concern the case that the effect of 

enforcement would ‘‘cross” a county’s borders to the neighbouring counties of 

the same or neighbouring regions. However, given that the intensification of 

enforcement was not individually decided by local authorities, but was instead 

applied on all counties of Greece, it is considered that the cross-county effects of 

neighbouring counties (and regions) do not significantly affect the within-county 

(or region) effects. 

Of course, it needs to be clearly stated that aggregated, macroscopic data are 

only one aspect of the overall topic of road safety that can provide only part of 

the answer. Other types of data sources that can shed light from different angles 

into the parameters that govern road safety include in-depth accident data 

(Yannis et al., 2010) and medical information data (Petridou et al., 2009). 

Methods - (How?) 

Time-series methods have been used to account for and correct temporal 

correlation, such as that observed typically in macroscopic road-safety data. It is 

recognized however that traffic fatality risk also depends on other parameters, 

such as vehicle quality, traffic safety initiatives and regulations, and intensity of 

police enforcement, which however are not expected to affect the results of such 

macroscopic analysis. Therefore, this section includes a presentation of 

methodological instruments that can be used to develop models linking road 

safety measures and related explanatory data in flexible ways and thus possibly 

offer insight on the existing or future trends for the same or other environments. 



 11  

Generalized Linear Models 

The linear regression model is simple, elegant and efficient, but it is subject to 

the fairly stringent Gauss-Markov assumptions (Washington et al., 2003). If these 

assumptions hold, it can be shown that the solution obtained by minimizing the 

sum of squared residuals (‘least squares’) is BLUE, i.e. best linear unbiased 

estimator. In other words, it is unbiased and has the lowest total variance among 

all unbiased linear estimators.  These assumptions, however, are often violated 

in practice. Yannis et al. (2007a) illustrate how two of these violations can be 

explicitly considered, in particular correlated disturbances; and non-normal 

error structures. The choice of these two violations is not arbitrary; instead it is 

motivated by the fact that these two violations are more relevant to the nature 

(time-series count data) of the road safety data. Generalized linear models (GLM), 

a generalization of the linear regression, can be used to overcome the restriction 

on the normality of the error structure (McCullagh and Nelder, 1989, Dobson, 

1990). Specific treatment of the application of GLM in the presence of serially 

correlated count data is also presented. 

The objective of GLM is to allow for more flexible error structures, besides the 

Gaussian, which is assumed by –linear and nonlinear– regression. The Poisson 

distribution has been considered suitable to counts of car crashes for a long time 

(Nicholson and Wong, 1993). However, the Poisson model -while arguably more 

appropriate than the Gaussian- is not without weaknesses and technical 

difficulties. For example, the assumption of a pure Poisson error structure may 

prove inadequate in the presence of "overdispersed" data (Maycock and Hall, 

1984). Overdispersion reflects more variation in the response than what is 

expected by the Poisson assumption, which assumes that the variance equals the 

mean. An implication of overdispersion is that the estimates of the standard 

errors of the parameters will not be correct, and in fact the standard errors will 

be underestimated. 

A straightforward approach to overcome this issue is to use a quasi-Poisson 

model; i.e. estimate a dispersion parameter for the Poisson model, thus allowing 

it to take values other than one. Maycock and Hall (1984) showed that the 

negative binomial model could also be used as an extension to the Poisson. 
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Miaou (1994) and Wood (2002) have also used the negative binomial model for 

road safety applications. Maher and Summersgill (1996) mention that, quite 

often, the two approaches (quasi-Poisson and negative binomial) may provide 

very similar estimation results. One may then be tempted to think that the two 

models are equivalent and that it does not really matter which model is selected. 

Maher and Summersgill further warn that this may not be the case, as the two 

models may have different prediction properties, as measured, e.g. by the 

prediction error variance. Lord et al. (2005) present the results of an 

examination of the applicability of different models, including Poisson, negative 

binomial (or Poisson-gamma) and zero-inflated Poisson and negative binomial 

models, to the modeling of accident data.  

Furthermore, the generalized linear modeling framework allows the 

consideration of a limited amount of non-linear structures in the developed 

models. For example, several researchers have shown that conventional linear 

regression models lack the distributional property to adequately describe 

collisions. This inadequacy is due to the random, discrete, non-negative, and 

typically sporadic nature that characterize the occurrence of vehicle collisions. 

Several researchers (including Hauer et al.1988, Hakim et al., 1991; Cameron et 

al., 1993; Newstead et al., 1995), using road accident statistics, have presumed 

that the explanatory variables have a multiplicative effect on accidents, i.e. 

  

y = ax1

b x2

c

 (as opposed to e.g. additive, i.e. 

  

y = a + bx1 + cx2).  

Examples of road safety applications involving the use of GLM in temporally 

correlated data include before/after analysis on the impact of red-light camera 

presence in crashes (Retting and Kyrychenko, 2001), investigation of 

relationships between accidents, flows and road or junction geometry, allowing 

for the presence of a trend over time in accident risk (Maher and Summersgill, 

1996), traffic safety comparisons among several counties in France, where the 

time trend of each index (incidence and severity) is the same across counties and 

across road types (Amoros et al., 2003), and estimation of expected junction 

accidents (both in total and disaggregated by severity, road surface condition 

and lighting condition), which allow for the possibility of accident risk varying 

over time (Mountain et al., 1998). White and Washington (2001) developed a 
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logistic regression model to gain insight into the relationship between 

enforcement and the use of safety restraint.  

Generalized linear models facilitate the analysis of the effects of explanatory 

variables in a way that closely resembles the analysis of covariates in a standard 

linear model, but with less confining assumptions. This is achieved by specifying 

a link function, which links the systematic component of the linear model with a 

wider class of outcome variables and residual forms. 

A key point in the development of GLM was the generalization of the normal 

distribution (on which the linear regression model relies) to the exponential 

family of distributions. This idea is not new and was developed by Fisher (1934). 

Many well-known distributions belong to the exponential family, including –for 

example– the Poisson, normal, and binomial distributions. On the other hand, 

examples of well-known and widely used distributions that cannot be expressed 

in this form are the student’s t-distribution and the uniform distribution. The 

generalized linear model can be defined in terms of a set of independent random 

variables, each with a distribution from the exponential family. 

Non-linear regression 

Besides not conforming to the normality and other assumptions, many 

interesting processes may be more adequately modeled by non-linear models in 

practice. Linear regression models might have been a practical necessity in the 

past, but theoretical and computational developments have made the use of 

more elaborate (appropriate, accurate) methods practical. This can also be seen 

in road safety research, where while early work used multiple linear regression 

modeling (assuming normally distributed errors and homoscedasticity), over the 

past two decades there has been a departure from this model. In the previous 

section it was shown that generalized linear models allow for some nonlinear 

relationships to be modeled and relax some restrictions on the distributional 

assumptions of linear regression. Although many scientific and engineering 

processes can be described well using linear models, or other relatively simple 

types of models, there are many processes that are inherently nonlinear. Non-
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linear models can then be used (see e.g. Bates and Watts, 1988). The biggest 

advantage of nonlinear regression over many other techniques is the broad 

range of functions that can be fit.  

A non-linear regression model can be written as: 

Ym = f xm,q( ) + Zm  
(6) 

where f is the expectation function, xm is a vector of associated regressor 

variables or independent variables for the nth case, Ym is the dependent variable, 

 is a vector of parameters to be estimated and Zm are random disturbances. This 

model is of the same general form as the linear model, with the exception that 

the expected responses are nonlinear functions of the parameters. More formally, 

for non-linear models, at least one of the derivatives of the expectation function 

with respect to the parameters depends on at least one of the parameters. Non-

linear regression has been widely used in road-safety related research (e.g. 

Hakim et al., 1991, Qin et al., 2004, among many others).  

The Gauss-Markov assumptions from ordinary least square (OLS) procedures 

still apply in non-linear regression. Therefore, whenever time or distance is 

involved as a factor in a regression analysis, it is important to check the 

assumption of independent residuals. When the residuals are not independent, 

the model for the observations must be altered to account for dependence (e.g. 

moving average or autoregressive models of variable order). 

Of course many other types of models find common use, but not all of them can 

be covered in detail in this article. Examples of such models include multilevel 

models, see e.g. Yannis et al., 2007b, multivariate models, see e.g. Yannis et al., 

2008, for an example of multivariate multilevel models and state-space time-

series analysis, see e.g.  Commandeur and Koopman (2007) for an introduction 

to the topic with practical examples from road safety applications. 
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Case studies Results – (What?) 

Examples of case study results demonstrating the modeling techniques 

introduced in the previous sections are presented in this section. The following 

cases are illustrated: 

 Modeling of past data in order to obtain insight into past trends and 

breakpoints 

 Modeling of data for prediction of future trends (using multiple 

techniques) 

 Analysis of distributional assumptions through appropriate model 

diagnostics 

All models have been estimated using the R Software for Statistical Computing 

(RDCT, 2011).  

Analyzing road safety data, such as those presented in Figure 2, can provide 

answers to many interesting questions from multiple perspectives. For example, 

from a road safety point of view, the following questions are interesting: 

• Is the trend “universal”? What causes it?  

• Does the trend happen at the same time in all countries?  

• Can we use this to make predictions?  

But even from a purely statistical point of view there are interesting question 

relating to the way that these structural changes can be estimated: starting from 

simple piece-wise regression, to estimation of consistent trends given an 

exogenous number of breakpoints, to simultaneous estimation of breakpoints 

and trends.  

Figure 3 summarizes the estimated models using the data in Figure 2 (estimated 

using the segmented R package, Muggeo, 2003, 2008), providing a concise 

overview that can be used to draw conclusions, including the following: 

 Different countries reached specific motorization rates at different (and 

sometimes distant) moments in time (temporal landmarks); 
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 Some of those countries exhibit a break point within a narrow range of 

motorization rate values, implying perhaps similar social and economic 

conditions and/or similar road safety culture; 

 This range is different for certain subgroups among the examined 

countries, providing a hint that some grouping may be of meaning in 

geographic and socioeconomic context. 

It is noted that the estimated models are linear (between breakpoints) and have 

been estimated using motorization rate as the explanatory variable (top 

subfigure). In the middle subfigure the same data are plotted against time for 

visualization purposes. 

Before strong conclusions can be drawn based on the interpretation of such 

results, several considerations must be made to ensure that the models are 

indeed directly comparable, e.g. the data definition across countries. The 

numerator of the motorization rate (fatalities), for example, may be regarded 

more or less well-defined, after many efforts put at pan-European level for a 

common definition (30-day fatalities). As far as the denominator is concerned, 

however, available data of vehicle fleet show some slight discrepancies, e.g. the 

total number of vehicles in Spain reveals some irregular steps for specific years. 

Furthermore, each vehicle class is ruled by specific particularities, presumably 

implying a camouflage for systematic errors (Katsochis et al., 2006). The 

application of common definitions should be further examined, so that there is 

an as-common-as-possible base for comparison. 
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Models of personal risk vs. time
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Figure 3. All estimated models. Top → personal risk vs. motorization, Bottom → 

personal risk vs. time (Adapted from Yannis et al., 2011) 
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Figure 4 shows the values predicted by the quasi-Poisson model. The dashed line 

shows the actual observed number of persons killed and seriously injured in 

Greece (excluding the two major metropolitan areas of Athens and Thessaloniki). 

The thick solid line represents the model predictions and 95% confidence 

intervals are also shown with thinner solid lines. The data show a clear 

seasonality, which is maintained even as the magnitude of the fatalities 

considerably decreases over time. Interpreting this annual periodicity is an 

involved process that requires additional data, relating e.g. to weather conditions. 

During the winter months fatalities decrease. The climate in Greece is mild, 

meaning that there are limited extreme dangerous conditions during the winter 

(e.g. frost, ice). On the other hand, daytime is shorter and in general people tend 

to limit their discretionary trips, which translates into a decrease in the vehicle-

kilometers traveled. On the other hand, during the summer the day is longer, 

people drive more and therefore are exposed more to risk. Furthermore, August 

is typically the vacation month in Greece. This may have several implications, e.g. 

more interurban and less urban traffic due to holidays, which may result in 

higher accident severity. Another possible cause for the increase in the fatalities 

in August is that drivers spend more time in unknown roads (while on vacation) 

or perhaps drive more while tired or after having consumed alcohol. 
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Figure 4. Quasi-Poisson model predictions (adapted from: Yannis et al, 2007a) 
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State-space models offer another way to analyze macroscopic road safety data. 

Figure 5 presents the prediction results from a latent risk time-series (LRT) 

analysis of annual fatality and motorization data in Greece. Data from the period 

1960-2008 have been used to make predictions up to 2020, including confidence 

intervals. The model specification allows for the incorporation of “interventions”, 

i.e. modeling points in time during which significant events occurred that 

influenced the evolution of the modeled phenomenon, shown by the broken lines 

in the model results. One question that arises from Figure 5 relates to the 

expanding margins of the prediction. Considering that road safety is a very 

complex process, affected by a number of natural causes (such as weather) and 

man-made effects (such as the economic conditions, the development of new 

motorways and traffic-related laws and regulations), it is reasonable to expect 

such a wide range. Disseminating this information to the general public, or even 

policy-makers and decision-makers, who might not be as comfortable with the 

underlying statistics, might require a different action plan. For example, instead 

of showing this one scenario, including prediction and confidence intervals, one 

might choose to show the prediction from a small number of scenarios (e.g. 

pessimistic, most likely, optimistic). Certainly, this is not a trivial exercise. 
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Figure 5. Latent risk time-series with interventions model prediction 
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Model diagnostics 

The advent of powerful computers and sophisticated software has made the 

specification and estimation of complex model forms possible. However, with 

power come perils and responsibility, as it is not uncommon for researchers to 

estimate complex models without being fully aware of the assumptions that 

these models must comply to and the issues that originate from their violations. 

Knowing which diagnostics to use and how to apply and interpret them correctly 

is at least equally important as specifying and estimating a model. While a small 

number of model diagnostics are mentioned in this section, the appropriate tools 

for each model application should be sought from the relevant literature. 

A large number of aggregate tests have been developed for the assessment of the 

goodness of fit of alternative models. However, there are several pitfalls that 

should be avoided when attempting to use such measures. For example, it should 

be noted that the usual tests for comparing nested models estimated using 

maximum likelihood estimation, such as the Akaike Information Criterion, AIC, 

(Akaike, 1973) or the Schwarz/ Bayesian Information Criterion, BIC, (Schwarz, 

1978), are not suitable for comparison across these (non-nested) models. For 

example, AIC or BIC could be used to compare models with different numbers of 

parameters and the same likelihood function (except for the number of 

parameters), e.g. two normal or two Poisson models, but not one normal and one 

Poisson. 

Some model diagnostics for the analysis of model residuals are presented in 

Figure 6 for two models: one in which the dependent variable is assumed to 

follow a Poisson distribution and one in which it is assumed to follow a quasi-

Poisson distribution. Normal scores plot (QQ plot) of standardized deviance 

residuals are presented in the top subfigures. The x-axis represents the 

standardized deviance residuals, while the y-axis represents the quantiles of the 

standard normal. The dotted line in the QQ plot (top) is the expected line if the 

standardized residuals are normally distributed, i.e. it is the line with intercept 0 

and slope 1. If the deviance residuals were normally distributed, all points on the 
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plot would fall on this dotted line. The Poisson model residuals clearly do not 

follow a normal distribution. The quasi-Poisson model deviance residuals, on the 

other hand, are practically normally distributed. 
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Figure 6. Model fit diagnostic plots (adapted from: Yannis et al., 2007a) 

 

The bottom subfigures feature plots of the Cook statistics against the 

standardized leverages. The standardized leverage of the i-th observation xi can 

be computed as (Belsley et al., 1980): 
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hi =
1

n
+

x i - x i( )
n -1( )sx

2

 
(7) 

where n is the number of observations, the overbar indicates the predicted value, 

and 

   

sx is the standard error. There are two dotted lines on each plot. The 

horizontal line is at 8/(n-2p) where n is the number of observations and p is the 

number of parameters estimated. Points above this line may be points with high 

influence on the model. The vertical line is at 2p/(n-2p) and points to the right of 

this line have high leverage compared to the variance of the raw residual at that 

point. If all points are below the horizontal line or to the left of the vertical line 

then the line is not shown. For example, in the quasi-Poisson plots, the horizontal 

line is not present, since no point lies above it. 

Figure 7. Residual autocorrelation plots 
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Finally, an important consideration when dealing with serially correlated data is 

the autocorrelation of the residuals. Residual plots should be analyzed to check 

for autocorrelation, while autocorrelation (ACF) and partial autocorrelation 

function (PACF) plots are also very helpful. Figure 7 shows the ACF and PACF 

plots for the Poisson and quasi-Poisson models discussed above, indicating that 

there are no serious autocorrelation issues in the residuals of either model (as 

the only value that exceeds the threshold is in the partial ACF for a lag of five). 

Tests for other properties and assumption may also be used as needed (e.g. 

normality, heteroscedasticity, skewness). Tests for serial correlation are of 

particular interest in time-series contexts (e.g. “portmanteau” and Ljung-Box 

tests, Ljung and Box, 1978). A large number of measures have also been 

developed for the assessment of the predictive performance of these models, 

such as RMSPE, MPE, ME, MEN (Pindyck and Rubinfeld, 1997). 

Discussion 

Many other techniques can and have been used for the analysis of macroscopic 

road safety data, including classification of data. For example, Wegman and Oppe 

(2010) used Singular Value Decomposition and Multiple Correspondence 

Analysis of a number of observed characteristics to group European countries 

into more homogeneous classes in terms of road safety, while Gitelman et al. 

(2010) used Principal Components Analyses and Factor Analyses on European 

countries’ data in an attempt to design a composite indicator for road safety.  

Another way that the analyses presented in this paper could be further enhanced 

is through stratification involving specific vehicle types and population subsets 

(e.g. age groups or gender) (Stipdonk et al., 2010). It will then be much easier to 

distinguish cases and consider the presence of true impact due to GDP, vehicle 

fleet or other growth-related parameters; so, it is not advised to neglect the 

study of such elementary indicators, especially when difficulties are encountered 

in the reliability of more exposure-oriented analyses (e.g. using vehicle-

kilometres travelled). Further research directions include the enrichment of the 

model with additional macroscopic parameters, as well as the investigation of 
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other functional forms and model specifications. Additional parameters (such as 

the Gross Domestic Product, GDP) may help separate exogenous effects and 

isolate road safety trends and can be used to construct appropriate indicators. 

Hollo et al. (2010) use road safety performance indicators to analyze the trends 

in casualties in several Central European countries.  

Other functional forms may also provide valuable insight into the road-safety 

problem. One relevant question is whether road safety trends are similar for best 

and worst performing countries and subsequently to find the inflection points 

defining the thresholds between the changing trends. This question may be 

proved very beneficial mainly for the less developed countries from a road safety 

point of view. An alternative modeling approach would have been the use of 

structural time-series models, such as those proposed by Harvey and Shephard 

(1993), Harvey (1994), which belong to the family of unobserved component 

models. 
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