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Abstract  

Data collected for building a road safety observatory include observations made 

sequentially through time. Examples of such data, called time series data, include 
annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle 
kilometers driven in a country, as well as the corresponding values of safety 

performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc). 
Some commonly used statistical techniques imply assumptions that are often 
violated by the special properties of time series data, namely serial dependency 

among disturbances associated with the observations. The objective of this paper 
is to demonstrate the impact of such violations to the applicability of standard 
methods of statistical inference, which leads to an under or overestimation of the 

standard error and consequently may produce erroneous inferences. Moreover, 
having established the adverse consequences of ignoring serial dependency 
issues, the paper aims to describe rigorous statistical techniques used to overcome 

them. In particular, appropriate time series analysis techniques of varying 
complexity are employed to describe the development over time, relating the 
accident-occurrences to explanatory factors such as exposure measures or safety 

performance indicators, and forecasting the development into the near future. 
Traditional regression models (linear, generalized linear and non-linear) are 
presented, discussing possible violations of their assumptions when dealing with 
time series data and the possibility to address these issues by adding suitable mod 
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ifications. Dedicated time series analysis techniques, such as the ARMA-type and 

DRAG approaches are discussed next, followed by structural time series methods, 

which are a sub-class of state space methods. The paper concludes with general 

recommendations and practice guidelines for the use of time series analysis in road 

safety research.  

Keywords: Road safety, time series analysis, regression, ARIMA models, DRAG 

model, state space methods, structural time series methods, statistical theory  

1. Introduction  

Time series analysis is used in road transport and road safety research for 

describing, explaining and forecasting trends at an aggregate level. The technique 

is applied to road safety indicators aggregated over an area (a country, road type or 

accident type, or combination thereof) and regular time intervals. Road safety 

indicators such as the number of injury accidents and victims – among which the 

number of road fatalities in particular – are chosen for measuring road safety at for 

instance a national level.  

Since the 1980’s, a systematic approach to modeling the road risk process has 

emerged: it consists of relating risk indicators to all of their determinants and to 

account for road safety measures simultaneously (Hakim et al., 1991). To this end, 

risk indicators and risk factors have been defined at different levels of the road risk 

process: in the DRAG approach (Gaudry, 1984, Lassarre, 1994, Gaudry and 

Lassarre, 2000) these are road demand, accident risk, and accident severity.
1 

The 

three-level approach refers to the two dimensions of road risk (the risk that an 

accident occurs and the risk that a person is injured in that accident), on the one 

hand, and to the fact that exposure to risk is the inevitable primary risk factor on the 

other hand.  

A review of time series analysis of road safety trends as performed at the 

national level in Europe since the 1980’s highlights a progress in the time series 

analysis techniques: from descriptive towards explanatory models (see Bergel, 

2008 and Bergel-Hayat, 2008), and from deterministic towards stochastic models 

under the form of structural models, see Harvey (1989),  

1

The name DRAG is formed by the acronym of the French words “Demande Routi`ere, 

Accidents, et leur Gravit´e”, which translates into “Demand for Road use, Accidents and 
their Severity”.  



Durbin and Koopman (2001), Commandeur and Koopman (2007), and Bijleveld et 
al. (2008).  

Research streams stemming from the former COST 329 project (COST329, 

2004) and the International Cooperation on Time series Analysis (ICTSA, 

2000-2006) network converged in a coherent common approach for modeling and 

comparing the development in road safety trends among different countries. This 

common approach was formalized within Work Package 7 of the SafetyNet project 

dealing with “Data Analysis and Synthesis”.  

Not all types of models are appropriate for analyzing changes in sequential 

measurements of casualty data sets in the road safety field. The present paper 

contains a review of the different types of time series analysis techniques studied 

and applied within the SafetyNet project, with a focus on how to overcome the 

problem of dependencies between model residuals (measured by serial 

correlation). The importance of this issue for proper statistical inferences is outlined 

in Section 2.  

For all considered techniques, whether they handle time dependencies ex-

plicitly or not, a standardized approach was followed in describing the successive 

steps (objective of the technique, model definition and assumption, data set and 

research problem, model fit, estimation, diagnostic and interpretation of application 

results) in conducting the modeling. Detailed information for understanding each of 

these steps can be found in the Methodology report (Dupont and Martensen, 

2007b) and in the Manual (Dupont and Martensen, 2007a) produced by the 

members of Work Package 7 of the SafetyNet project. In this paper, the main 

features of each technique are presented, illustrating their use, outcomes, and 

interest through some applications.  

The paper is structured as follows. The impact of ignoring serial correlation in 

time series residuals is first highlighted in Section 2. Classical statistical techniques 

are then discussed in Section 3 while dedicated techniques that handle time 

dependency explicitly are presented in Section 4. The paper concludes with a 

summary, along with recommendations for analyzing road safety developments at 

an aggregate level.  

2. The impact of time dependencies  

Many road traffic data consist of time series: sets of observations that are 

sequentially ordered over time. Examples are the annual or monthly number of 

road traffic accidents in a country, its annual or monthly number of road  



traffic fatalities, its annual or monthly number of vehicle kilometers driven, its 

annual or monthly values on safety performance indicators, etc.  

Whenever one is interested in studying and analyzing such sequentially 

ordered observations, special issues arise. In this section we illustrate with a simple 

example what these special issues are, and how they can be dealt with by using a 

special family of analysis techniques collectively known as time series models.  

The example consists of the logarithm of the total annual number of road traffic 

fatalities observed in Norway for the period 1970 − 2009, as displayed with circles 

in Figure 1. Since the period spans 40 years, there are n = 40 observations. In 

order to try and capture the dynamics of this time series, we first naively perform a 

classical linear regression of these 40 sequentially ordered observations on time.  

Typically, in simple classical linear regression a linear relationship is assumed 

between a criterion or dependent or endogenous variable y, and a predictor or 

independent or exogenous variable x such that  

yi = α + βxi + εi,εi ∼ NID(0,σ
ε 

2

) (1)  

where i =1,...,n and n is the number of observations. The expression  

εi ∼ NID(0,σ
ε 

2

) (2)  

in (1) is shorthand notation for: the residuals εi are assumed to be normally and 

independently distributed with mean equal to zero and variance equal to σ
ε 

2 

.  

Now suppose that the dependent variable y in (1) is the just mentioned series of 

the logarithm of the number of Norwegian road traffic fatalities. Also, suppose that 

the independent variable x in (1) consists of the numbered consecutive time points 

in the series (thus, x =1, 2,..., 40). The usual scatter plot of these two variables – 

including the best fitting line according to classical linear regression model (1) and 

its 95% confidence limits – is shown in Figure 1. The equation of the regression line 

in Figure 1 is  

α +ˆ yˆi =ˆβxi =6.2958 − 0.02114 xi,  

with error variance σC
ε 

2 

=0.00936. The standard t-test for establishing whether the 

regression coefficient  



 

Figure 1: Classical linear regression results for logarithm of annual number of Norwegian 
fatalities, including 95% confidence limits.  



ˆ β = −0.02114 deviates from zero yields ˆ 

β −0.02114  
t =_ = _  σaε

2 

0.00936   n  

i=1
(xi−x¯)

2 

5330  

−0.02114  
== −15.95.  

0.00132  
Since the value of this t-test is associated with a p-value of 2E-18, the linear 
relationship between the criterion variable y and the predictor variable x is 
extremely significant. When the assumptions for classical linear regression are 

valid we may conclude that time is a highly significant predictor of the logarithm of 
the number of Norwegian road traffic fatalities, and that there is a negative relation 
between these two variables: as time proceeds the logarithm of the number of 

fatalities decreases.  

However, one issue has completely been overlooked in this analysis. The 

validity of the just mentioned t-test is, amongst others, based on the fundamental 

assumption that the 40 observations in the time series, after their correction for the 

intercept α and the exogenous variable x, are independent of each other, as implied 

by (2). That the observations are not independent becomes more obvious by 

connecting them with lines, as has been done in the top graph of Figure 2. 

Inspection of the latter graph shows that the observations in a certain year tend to 

be more similar to the observation of the previous year than to other earlier 

observations.  

The dependencies between the observations are also reflected in the residuals 

of model (1) shown at the bottom of Figure 2. Positive values of the residuals tend 

to be followed by further positive values, while negative values tend to be followed 

by further negative values, a clear sign that the residuals may not be independent 

as a result of their serial correlation. Diagnostic tests such as the Box-Ljung test for 

autocorrelation also confirm that the assumption of residual independence is not 

satisfied in the current analysis.  

For the present analysis this means that all standard errors are too small, and 

the 95% confidence interval around the regression line (which is based on the 

standard error of regression) shown in Figure 1 clearly reflects this problem. 

Instead of the two out of 40 observations that are expected to exceed the 95% 

confidence limits, we find that almost half of them (i.e., 18) are located outside 

these limits. The value of −15.95 for the t-test of the regression coefficient is 

therefore also flawed, and certainly too large.  

These issues can be solved by somehow absorbing the time dependencies  



 

Figure 2: Classical linear regression results for logarithm of annual number of Norwegian 
fatalities (top), and residuals (bottom).  



between the observations into the model predictions. One way to achieve this is by 
adding explanatory variables to the classical linear regression model in the hope 

that these explanatory variables – being time series also – will absorb at least part 
of the dependencies in the criterion variable. In fact, a misspecified model may 
suffer from many issues. In this paper it is however assumed that all relevant 

factors are included in a model. The second more general – and in the absence of 
suitable explanatory variables only possible – approach is to apply dedicated time 
series models such as ARMA-type and structural time series models (hereafter 

called state space models) for the analysis of time series data. ARMA-type and 
state space models handle the dependencies between the observations 
constituting a time series by absorbing them directly into the model. In state space 

models this is achieved by allowing the intercept and/or the regression coefficient – 
that are constants in classical linear regression – to vary over time.  

As an example, consider the results of applying a what is called local level with 

fixed slope model (Harvey, 1989) to the logarithm of the number of Norwegian 

fatalities series. In this model the remaining time dependencies between the 

observations are handled by allowing the intercept α in model  

(1) to vary over time, as follows:  

yt =αt + βxt + εt,εt ∼NID(0,σ
ε 

2

)  
, (3) 

αt+1 =αt + ξt,ξt ∼NID(0,σ
ξ 

2

) 

where t =1,...,n, and n is again the number of observations. In the second equation 
in (3), which defines a random walk, dependencies in the observed time series are 

dealt with by letting the intercept at time t + 1 be a direct function of the intercept at 
time t. In this way it takes into account that the observed value of the series at time 
point t + 1 is usually more similar to the observed value of the time series at time 

point t than to other previous values in the series. Compared to model (1), model 

(3) requires the estimation of one extra parameter which is σ
ξ 

2 

.  

Applying model (3) to the logarithm of the number of Norwegian fatalities series, 

we find that yˆt = αˆt − 0.02334 xi,  

for t =1,...,n, with variances σC
ε 

2 

=0.00381 and σC
ξ 

2 

=0.00347. The values of the 

latter ˆyt are plotted at the top of Figure 3, while the values of the residuals εt 

obtained with model (3) are graphed at the bottom of Figure 3.  



 

Figure 3: Time series analysis results for logarithm of annual number of Norwegian fatalities, 
including 95% confidence limits (top), and residuals (bottom).  



The standard t-test for establishing whether the regression coefficient  
ˆ 
β = −0.01986 deviates from zero now yields ˆ 

β −0.02334  
t == = −2.43.  

sˆβ 0.00960 Since the value of the latter t-test is 

associated with a p-value of 0.020, the relation between the logarithm of the 

number Norwegian fatalities and time is still significant, but only at the 2.5% level. 

As the values of the regression coefficient obtained with classical linear regression 

and with time series analysis are very similar, the large difference between the 

values of the two t-tests can be almost completely attributed to the large 

differences in their standard errors: 0.00132 for classical linear regression versus 

0.00960 for time series analysis. The former standard error is based on the 

residuals shown at the bottom of Figure 3. The assumption of independence of 

these residuals is not rejected with a Box-Ljung test. The appropriateness of model 

(3) is also reflected in the 95% confidence limits around its predictions as displayed 

at the top of Figure 3: In the present analysis only three of the forty observations 

exceed the 95% confidence limits. In conclusion, we have indicated adverse effects 

of neglecting serial correlation present in observations that are sequentially ordered 

over time. Statistical tests based on standard techniques like classical linear 

regression easily result in ‘overoptimistic’ (or the opposite, over conservative) or 

even plain erroneous conclusions. Dedicated time series analysis techniques like 

ARMA type and state space models, on the other hand, explicitly take the time 

dependencies between the observations into account, thus greatly improving the 

chances of obtaining residuals that do satisfy the model assumptions, and allowing 

to reliably test whether the estimated relationships between dependent and 

independent variables in the analysis are statistically meaningful or not.  

3. Classical techniques  

This section outlines the classical regression techniques and their extensions, 

as they apply to the field of serially correlated road safety time series data.  

3.1. Classical linear regression models  

The linear regression model is the most widely used model, as it is relatively 

straightforward and easy to apply and interpret. However, linear  



regression is based on a set of fairly stringent assumptions (see, for instance, 

Washington et al., 2003). If these assumptions are satisfied, it can be shown that 

the solution obtained by minimizing the sum of squared residuals is unbiased and 

has the lowest total variance among all unbiased linear estimators. These 

assumptions, however, are often violated in practice. For example, the linear 

regression model may not properly handle the time dependencies between 

consecutive observations. Therefore, the residuals obtained with this technique 

usually do not satisfy the important assumption of independence. As discussed and 

illustrated in Section 2, this limitation may result in inappropriate confidence 

intervals and in statistical tests that are overoptimistic or overpessimistic about the 

relation between variables, among others.  

When the model assumptions are violated, other model forms need to be 

considered. The generalized linear model is considered in its time series aspects in 

Section 3.2 and the suitability of some distributions that can be applied to serially 

correlated road safety data is discussed. Nonlinear least squares models are 

considered in Section 3.3 as another family of models for which the treatment of 

time dependencies is additionally introduced.  

3.2. GLM models  

Generalized linear models (e.g., McCullagh and Nelder, 1989, Dobson, 1990, 

Gill, 2000) can be used to overcome some of the restrictions of classical linear 

regression. This technique is more flexible than classical linear regression in the 

sense that it allows for error distributions within the exponential family of 

distributions. Among others, this family includes the normal distribution, which is the 

one assumed in classical linear regression, the Poisson distribution and the 

negative binomial distribution.  

Just like classical linear regression models, generalized linear models require 

uncorrelated error terms. As indicated in Section 2 time series data require special 

consideration in this respect, as neighboring errors are likely to be correlated. It is 

sometimes possible to include a large number of explanatory variables in a linear 

regression model, resulting in new serially uncorrelated residuals (and, therefore, 

the linear model theory would apply). There are, however, two difficulties with such 

a strategy. First, it may not be easy to identify the appropriate explanatory variables 

that would reflect the serial correlation. Second, and perhaps more importantly, the 

additional variables included in the model to reduce the serial correlation may dilute 

the effects of the main explanatory variables of interest, thus potentially affecting 

the interpretation of the model. Yannis et al. (2007) used variants  



of the generalized linear model framework for monthly casualty and police 

enforcement data from Greece for a period of six years. The developed models 

include sinusoidal terms to capture the serial correlation of observations. Several 

statistical goodness-of-fit diagnostic tests have been performed for the results of 

the estimated models, and the predictive capabilities of the models are 

investigated. The residuals of the quasi-Poisson and negative binomial models do 

not show any serial correlation. The signs of the estimated coefficients for all 

models are consistent and intuitive. In particular, a negative coefficient value for the 

number of breath alcohol controls indicates that the number of persons killed and 

seriously injured decreases as the intensity of breath alcohol controls increases.  

3.3. Non-linear models  

By using nonlinear models (e.g., Bates and Watts, 1988), even more re-

strictions of classical linear regression can be overcome. The biggest advantage of 

this technique over the previously mentioned is the broad range of functions that 

can be fitted. Many processes, as in road safety, are inherently nonlinear. This 

flexibility of nonlinear regression is also a caveat, since similarly good fits can be 

obtained with very different functional forms, whereas presumably only one of them 

represents the real underlying process in the best manner. These different models 

can be adequate for interpolation purposes, but may produce very different 

predictions when used to extrapolate,  

i.e. to predict values outside the scope of the estimation data set (forecasting).  

As an example of the application of the non-linear relationship between the annual 

number of fatalities, vehicles and population at a country’s level (Smeed, 1949) was 

further investigated using annual data from 17 European countries between 1970 

and 2002 in Yannis et al. (2011). The 25 first years of the data, i.e. 1970–1994, 

have been used for fitting the models while the seven last years have been used for 

validating the model. It was demonstrated that, with the strict Smeed’s 

specification, the assumption of independent (in particular uncorrelated) 

disturbances was violated for most countries. Four extensions of Smeed’s 

specification that tried to correct for correlation of the disturbances have also been 

tested to estimate the fatality rate for the 17 countries. Among them, an 

autoregressive nonlinear model was selected as it outperformed the other ones, 

while also overcoming the issue of serially correlated disturbances. The two 

estimated parameters for each country were interpreted, which led to separate the 

17 countries into safer countries  



(among which the United Kingdom and the Netherlands at one extreme) and less 

safe countries (among which Greece and Portugal at the other extreme).  

4. Dedicated techniques  

For time series analysis the most important drawback of the classical linear, 

generalized linear and nonlinear regression models is that they do not naturally 

take into account the time dependencies between the consecutive observations of 

a time series. To adequately deal with these time dependencies, dedicated time 

series analysis techniques, such as ARMA (autoregressive moving average)-type 

models, its special case DRAG, and state space models can be employed.  

It should be noted that ARMA-type and state space models are two types of 

model that have often been used for time series analysis of road safety indicators 

(Bergel, 2008; Bergel-Hayat, 2008). The first type of model typically consists in 

modeling an observed variable in reference to its past values, whereas the second 

one consists in the decomposition of an observed variable into its fundamental (and 

unobserved) parts assumed to be potentially stochastic: a local linear trend, a 

seasonal (if required), and residuals.  

The remainder of this section focuses on these two types of time series models 

with the additional assumption of the disturbances having a Gaussian distribution.  

4.1. ARMA-type models  

ARMA models (in the case of stationary data – which roughly means that they 

result from observations of an underlying process that is constant in mean and 

variance over time) and ARIMA models (in the general case of non-stationary data, 

which is more common in road safety research) enable to describe the dynamics of 

a process over time and to extrapolate it into the future, without any call to 

additional variables and with the only assumption that the process dynamics will 

stay unchanged until the forecast horizon (Box et al., 1994), (Brockwell and Davies, 

1987; Brockwell and Davis, 1998). Explanatory and intervention variables can also 

be included in ARMA and ARIMA models, and the additional corresponding 

regression coefficients can be estimated and interpreted.  

For the analysis of road safety data, a disadvantage of ARIMA modeling may be its 

concept: the trend and the seasonal are removed before the modeling itself is 

performed on the stationary part of the process. The emphasis  



is on describing the dynamics of this latter process, by means of estimating a 

(small) number of relevant coefficients parameters. This is sufficient for many 

applications.  

4.1.1. Background  

ARMA models focus on describing the dynamics (the relationship between its 

values at different time points) of the stationary sample process Y =(y1,y2,...,yn). 

This relevant property of stationarity allows separating Yt in two parts: the one 

related to the past at time t, and the part that is new at time t – which is therefore 

called the “innovation”– in such a way that this latter component is a white noise, 

and is therefore called the innovation white noise.  

Thus, the value Yt taken by the process at time t, can be expressed as a 

function, and more precisely as a linear combination, of its passed values 

Yt−1,Yt−2,... , and of the innovation white noise ut. As different equivalent 

formulations can all be used for describing the process dynamics, for reasons of 

parsimony, a formulation that can be chosen such that Yt is expressed as a linear 

combination of a small number (p) of its past values, and of a small number (q) of 

the past values of the disturbances.  

This can be written the following way:  

Yt = φ1yt−1 + ··· + φpYt−p + ut + θ1ut−1 + ··· + θqut−q,  

where φ1,φ2,...,φp,θ1,θ2,...,θq are p + q unknown parameters, and ut is the 
innovation disturbance.  

In the general case where stationarity cannot be assumed, it is convenient to 

assume that another stationary process exists, which is derived from Yt by removing 

its trend and its seasonal component. An easy way for doing this, as recommended 

by Box et al. (1994), is to apply a what is called filter of differences to the process Y 

t, as many times as necessary until the result, the filtered process, can be 

considered as fulfilling the property of stationarity, and therefore be fitted with an 

ARMA model itself. In practice this comes to removing the trend and seasonality 

from a non stationary process, in other words to solving the first order non 

stationarity. The fact that the filtered or integrated process obtained by applying an 

appropriate filter of differences to Yt is fitted with an ARMA is equivalent to say that 

Yt is fitted with an ARIMA (or integrated ARMA). The second order stationarity can 

also be obtained by deriving another process from the initial one. The logarithmic  



transformation is therefore currently applied to the initial data in order to stabilizing 

their variance.  

Exogenous – also called independent or explanatory – variables may also be 

considered. In that case, a single model can be constructed, comprising:  

-the observations of the endogenous stochastic process, i.e. the sample of data 
Y =(y1,y2,...,yn).  

-the values taken by the k exogenous variables Zit,i =1,...,k, is assumed to be 
known.  

It is natural to distinguish several kinds of exogenous variables, depending on 

whether they affect the trend, the seasonal component, or the irregular component 

of the process Yt. Moreover, effects of exogenous variables can be local – over 

time (the effect may be ‘short-lived’), or permanent. It seems quite natural, again, to 

distinguish the dummy variables, which are created (outside the model) as 

witnesses of a local, isolated or repeated, effect usually having values zero or one, 

and the variables of measure of a phenomenon (of which the value is actually 

measured), assumed to be linked with the process Yt, and which may have a 

permanent effect. As an example, climate and calendar variables can be used for 

modelling the seasonal component, or the residual; the variables used to model the 

trend are of a different nature, insofar as one can expect their effect to extend over 

time.  

The ARMA and ARIMA models with explanatory variables can generally be 

written as  

YCt =φ1YCt−1 + ··· + φpYCt−p + u1+  

θ1ut−1 + ··· + θqut−q  

YCt =Yt − g(Zt)  

with YCt the process corrected for the explanatory variables, and ut the innovation 
disturbance of the process YCt.  

In that general specification, Yt and Zt =(Z1t, Z2t,...,Zkt)
Y

, t =1,...,n may have been 

pre-transformed (e.g. by filter of differences or logarithmic transformation) in such a 

way that YCt can be assumed to be stationary.  

ARMA or ARIMA models with explanatory variables can also be seen as 

regression models with ARMA or ARIMA residuals, the two formulations being 

equivalent. It is relevant to determine whether the exogenous variables  



 

do have an effect on Y or on the variations of Y , after the trend and the seasonal 

components have been filtered out.  

4.1.2. Applications  

The use of ARIMA models is demonstrated in this section as applied to the 

following non stationary road safety time series data:  

• Annual number of road fatalities in Norway from 1970 to 2003 (note that 
this is a shorter version of the data analyzed in Section 2 which contains six 
additional years);  

• Monthly number of drivers killed and seriously injured (KSI) in the UK 
from January 1969 to December 1984; and  

• Monthly number of injury accidents and fatalities in France from January 
1975 to December 2001.  

These datasets are illustrated in Figures 1 and 4 through 7. The estimated 

exogenous parameters, the dynamics parameters and the goodness of fit criteria of 

all ARIMA models presented in this section are provided in Tables 2 through 4.  

An ARIMA(0, 1, 1) was fitted on the logarithm of the 1970–2003 number of 

Norwegian fatalities series and the model diagnostics were significant as all 

parameters were significant and the residuals could be considered as independent 

(i.e. tests did not reveal evidence against this assumption). At the same time, it was 

demonstrated on this example that this ARIMA (0,1,1) representation without 

constant term was equivalent to a local level representation of the class of the state 

space models discussed in Section 4.3.  

A multiplicative ARIMA(2, 0, 0)(0, 1, 1)12 was then fitted on the logarithm of the 

monthly number of drivers KSI in the UK (Harvey and Durbin, 1986). The effect of 

the obligation in the UK from February 1983 onwards for motor vehicle drivers of 

wearing a seat belt was investigated using an intervention variable. The effects of 

the risk exposure and the petrol price variations, were also investigated by adding 

two other variables the model: the monthly car traffic index (more precisely the 

monthly number of vehicle-kilometers driven by cars in the UK), and the monthly 

prices of petrol in the UK.  



 

Figure 4: The monthly number of UK drivers killed or seriously injured, for January 1969  

– December 1984.  



 

Figure 5: The monthly number of fatalities in France, for January 1975 – December2001.  

The final model formulation is shown in (4):  

Φ(B)(I − B12) log(yt) −  

2 

βilog(xit) − λwt = µ + Θ(B)at, (4) i=1  

where yt denotes the number of UK drivers KSI, x1t and x2t denote the car traffic 
index and the petrol price respectively, wt denotes a dummy variable equal to 1 
starting February 1983 and 0 before, Φ(B) and Θ(B) are two polynomials of the 

delay operator B, and at is white noise.  

The models diagnostics were satisfactory, in the sense that all parameters were 

significant, and that the residuals could be considered as independent. One 

exception is to be made for one exogenous effect parameter related to the traffic 

index variable, which could only be considered as significant at the 70% confidence 

level. Thus, a 15% reduction in the number of UK drivers KSI from February 1983 

onwards was observed, and an elasticity of -0.32 of  



 

Figure 6: The monthly number of injury accidents in France, on A-level roads (top) and 
motorways (bottom), for January 1975 – December 2001.  



 

Figure 7: The monthly number of fatalities in France, on A-level roads (top) and motor-ways 
(bottom), for January 1975 – December 2001.  



the number of UK drivers KSI with regard to the petrol price was obtained. The 
empirical performance of the model was evaluated by computation of different 

kinds of goodness of fit measures, and its performance, measured for instance with 
the mean average percentage error (MAPE, e.g. Makridakis et al., 1997, p. 41).  

The third case study uses data from France (January 1975 to December 2001) 

to demonstrate that the ARIMA model with exogenous (explanatory and 

intervention) variables can become an efficient tool for analyzing the development 

of the aggregate number of injury accidents and fatalities, by taking account risk 

exposure (measured with oil sales as a proxy of monthly risk exposure for the 

whole of France), the car fuel price and factors of climatic nature (the highest 

temperature of the day, the rainfall height and the occurrence of frost, averaged or 

aggregated on the month, see Bergel-Hayat (2008) for more details with respect to 

the choice and measure of the climatic factor). The possible effects of two 

presidential amnesties on ‘driving faults’, in 1988 and in 1995, on the number of 

fatalities in France were also questioned through intervention analysis, as well as 

the effect of a fatal accident that received much attention in the media (a young 

woman was killed by a drunk driver) (Bergel et al., 2002).  

The same approach was extended to other risk indicators such as the number 

of injury accidents and fatalities on A-level roads and on motor ways for the same 

period, and the preceding form was extended to the following form:  

I Φ(B)(I − B12) log(yt) − βilog(xit)− i=1 JK βjlog(xjt) − 
λkwkt = µ + Θ(B)at, (5) j=1 k=1  

where yt is the number of injury accidents or fatalities, the I variables xit measure 
exposure and the economic factors, the J variables xjt measuring the transitory 

factors, the wkt (k =1,..., 3) are three dummy variables
2 

modeling level interventions, 
Φ(B) and Θ(B) are two polynomials of the  

2

In all three cases, the intervention effect was first modeled by a more general form, 

which turned out to be a step (constant every month within the intervention period, and zero 
outside)  



delay operator B, and at is white noise.  

As can be seen in Tables 2 to 4 that summarize the estimation results of the 

models in this section, a general remark is that, in addition to the dynamics 

parameters, numerous exogenous parameters appear to be highly significant.  

There is no surprise that the risk exposure indicator was the most significant 

when measured with the number of vehicle kilometers on disaggregated networks 

(the French motor ways and A-level roads). The petrol price was found to be 

significant on the only case of the number of UK drivers KSI. For France, the 

climatic variables were found to have distinct effects at the aggregate level and on 

the main roads or motorways, as the weather effect is expected to differ (in 

intensity and sign) according to the type of network. Finally, the intervention 

analysis enabled to answer the main question raised in the application, which was 

to determine whether there was a statistical relationship between the number of 

fatalities in France and the perspectives of an amnesty of driving faults some 

months before the presidential election, in 1988 and in 1995.  

The results suggested that fatalities increased by 7% per month on average 

during the 10 months preceding the first presidential amnesty in 1988 – and by 4% 

respectively during the 7 months preceding the second one in 1995. In absolute 

numbers, more than 500 deaths could thus have been attributed to the presidential 

amnesty in 1988. To the contrary, the attention that the media devoted to the fatal 

drunk driver accident case seems to have saved lives, as fatalities were found to 

decrease by 6% per month on average during the 7 months following this tragic 

accident. On motorways in particular, the fatalities increased in the same proportion 

in 1988.  

Second, the introduction of exogenous variables in the pure ARIMA models 

enabled the part of variance explained by the model to increase significantly 

(between 2,1% and 24% according to the indicator) and the absolute error made, 

measured in mean over the period and in percentage, to decrease significantly 

(between 4,4% and 11,9% respectively). Nevertheless, the normalized BIC 

decreased less significantly, and even happened to increase (varying between 

-0,5% and +1,3%), and this is due to the fact that this criteria is meant to take 

account of the parsimony of the model.  

4.2. DRAG models  

With the exception of a non-linear transformation of the variables, the DRAG model 

can be considered as an application of a special case of the  



ARMA models, the AR (autoregressive) model with explanatory variables, specially 

designed for road safety analysis. The DRAG model has (at least) three levels: 

exposure, accident risk, and accident severity. The trend and the seasonal 

component are not removed by filtering but are modeled by the introduction of 

numerous explanatory variables, whether related to exposure, economic factors, 

transitory factors, behavioral factors or road safety measures. The use of a 

particular non-linear transformation – the Box-Cox transformation (Box and Cox, 

1964) – allows a flexible form of the link between the dependent variable and each 

of the explanatory variables, but, for different reasons, that transformation is not 

systematically used.  

Although the DRAG model has a powerful theoretical framework, its application 

requires voluminous databases (Gaudry and Lassarre, 2000) and therefore may 

currently not be easily applied to (EU) road safety data.  

4.3. State space models  

In the state space approach to time series analysis (see the classics by Harvey, 

1989, and Durbin and Koopman, 2001, and the introductory treatment by 

Commandeur and Koopman, 2007) a time series is typically decomposed into a 

number of unobserved components. This is why the state space models discussed 

in this paper are commonly called structural time series models, or unobserved 

components models.  

One such decomposition was already illustrated in Section 2 where it was shown 

that the logarithm of the annual number of Norwegian fatalities series for the years 

1970–2009 can be appropriately described with the local level and fixed slope 

model defined by (3). In this example there are two unobserved components: a 

time-varying intercept α t, which is called the level component since it determines 

the “height” or level of the trend, and a fixed regression weight β, which is called the 

slope component because it determines the angle between the trend and the time 

axis. When a component (such as α t) is allowed to vary over time it is a stochastic 

component; when it is not allowed to change over time (such as β) it is a 

deterministic component. When β in model (3) is not only fixed over time but also 

fixed on zero, we obtain the most simple unobserved components model: the local 

level model. When β in model (3) is allowed to vary over time, on the other hand, 

we obtain the local linear trend model where both the level and the  



slope component are treated stochastically:  

yt =αt + εt,εt ∼ NID(0,σ
ε 

2

) αt+1 =αt + βt + ξt,ξt ∼ NID(0,σ
ξ 

2

), (6) βt+1 

=βt + ζt,ζt ∼ NID(0,σ
ζ 

2

)  

for t =1,...,n. In the state space literature the first equation in (6) – which links the 

observations with the unobserved components – is called the observation or 
measurement equation, while the second and third equation  

– which determine how the unobserved components evolve over time – are 
collectively called the state or transition equations. It is interesting to note that (6) 

reduces to (1) when σ
ξ 

2 

= σ
ζ 

2 

= 0, as is easily verified, which shows that classical 

linear regression model (1) is just a special case of local linear trend model (6).  

If we are not dealing with annual but with quarterly, monthly, weekly, daily, etc., 

data, it is often required to also capture the periodicity present in such time series 

observations (see for example the monthly series displayed in Figure 4). This is 

achieved by adding a seasonal component to either the local level or the local 

linear trend model. If we let s denote the periodicity of the seasonal, then the 

modeling of a seasonal component requires s − 1 state equations. For quarterly 

data, for example, we could apply the following local level and what is called a 

dummy seasonal model:  

yt =at + γ1,t + εt,  

αt+1 =αt + ξt, γ1,t+1 = − γ1,t − γ2,t − γ3,t + ωt, (7) γ2,t+1 =γ1,t,  

γ3,t+1 =γ2,t,  

for t =1,...,n, where the normally and independently distributed terms ωt with mean 

zero and variance σ
ω 

2 

allow the seasonal component with s −1=3 state equations to 

slowly change over time. An important difference with the ARIMA models 
discussed in Section 4.1 is that when a time series exhibits a trend and a seasonal 

component (i.e., is non stationary) these components  

– instead of being filtered out of the time series – are explicitly modeled in a state 
space context.  

Just as in the ARMA-type approach, to all these descriptive unobserved 

component models explanatory and intervention variables can be added.  



Here, we illustrate the unobserved component models approach by analyzing the 

logarithm of the monthly number of UK drivers KSI series already discussed in 

Section 4.1, and displayed in Figure 4. For this series, it is found that a local level 

and deterministic seasonal model yields an appropriate description of the data. The 

corresponding model residuals satisfy all the model assumptions of independence, 

homoscedasticity, and normality, although the diagnostic test for normality is 

somewhat close to the critical value. This is caused by the fact that the large level 

change that occurred in February 1983 as a result of the introduction of the seat 

belt law in the UK is neglected in the present analysis.  

Therefore, two variables are added to the previous descriptive model (7): the 

logarithm of the continuous variable “petrol price” (denoted by xt), and a dummy 

intervention variable (denoted by wt) for the evaluation of the effect of the seat belt 

law. Algebraically, this model can be written as  

log(yt)=µt + γ1,t + βt log(xt)+ λt wt + εt,  

αt+1 =αt + ξt, γ1,t+1 = − γ1,t − γ2,t − γ3,t + ωt, γ2,t+1 =γ1,t, (8) γ3,t+1 

=γ2,t,  

βt+1 =βt + τt, λt+1 =λt + ρt, for t =1,...,n, where εt ∼ NID(0,σ
ε 

2

), ξt ∼ NID(0,σ
ξ 

2

), ωt ∼ 

NID(0,σ
ω

2 

), τt ∼ NID(0,σ
τ 

2

) and ρt ∼ NID(0,σ
ρ

2

). The intervention variable wt again 

contains zeroes at all time points before February 1983, and ones at time points at 

and after February 1983. To shorten the exposition, the local level and seasonal 

model plus intervention and explanatory variables is presented in (8) as if we are 

dealing with quarterly data. For the actual analysis of the monthly UK drivers KSI 

series where s = 12, however, not three but s − 1 = 11 state equations are required 

for the modeling of the seasonal component. It may be noted that in unobserved 

component models we may treat the regression component βt in the one before last 

state equation of (8) stochastically, thus allowing this regression coefficient to vary 

over time. Here, however, only deterministic regression components are 

considered, meaning that σ
τ 

2 

and σ
ρ 

2 

are fixed on zero from which it follows that βt = 

β1 = β and λt = λ1 = λ for t =1,...,n.  



 

Figure 8: Local level plus intervention and explanatory variables (top), deterministic 
seasonal (middle), and residuals (bottom) for the logarithm of the number of UK drivers KSI 
series.  

The assumptions of model (8) are that the observation, level, and seasonal 

disturbances εt, ξt, and ωt are all mutually independent, and normally distributed 

with zero means, and variances equal to σ
ε 

2 

, σ
ξ 

2

, and σ
ω

2 

, respectively.  

For the UK drivers KSI series it is again found that treating the level component 

in (8) stochastically and the seasonal component deterministically yields the most 

appropriate model. For this model, maximum likelihood estimates of σ
ε 

2 

=0.00403 

and σ
ξ 

2 

=0.00027 for the disturbance variances are obtained, and maximum 

likelihood estimates of −0.2376, and −0.2767 for λ1 and β1, respectively. The latter 

parameter estimates both significantly deviate from zero, and indicate that the seat 

belt law of February 1983 was associated with a reduction of 21.1% (i.e., 

100(exp(λ1) − 1))in the number of UK drivers KSI , while a 1% raise in the price of 

petrol was associated with a 0.28% reduction in the number of UK drivers KSI (i.e., 

equal to β1).  

Figure 8 displays all the components of this analysis. The sudden drop of −0.2376 

units in February 1983 in the model predictions in the top graph  



is clearly visible. The (deterministic) seasonal component in the middle graph of 

Figure 8 indicates that in the years 1969–1984 the month of April was always the 

safest month while the months of November and especially December always 

resulted in the largest number of drivers KSI. We end the discussion of this 

illustration by noting that the residuals in the bottom graph of Figure 8 satisfy all of 

the model assumptions, while the value of the normality test that was almost 

significant in the previous analysis is much smaller in the present case due to the 

inclusion of the intervention variable for February 1983.  

4.4. Equivalencies  

The core methods used by the state space models and those used for the 

ARMA-type models have a lot in common if not are identical. As a matter of fact, 

each models may have an “identical twin” in the other approach, but with other 

parameterizations. This implies that in practice, the identification process may end 

up with formally different but statistically indistinguishable models.  

Two examples of equivalencies between ARIMA models and state space 

models described in Sections 4.1 and 4.3 were discussed, and the relationships 

between the model parameters were checked on the basis of their estimations 

(provided by STAMP (Koopman et al., 2009) for the state space models and SPSS 

for the ARIMA models). Nevertheless, as these equivalencies only hold between 

well-defined specifications, other close specifications may in practice be obtained.  

With the first example, it was demonstrated that the logarithm of the annual 

number of Norwegian road traffic fatalities in 1970–2003 could equally be modeled 

with a local level model or with an ARIMA(0,1,1) model without constant; 

nevertheless, in practice, an ARIMA(0,1,1) with constant was retained in Section 

4.1. With the second example, it was demonstrated that the logarithm of the 

monthly number of UK drivers KSI could equally be modeled with a local level with 

seasonal model or with an ARIMA(0, 1, 1) (0, 1, 1)12 model without constant; 

nevertheless, in practice an ARIMA(2, 0, 0) (0, 1, 1)12 model was retained in 

Section 4.1.  

5. Conclusions  

Road safety data are voluminous and varied in the sense that several types of data 

and several dimensions are involved. The frequency of measurement  



of the road safety data varies: road safety data is mostly measured annually or 

monthly and sometimes weekly or even daily. Furthermore, the data comprises 

both national totals and disaggregated data for regions, for sections of the 

population (e.g. age classes, males, females, etc.), for vehicle types, or for road 

types among others. Between countries, but also between periods for the same 

country and between different types of data, there may exist large differences with 

respect to the availability, the periodicity, and reliability of (disaggregated) data.  

The above-mentioned characteristics of the data and the different needs for 

analyzing the several time series and their interrelations – i.e. monitoring, 

explaining, and forecasting – make road safety analyzes complex and not 

straightforward. Furthermore, it appears that the time dependencies in road safety 

developments often do not allow for the application of cross-sectional statistical 

techniques. As such, the application of dedicated state-of-the-art time series 

analysis techniques is advocated.  

5.1. Summary of methods for time series analysis  

In this paper, several techniques used for the analysis of time series are 

presented. Classical linear regression is a standard technique, which is frequently 

used for the analysis of time series because of its straightforwardness and 

efficiency. However, this technique does not properly consider the time 

dependencies between consecutive observations, nor does it consider alternatives 

for some other assumptions. Therefore, the residuals obtained with this technique 

often do not satisfy the most important model assumptions, e.g., the assumption of 

independence. The latter problem may lead to statistical test results which are 

overoptimistic or too pessimistic about the relations between variables and also to 

poor forecasts, among others. Generalized linear models can be used to overcome 

part of the restrictions of classical linear regression. This technique is more flexible 

than classical linear regression in the sense that it allows for all error distributions 

within the exponential family of distributions. Among others, this family includes the 

normal distribution, which is the one assumed in classical linear regression, the 

Poisson distribution and the negative binomial distribution. Another extension in 

comparison with classical linear regression is that what is known as a link function 

can be defined to impose restrictions to the model output, which can be useful, for 

example, when the log-transformation is used to enforce positive forecasts.  



By using nonlinear models even more restrictions of classical linear regression 

can be overcome. The biggest advantage of this technique over the previously 

mentioned is the broad range of functions that can be fitted. This flexibility of 

nonlinear regression is also a caveat, since similarly good fits can be obtained with 

very different functional forms, whereas presumably only one of them represents 

the real underlying process in the best manner. These different models can be 

adequate for interpolation purposes, but may produce very different predictions 

when used to extrapolate, i.e. to predict values outside the scope of the estimation 

data set (forecasting).  

A common advantage of the parametric linear and nonlinear regression models 

is the efficient use of data. Good estimates of the unknown parameters in the 

model can be produced with relatively small data sets. Another shared advantage 

is a fairly well-developed theory for computing confidence, prediction and 

calibration intervals.  

However, for time series analysis the most important drawback of the classical 

linear, generalized linear and nonlinear regression models is that they do not 

naturally take into account the dependencies between the consecutive 

observations of a time series. To adequately deal with these dependencies, 

dedicated time series analysis techniques, such as ARMA-type (autoregressive 

moving average) analysis, its special case DRAG, and state space analysis could 

be employed.  

ARMA models (in the case of stationary data) and ARIMA models (in the most 

general case of non-stationarity data, which is the usual situation in road safety) 

enable to describe the dynamics of a time process and to extrapolate it in the 

future, without any call to additional variables and with the only assumption that the 

process dynamics will stay unchanged at the forecast horizon. Explanatory and 

intervention variables can also be included in ARMA and ARIMA models, and the 

additional corresponding regression coefficients can be estimated and interpreted.  

For the analysis of road safety data, a disadvantage of ARIMA modeling may 

be its concept: the trend and the seasonal are removed before the modeling itself is 

performed on the stationary part of the process. The emphasis is on describing the 

dynamics of this latter process, once it has been corrected for the influence of 

explanatory and intervention variables, by means of estimating a small number of 

relevant coefficients.  

The DRAG model is an application of a special case of the ARMA models, the AR 

(autoregressive) model with explanatory variables, specially designed for road 

safety analysis. The DRAG model has (at least) three levels: ex 



posure, accident risk, and accident severity. The trend and the seasonal 

component are not removed by filtering but are modeled by the introduction of 

numerous explanatory variables, whether related to exposure, economic factors, 

transitory factors, behavioral factors or road safety measures. The use of a 

particular non-linear transformation allows a flexible form of the link between the 

dependent variable and the explanatory variables. The DRAG model has a 

powerful theoretical framework, but needs voluminous databases and therefore 

currently cannot appropriately be applied to EU road safety data.  

In state space models, also known as structural time series models or 

unobserved components models, an observed time series is typically decomposed 

into a number of components. The level, the slope and the seasonal are assumed 

to be random components – effectively meaning that they may gradually change 

over time, which may be an important advantage for longer time series – and are 

estimated for obtaining an adequate description of an observed time series. 

Explanatory and intervention variables can also be added in order to find 

explanations for the observed development in the series.  

Contrary to ARIMA models, in state space modeling the trend and the seasonal 

are not removed but explicitly modeled. The focus here is on observing the 

development over time of the – usually unobserved – components, and mainly the 

development of the trend. Contrary to other decomposition techniques, the 

randomness of the trend is investigated, and described through its level and slope.  

It should however be considered that the core methods used by the state space 

models and the ARMA-type models have a lot in common if not are identical. As 

described in Section 4.4, many models have an ‘identical twin’ in the other 

approach, but with other parameterizations. This means that in practice, the 

identification process may end up with formally different but statistically 

indistinguishable models.  

5.2. Recommendations  

For the descriptive, explanatory, or forecasting analysis of time series from road 

safety research, using dedicated time series analysis techniques such as 

ARMA-type or state space models is recommended. To obtain a ‘quick and dirty’ 

insight in the data and their possible interrelations, classical linear regression but 

also generalized linear models and nonlinear regression can be used. However, the 

user should always be aware of their limitations and  



therefore never forget to test the model assumptions. As such, linear and nonlinear 

regression models can be used as a first step in the analysis of road safety time 

series data. Should the residuals of such analyses display evidence of serial 

correlation, then dedicated time series techniques like ARMA-type or state space 

methods should be applied to obtain more reliable results. These two types of 

methods are not mutually exclusive as each type of model may also be written 

under different forms, and equivalencies between certain well-defined 

specifications have been empirically demonstrated. However, the emphasis should 

be put on the main objective addressed by the model, which fundamentally differs 

as regards the two types of dedicated techniques. The introduction of exogenous 

variables in these models also responds to different objectives, whether for 

descriptive purposes mainly as in the case of the weather variables, or for policy 

purposes. In all cases, the performance of these explanatory models is significantly 

improved when compared with the similar pure descriptive models.  
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Table 2: The exogenous parameters -Summary. (*) t-value between 1 and 2, (**) t-value 
larger than 2  

Traffic Price Summer volume 
temp Norwegian fatalities  

Winter 
temp  

Rainfall 
height 
(×10−5)  

Occurrence 
of Frost  

Interv. 
Var. 1 
-0.184 
(**)  

Interv. 
Var. 2  

Interv. 
Var. 3  

UK drivers KSI 0.21 ?0.297 
(*) (**)  

   -0.163 
(**)  

  

French fatalities 
0.096 -0.012 (*)  

0.001 
(**)  

0.002 (**)  
2.81 
(**)  

0  
-0.054 
(*)  

0.071 
(**)  

0.042 
(*)  

French injury accidents on motorways 0.765 
0.002 0.001 (**) (**) (*)  

8.76 
(**)  

0.007 (**)  -0.025  
0.078 
(*)  

-0.03
9  

French injury accidents on A-level roads 
0.526 0 -0.00004 (**)  

6.07 
(**)  

-0.001  
-0.036 
(*)  

0.057 
(*)  

0.007  

French fatalities on motorways 
1.788 0.001 (**)  

0.002 
(*)  

1.73  0.012 (*)  -0.044  
0.145 
(*)  

-0.10
5 (*)  

French fatalities on A-level roads 0.598 
0.001 0.001 (**) (*) (*)  

8.38 
(**)  0.004 (*)  

-0.054  
0.09 (*)  

0.086 
(*)  

 φ1  φ2  φ3  θ1  θ12  µ  

Norwegian fatalities        
    -0.432   -0.02  

    (**)   (*)  

UK drivers KSI        
 0.429  0.298    -0.898  

-0.01
8  

 (**)  (**)    (**)  (**)  

 0.378  0.279    -0.889  -0.01  

 (**)  (**)    (**)  (**)  

 0.283  0.235    -857  
-0.01

5  

 (**)  (**)    (**)  (**)  

French fatalities        
 0.264  0.187  0.064   -0.907  

-0.02
2  

 (**)  (**)  (*)   (**)  (**)  

 0.149  0.191  0.231   -0.883  
-0.02

6  

 (**)  (**)  (**)   (**)  (**)  

French injury accidents on motorways        
 0.328  0.262    -0.841  

0.02
3  

 (**)  (**)    (**)  (**)  

 0.339  0.259    -0.845  
-0.02

3  

 (**)  (**)    (**)  (**)  

French injury accidents on A-level roads        
 0.337  0.192    -0.831  

-0.03
6  

 (**)  (**)    (**)  (**)  

 0.341  0.225    -0.837  
-0.04

6  

 (**)  (**)    (**)  (**)  

French fatalities on motorways        



 



 

Table 3: The dynamics parameters -Summary. (*) t-value between 1 and 2, (**) t-value 
larger than 2  

Traffic Price Summer volume 
temp Norwegian fatalities  

Winter 
temp  

Rainfall 
height 
(×10−5)  

Occurrence 
of Frost  

Interv. 
Var. 1 
-0.184 
(**)  

Interv. 
Var. 2  

Interv. 
Var. 3  

UK drivers KSI 0.21 ?0.297 
(*) (**)  

   -0.163 
(**)  

  

French fatalities 
0.096 -0.012 (*)  

0.001 
(**)  

0.002 (**)  
2.81 
(**)  

0  
-0.054 
(*)  

0.071 
(**)  

0.042 
(*)  

French injury accidents on motorways 0.765 
0.002 0.001 (**) (**) (*)  

8.76 
(**)  

0.007 (**)  -0.025  
0.078 
(*)  

-0.03
9  

French injury accidents on A-level roads 
0.526 0 -0.00004 (**)  

6.07 
(**)  

-0.001  
-0.036 
(*)  

0.057 
(*)  

0.007  

French fatalities on motorways 
1.788 0.001 (**)  

0.002 
(*)  

1.73  0.012 (*)  -0.044  
0.145 
(*)  

-0.10
5 (*)  

French fatalities on A-level roads 0.598 
0.001 0.001 (**) (*) (*)  

8.38 
(**)  0.004 (*)  

-0.054  
0.09 (*)  

0.086 
(*)  

 φ1  φ2  φ3  θ1  θ12  µ  

Norwegian fatalities        
    -0.432   -0.02  

    (**)   (*)  

UK drivers KSI        
 0.429  0.298    -0.898  

-0.01
8  

 (**)  (**)    (**)  (**)  

 0.378  0.279    -0.889  -0.01  

 (**)  (**)    (**)  (**)  

 0.283  0.235    -857  
-0.01

5  

 (**)  (**)    (**)  (**)  

French fatalities        
 0.264  0.187  0.064   -0.907  

-0.02
2  

 (**)  (**)  (*)   (**)  (**)  

 0.149  0.191  0.231   -0.883  
-0.02

6  

 (**)  (**)  (**)   (**)  (**)  

French injury accidents on motorways        
 0.328  0.262    -0.841  

0.02
3  

 (**)  (**)    (**)  (**)  

 0.339  0.259    -0.845  
-0.02

3  

 (**)  (**)    (**)  (**)  

French injury accidents on A-level roads        
 0.337  0.192    -0.831  

-0.03
6  

 (**)  (**)    (**)  (**)  

 0.341  0.225    -0.837  
-0.04

6  

 (**)  (**)    (**)  (**)  

French fatalities on motorways        



 

 

Table 4: Goodness of fit criteria -Summary  

Traffic Price Summer volume 
temp Norwegian fatalities  

Winter 
temp  

Rainfall 
height 
(×10−5)  

Occurrence 
of Frost  

Interv. 
Var. 1 
-0.184 
(**)  

Interv. 
Var. 2  

Interv. 
Var. 3  

UK drivers KSI 0.21 ?0.297 
(*) (**)  

   -0.163 
(**)  

  

French fatalities 
0.096 -0.012 (*)  

0.001 
(**)  

0.002 (**)  
2.81 
(**)  

0  
-0.054 
(*)  

0.071 
(**)  

0.042 
(*)  

French injury accidents on motorways 0.765 
0.002 0.001 (**) (**) (*)  

8.76 
(**)  

0.007 (**)  -0.025  
0.078 
(*)  

-0.03
9  

French injury accidents on A-level roads 
0.526 0 -0.00004 (**)  

6.07 
(**)  

-0.001  
-0.036 
(*)  

0.057 
(*)  

0.007  

French fatalities on motorways 
1.788 0.001 (**)  

0.002 
(*)  

1.73  0.012 (*)  -0.044  
0.145 
(*)  

-0.10
5 (*)  

French fatalities on A-level roads 0.598 
0.001 0.001 (**) (*) (*)  

8.38 
(**)  0.004 (*)  

-0.054  
0.09 (*)  

0.086 
(*)  

 φ1  φ2  φ3  θ1  θ12  µ  

Norwegian fatalities        
    -0.432   -0.02  

    (**)   (*)  

UK drivers KSI        
 0.429  0.298    -0.898  

-0.01
8  

 (**)  (**)    (**)  (**)  

 0.378  0.279    -0.889  -0.01  

 (**)  (**)    (**)  (**)  

 0.283  0.235    -857  
-0.01

5  

 (**)  (**)    (**)  (**)  

French fatalities        
 0.264  0.187  0.064   -0.907  

-0.02
2  

 (**)  (**)  (*)   (**)  (**)  

 0.149  0.191  0.231   -0.883  
-0.02

6  

 (**)  (**)  (**)   (**)  (**)  

French injury accidents on motorways        
 0.328  0.262    -0.841  

0.02
3  

 (**)  (**)    (**)  (**)  

 0.339  0.259    -0.845  
-0.02

3  

 (**)  (**)    (**)  (**)  

French injury accidents on A-level roads        
 0.337  0.192    -0.831  

-0.03
6  

 (**)  (**)    (**)  (**)  

 0.341  0.225    -0.837  
-0.04

6  

 (**)  (**)    (**)  (**)  

French fatalities on motorways        


