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ASSESSMENT OF VARIOUS EXPOSURE PROXIES  1 
FOR MACROSCOPIC ROAD SAFETY PREDICTION 2 

 3 

ABSTRACT 4 

Road safety is a major global health problem and no effort should be spared in trying to limit 5 
its impacts. Modeling road safety is a complex task, which needs to consider both the 6 
quantifiable impact of specific parameters, as well as the underlying trends that cannot always 7 
be measured or observed. Macroscopic data are often not available, or not in the form that 8 
they are desired. Therefore, it is often required to attempt to consider alternative sources of 9 
data, which may be correlated with the modeled phenomenon.  10 

The objective of this research is to investigate the suitability of alternative proxy variables for 11 
macroscopic road safety modeling, using three suitable exposure proxies: (i) number of 12 
vehicles in circulation, (ii) GDP and (iii) fuel consumption. Several structural time-series 13 
models have been developed for each proxy for two Mediterranean countries with many 14 
similar socio-economic characteristics: Greece and Cyprus. 15 

Based on the findings of this analysis, a number of observations can be drawn. Proxy 16 
variables can provide reasonable results, when exposure data are not available. Furthermore, 17 
even in two countries with many similarities the selected proxy measure differs. This suggests 18 
that the underlying conditions that make a variable a suitable proxy for exposure is complex 19 
and needs further investigation. 20 

  21 
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INTRODUCTION 1 

Road safety is a major global health problem and no effort should be spared in trying to limit 2 
its impacts. Modeling road safety is a complex task, which needs to consider both the 3 
quantifiable impact of specific parameters, as well as the underlying trends that cannot always 4 
be measured or observed. One of the key relationships in road safety links fatalities with risk 5 
and exposure (see also the discussion around Equation 2 later in the paper), where exposure 6 
reflects the amount of travel, which in turn translates to how much travelers are exposed to 7 
risk. It is reasonable to expect that –for the same level of risk– when there is a higher amount 8 
of travel, fatalities may increase, solely due to the increased exposure. Macroscopic data are 9 
often not available, or not in the form that they are desired. For example, the desired exposure 10 
measure for traffic is usually vehicle-kilometers; however, the estimation of such a variable is 11 
a complex task and such data are often not available. Therefore, it is often required to attempt 12 
to consider alternative sources of data, which may be correlated with the modeled 13 
phenomenon. Such data are often called proxy variables.  14 

A macroscopic road-safety model commonly used in the late 60s was proposed by Smeed (1) 15 
linking the number of fatalities with the number of vehicles and the population. Jacobs (2) 16 
repeated this analysis for a number of developed and developing countries using data between 17 
1968 and 1975 while Gharaybeh (3) applied the same formula to assess the development of 18 
road safety in Jordan, relative to that of other middle-eastern and developing countries. Many 19 
studies have criticised Smeed’s model because it only concentrates on the motorisation level 20 
of country and ignores the impact of other variables [cf. (4-5), while another useful review is 21 
provided by COST329 (6), where a detailed analysis of the debate surrounding Smeed’s 22 
formulas and analysis is available). 23 

Kopits and Cropper (7) develop models to examine the relationship between traffic fatality 24 
risk and per capita income and use it to forecast traffic fatalities for multiple regions. 25 
Söderlund and Zwi (8), after adjusting for motor vehicle numbers, find that the poorest 26 
countries show the highest road traffic-related mortality rates. Bishai et al. (9) observe that 27 
traffic fatalities increase with GDP per capita in lower income countries and decrease with 28 
GDP per capita in wealthy countries and explore this finding using fixed effects regression. 29 
This is an alarming finding, as it implies that as lower income countries become richer, traffic 30 
fatalities are expected to increase (and indeed the WHO predicts that the current number of 31 
1.3 million global road fatalities per year, may rise to 1.9 million by 2020 (10)).  32 

Road safety may also be linked with fuel consumption. The effects of fuel economy on 33 
automobile safety was examined by Ahman and Greene (11). Haworth and Symmons (12) 34 
examine the possible safety benefits of eco-driving, i.e. driving in a way that lowers fuel 35 
consumption and emissions.  36 

The objective of this research is to investigate the suitability of alternative proxy variables for 37 
macroscopic road safety modeling, using data from two European countries for which more 38 
appropriate exposure measures are not available. Gross Domestic Product (GDP), fuel 39 
consumption (in the transport sector) and number of vehicles in circulation are candidate 40 
variables that are considered in this research. Furthermore, unlike most previous research 41 
(much of which used simpler regression models), a state-of-the-art structural state-space 42 
modeling technique specifically suited to time-series data has been adopted in this research. 43 

The remainder of this paper is structured as follows. The next section provides a review of the 44 
relevant literature, demonstrating how proxy variable are often used, when direct exposure 45 
data are not available. The considered data and an overview of the methodological modeling 46 
background are provided in the following section. The next two sections present a critical 47 
review of the developed models. The predictive accuracy of the selected models is 48 
demonstrated in the next section, while a concluding section provides directions for further 49 
research. 50 
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BACKGROUND 1 

Obtaining direct exposure measures is not an easy task. One way to overcome this difficulty 2 
is the use of proxy measures, i.e. other measures that are correlated with the exposure 3 
measures, but are easier to collect. In an analysis of the effectiveness of changeable message 4 
signs on secondary crashes, Kopitch and Saphores (13) used proxies based on day of the week 5 
and time of day, as traffic characteristics were not readily available. Lin et al. (14) used 6 
proxies for traffic characteristics in their analysis of cultural differences of immigrants on 7 
their vulnerability in non-motorized crashes. In particular, the authors used total street length 8 
per area of census tract as a proxy for total traffic and percentage of the length of streets with 9 
four-or-more lanes as a proxy for vehicle volume and speed. In a model aimed at estimating 10 
pedestrian crash frequency, Ukkusuri et al. (15) use demographic data, land use and physical 11 
environment information as proxies for the level of pedestrian activity.  12 

Yannis and Karlaftis (16) use independent variables capturing the day of the week as proxies 13 
for traffic conditions in a time-series analysis of weather effects on daily traffic accidents and 14 
fatalities. Buehler and Pucher (17) use state cyclist fatality rates as a proxy for city cyclist 15 
fatality rates in developing models for the assessment of bike paths and lanes on cycling in 16 
large American cities. The authors find a low correlation (below 0.3) between the supply of 17 
bike fatalities and fatality rates and attribute this to the unsuitability of the available/chosen 18 
proxy variables. Quddus et al. (18) use different proxies of congestion (including the more 19 
direct total delay, as well as traffic flow and traffic speed) to investigate the associate between 20 
the severity of individual crashes and the level of traffic congestion. 21 

Of course, using proxies is not the same as using the exposure measures themselves, and this 22 
method receives critiques, e.g. (19). Prior to their use, it is important to ensure that they 23 
capture the measure in hand correctly and –especially when used in a model- that they would 24 
provide reasonable estimates of the actual phenomenon. Similarly, attempts to replace the 25 
shipper-receiver commodity flow with proxies in a large-scale model have demonstrated these 26 
difficulties (20). Wang et al. (21) discuss the limitations of using proxy measures for 27 
congestion in road safety models, using Noland and Quddus (22) and Kononov et al. (23) as 28 
examples.  29 

In a slightly different context (optimal location of emergency response units), Kepaptsoglou 30 
et al. (24) use traffic safety metrics (frequency and severity) as proxies for the demand for 31 
emergency response units in a network. Kepaptsoglou et al. (25) discuss various proxies for 32 
the demand and supply in transport, including the income level (GDP), size and 33 
imports/exports. 34 

 35 

DATA AND METHODOLOGY 36 

Data 37 

An overview of the available data is presented in Figure 1. The fatalities in Greece show two 38 
distinct trends: an increasing one until 1995, following by a decreasing one thereafter. The 39 
number of fatalities depends strongly on a measure reflecting the amount of traffic. In Greece 40 
and Cyprus there are no traffic volume data available, so to forecast the fatalities, indirect 41 
measures such as the number of vehicles in circulation, the GDP or the fuel consumption may 42 
be used. 43 

The number of vehicles in circulation shows an increasing rate from 1991 to almost 2008. 44 
During the last couple of years, there appears to be a slower rate of increase, reflecting the 45 
effect of the recession. However, this effect is not as evident as it would be if a more 46 
appropriate measure of exposure, such as vehicle-kilometers, were available. If a measure 47 
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such as the number of vehicle exposures were available, then the exposure measure would 1 
actually show a reduction, and not simply a reduced increase. The number of vehicles is a less 2 
volatile measure of the exposure, as (i) a reduction in the use of the vehicles does not 3 
necessarily correspond to a reduction on the number of vehicles and (ii) even when the 4 
vehicles are removed from circulation, it is not as easy to update the registry of vehicles. 5 

Indeed, the GDP and fuel consumption data in Greece reflect the effect of recession more 6 
clearly (i.e. not simply as a break in the increasing trend, but as a decreasing trend). The GDP 7 
in Greece was stagnant until about 1995, at which time a fairly stable increasing trend started, 8 
which continued until 2008, after which a decrease started. A similar trend is exhibited by the 9 
fuel consumption data. 10 

The fatalities in Cyprus have dropped from almost 103 in 1991 to 60 in 2010. During the first 11 
years (1990s) there is some variability and no clear trend can be observed. There is a dip in 12 
the first half of the 2000s and a consistent drop after 2004. This could possibly be attributed 13 
to the accession of Cyprus to the EU (which took place that year) and to the implementation 14 
of the first Strategic Road Safety Plan 2005-2010. 15 

The number of fatalities depends strongly on the amount of traffic.  The number of vehicles in 16 
circulation in Cyprus is constantly increasing during this period; this increase is much steeper 17 
after 2004. Proxy measures that can be used to forecast the fatalities include GDP (in USD) 18 
and fuel consumption (measured in oil tn. equivalents). Both time-series show a similar trend 19 
for Cyprus during the study period. In particular, a fairly consistent increasing trend can be 20 
noticed until 2008, at which point –possibly due to the recession- GDP and fuel consumption 21 
started declining. The GDP increased from about 12.300USD in 1991 to about 17.850USD in 22 
2008 and then dropped to about 17.150USD in 2010. 23 

The fuel consumption increased from 460 million tn.eq. in 1991 to about 885 million in 2008 24 
and then dropped to about 860 million in 2010. The increase did not take place at the same 25 
rate throughout this period. In the early nineties there was an increase of 8%, but since then 26 
the yearly increase became less and less and in the most recent years it has practically halted. 27 

  28 
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FIGURE 1. Overview of data (top: Greece, bottom: Cyprus) 2 
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Model types 1 

Clearly, the topic of macroscopic road safety modeling and forecasting is an active research 2 
area, where active debate is taking place and interesting developments are still being made. 3 
One such attempt is through stratification involving specific vehicle types and population 4 
subsets (e.g. age groups or gender) (26). It will then be much easier to distinguish cases and 5 
consider the presence of true impact due to GDP, vehicle fleet or other growth-related 6 
parameters; so, it is not advised to neglect the study of such elementary indicators, especially 7 
when difficulties are encountered in the reliability of more exposure-oriented analyses (e.g. 8 
using vehicle-kilometres travelled). Further research directions include the enrichment of the 9 
model with additional macroscopic parameters, as well as the investigation of other functional 10 
forms and model specifications. Additional parameters (such as the Gross Domestic Product, 11 
GDP) may help separate exogenous effects and isolate road safety trends and can be used to 12 
construct appropriate indicators. Hollo et al. (27) use road safety performance indicators to 13 
analyze the trends in casualties in several Central European countries.  14 

An alternative modeling approach would have been the use of structural time-series models, 15 
such as those proposed by Harvey and Shephard (28), Harvey (29), which belong to the 16 
family of unobserved component models. In this approach, latent variables are decomposed 17 
into components (hence the term “unobserved components”), which are incorporated into the 18 
structural models. Harvey and Sheppard (28) propose to decompose a univariate time-series yt 19 
into the following components: 20 

                    (1) 21 

where μt is a trend, ψt is a cycle component, γt is a seasonal component and εt is an irregular 22 
component. All components are assumed stochastic (except for the mean, a zero mean is 23 
expected for the other components) with uncorrelated disturbances. This research builds upon 24 
the work presented in Commandeur and Koopman (30) and Bijleveld (31) on structural time-25 
series models for road safety, which is introduced in the following section. 26 

Two structural time series models are considered in this section: (i) the local linear trend 27 
model and the (ii) latent risk time-series model (31). Furthermore, a structured decision tree 28 
for the selection of the applicable model for each situation (developed within the DACOTA 29 
project) is outlined.  30 

Structural time-series models: Local Linear Trend (LLT) and Latent Risk Time-Series 31 
(LRT) models 32 
 33 
A basic concept in road safety is that the number of fatalities is a function of the road risk and 34 
the level of exposure of road users to this risk (32,33). This implies that in order to model the 35 
evolution of fatalities it is required to model the evolution of two components: a road safety 36 
indicator and an exposure indicator. While fatalities is a common and intuitive road safety 37 
indicator, exposure may include a number of direct or indirect (proxy) measures, depending 38 
on the data available for each modeled situation (e.g. country or region). Bijleveld (31) 39 
formalizes the assumption that “the development of traffic safety is the product of the 40 
respective developments of exposure and risk” in the following, using traffic volume as the 41 
exposure measure: 42 

                          
RiskExposuresfataliltieofNumber

ExposurevolumeTraffic




            (2) 43 

 44 
which represents a latent risk time-series (LRT) formulation. In this case, both traffic volume 45 
and number of fatalities are treated as dependent variables. Effectively, this implies that 46 
traffic volume and fatality numbers are considered to be the realized counterparts of the latent 47 
variables “exposure”, and “exposure x risk”. When the logarithm of Equations 2 is taken (and 48 
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the error term is explicitly written out) the –so called– measurement equations of the model 1 
can be rewritten as:  2 
 3 

fatalitiesoferrorrandomriskexposurefatalitiesofNumberLog

volumetrafficinerrorrandomexposurevolumeTrafficLog





loglog

log   (3) 4 

 5 
The latent variables [log (exposure) and log (risk)] need to be further specified by state 6 
equations, which, once inserted in the general model, describe (or explain) the development 7 
of the latent variable. It is under their unobserved, or “state” form that the variables 8 
investigated can be decomposed into the several components (trend, seasonal, cycles…), as 9 
shown in Equation (1). Equations (4) and (5) show how the variables can be modeled (to 10 
simplify the illustration only the number of fatalities is decomposed as an example). Note that 11 
the variables of exposure and risk in this case are modeled independently, and not 12 
simultaneously as in the case of the LRT model presented next. 13 
 14 
Equation (4) reflects the fact that the recorded number of fatalities is only a (possibly 15 
erroneous) observation of the true number of fatalities. The true development of the fatalities 16 
time-series is therefore modeled through the state equations and then used as independent 17 
variable in the measurement equation, where –along with the error term– result in the total 18 
observed fatalities.  19 
 20 
Measurement equation:  21 

       ttt LatentFatFatalitiesofNumber  .loglog                               (4) 22 
 23 
State equations: 24 

    

ttt

tttt

LatentFatSlopeLatentFatSlope

LatentFatSlopeLatentFatLevelLatentFatLevel













)(log)(log(

)(log)(log)(log

1

11       (5) 25 

 26 
A more general formulation is presented in Equation (6), in which Yt represents the 27 

observations and is defined by the measurement equation within which  represents the 28 

state and  the measurement error. The state  is defined in the state equation, which 29 
essentially describes how the latent variable evolves from one time point to the other.  30 
 31 

                                              

ttt

tttt

ttt

ζνν

ξνμμ

εμY











1

11
                    (6) 32 

The state  thus corresponds to the fatality trend at year t. It is defined by an intercept, or 33 

level   (thus the value of the trend for the year before, assuming an annual time-series) 34 
plus a slope     , which is the value by which every new time point is incremented (or 35 
decremented depending on the slope sign, which is usually negative in the case of fatality 36 

trends). The slope  thus represents the effect of time on the latent variable. It is defined in a 37 

separate equation, so that a random error term can be added to it ( ). These random terms, 38 
or disturbances, allow the level and slope coefficients of the trend to vary over time.  39 

The basic formulation presented in Equation (6) allows the definition of a rich family 40 
of trend models which covers an extensive range of series in a coherent way; when both the 41 
level and slope terms are allowed to vary over time the resulting model is referred to as to the 42 
local linear trend (LLT) model. The next model, Latent Risk Time-Series (LRT), 43 
simultaneously models exposure and fatalities. To accomplish this, the latent risk model 44 

t

tε t

tμ

1tμ

tν

tζ
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contains two measurement equations: one for the exposure (e.g. traffic volume) and one for 1 
the fatalities; two state equations can be written for each measurement equation, modeling the 2 
level and slope of the corresponding latent variable.  3 
 4 
For traffic volume:  5 
Measurement equations:  6 

e

ttt ExposureumeTrafficVol  loglog                                         (7) 7 
 8 
State equations: 9 

e

ttt

e

tttt

ExposureSlopeExposureSlope

ExposureSlopeExposureLevelExposureLevel













)(log)(log

)(log)(log)(log

1

11

    (8) 10 

 11 
 12 

For the fatalities:  13 
Measurement equation: 14 

f

tttt RiskExposureFatalitiesofNumber  logloglog                          (9) 15 
 16 

State equations: 17 

r

ttt

r

tttt

RiskSlopeRiskSlope

RiskSlopeRiskLevelRiskTrend













)(log)(log

)(log)(log)(log

1

11

                     (10) 18 

 19 
 20 
Note that Equation (9) now includes the Risk (and not the fatalities), which can be estimated 21 
as:  22 
 23 

logRiskt = log LatentFatt-log Exposuret        (11) 24 
 25 
 26 

The LRT models the observed development of traffic volume and fatalities (the 27 
measurement equations) but also of the latent, true values of exposure and fatality risk (state 28 
equations). Explanatory variables that are thought to affect either traffic volume or the 29 
number of fatalities can be added to the model in three different ways: 1) into the 30 
measurement equation, where they are assumed to explain the observation errors, 2) in the 31 
level equation, where they are assumed to explain the level disturbances and 3) in the slope 32 
equation, where they are assumed to explain the slope disturbances. An explanatory variable 33 
is inserted into the measurement equation if it is thought to have an effect on observation 34 
errors (if, for example, one has reasons to suspect that it affected the registration of fatalities 35 
or traffic volume). It will be included in the level equation if it is thought to have an effect on 36 
the level of fatalities or exposure, and in the slope equation if it is thought to affect the 37 
steepness or direction of change. Seemingly Unrelated Time-Series Equations (SUTSE) (34), 38 
a third class of models, are also used in this approach as a preliminary step in establishing 39 
whether the two time-series may be correlated.   40 
 41 
 42 

Model selection logic 43 
The family of structural time-series models lends to a large number of assumptions that 44 
distinguish the resulting models into different categories. Choosing the right model among 45 
this sea of models is not an easy task and –if left unstructured- can disorient the modeler and 46 
the reader. As a result, within the framework of the DACOTA project, partly funded by the 47 
European Union within the 7

th
 Framework Programme (http://dacota-project.eu), a decision 48 
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process and model selection logic has been developed, and followed in this research. The 1 
following steps are considered: 2 

 Investigate exposure: the first step in every modeling effort is to assess the quality 3 
and characteristics of the underlying data. Do the available exposure data make 4 
sense? Can any sudden changes in the level or slope be explained from some real 5 
events? 6 

 Develop a SUTSE (Seemingly Unrelated Time-Series Model) model: Before 7 
developing a bivariate model of exposure and fatalities, it is important to establish 8 
whether the two series are statistically related. To achieve this, a SUTSE model is 9 
developed and based on the diagnostics (i.e. whether the null hypothesis that the 10 
correlation between the disturbances of the time-series can be rejected), the modeler 11 
needs to decide whether the two time-series are correlated.  12 

 Depending on the output of the SUTSE model determine whether an LLT or an LRT 13 
model should be pursued (and develop it): If one or more of the null-hypotheses 14 
regarding the correlation of the disturbances (assuming the null hypotheses state that 15 
the correlations are equal to zero) is rejected, the time-series may be related and 16 
therefore an LRT can be estimated. In that case, of course, further analysis is needed, 17 
to investigate whether some of the level or slope components for the exposure and 18 
fatalities may be fixed.  If, on the other hand, none of the hypotheses can be rejected, 19 
then there is no evidence that the two time-series are correlated and therefore an LLT 20 
model would be more appropriate. 21 

 22 

EXPLORATION USING SUTSE MODELS 23 

Three SUTSE models are first estimated, one for each proxy for the exposure: (i) vehicles in 24 
circulation, (ii) GPD, and (iii) fuel consumption. The results are summarized in Table 1. The 25 
beta coefficient indicates that none of these models suggest that the fatalities data and the 26 
exposure proxies are correlated for the considered time period (1991-2010). However, when 27 
one considers the trend of the fatalities time-series, two different trends appear: an increasing 28 
one until 1995 and a decreasing one thereafter. As discussed in several research papers (e.g. 29 
35,36) this is a phenomenon that occurs in all countries and is attributed to a number of 30 
reasons. From a statistical point of view, however, the fact that this trend is not reflected in 31 
the exposure data creates an issue that is resolved next. 32 

Therefore, three more SUTSE models were estimated (also presented in Table 1), this time 33 
considering only the data from 1995 until 2010, i.e. the fatality data with the downward trend 34 
only.  Comparing the significance of the beta parameter in the various models, the following 35 
observations can be made: 36 

 Fatalities and vehicle fleet in circulation do not appear to be correlated. This is 37 
consistent with expectations and reflects the inertia of the vehicle fleet time-series to 38 
reflect changes in exposure. Restricting the considered data to the period 1995-2010 39 
does not change the situation considerably. 40 

 The correlation of both GDP and fuel consumption with the fatalities time-series 41 
increases considerably when only data from 1995 onwards (i.e. after the change in 42 
the fatalities trend) are considered (compared to when the entire time-series 1991-43 
2010 is used).  44 

 Fuel consumption for the period after 1995 shows a much stronger correlation with 45 
the fatalities time-series (p=0.14) than GDP for the same period (p=0.24). However, 46 
as both appear to be fairly correlated, both will be further assessed. 47 

 48 

 49 
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TABLE 1. Summary statistics of estimated SUTSE models (Greece) 

 
Veh 1991 GDP 1991 Fuel 1991 Veh 1995 GDP 1995 Fuel 1995 

log likelihood 237.42 76.72 66.5714 60.9876 55.8204 39.2884 

AIC -474.53 -152.64 -132.343 -120.975 -110.641 -77.5767 

Model Quality 

      Box-Ljung test  1 Exposure 4.10* 0.599 0.808 0.366 3.224 0.593 

Box-Ljung test  2 Exposure 4.44 0.614 1.090 0.852 3.230 1.372 

Box-Ljung test  3 Exposure 4.62 0.619 1.128 0.957 3.260 1.401 

Box-Ljung test  1 Fatalities  3.44 2.668 2.329 6.255* 4.671* 3.096 

Box-Ljung test  2 Fatalities 4.55 3.233 2.646 11.835** 8.548* 6.410* 

Box-Ljung test  3 Fatalities 6.67 3.281 2.689 13.737** 8.659* 6.501 

Heteroscedasticity Test Exposure Proxy 0.238** 1.416 1.802 1.418 24.113** 1.138 

Heteroscedasticity Test Fatalities  0.816 0.474 0.351 0.326 0.170 0.175 

Normality Test standard Residuals Exposure Proxy 68.15*** 2.174 0.239 0.115 10.126** 0.906 

Normality Test standard Residuals Fatalities  0.319 0.316 1.070 0.468 1.761 1.886 

Normality Test output Aux Res Exposure Proxy 12.71** 0.103 0.925 0.946 0.962 0.452 

Normality Test output Aux Res Fatalities 1.18 2.300 0.110 1.452 0.321 0.278 

Normality Test State Aux Res Level  (stratum 1) 45.41*** 0.565 0.610 2.621 0.056 0.918 

Normality Test State Aux Res Slope  (stratum 1) 20.49*** 2.002 0.137 0.320 6.796* 0.310 

Normality Test State Aux Res Level  (stratum 2) 1.05 1.788 1.610 0.561 0.223 0.429 

Normality Test State Aux Res Slope  (stratum 2) 0.261 0.461 0.106 0.305 1.878 1.326 

Model Q-matrix tests 

      Level  (stratum 1) 1.23E-04    4.38E-10    7.43E-18    5.27E-14    3.96E-12    7.68E-12    

Level  (stratum 2) 3.88E-03 *  1.60E-03    2.25E-03    2.28E-03    1.95E-06    1.05E-10    

Slope  (stratum 1) 2.09E-04 *  3.12E-04 *  1.71E-04 *  9.48E-05 *  2.51E-04 *  1.70E-04 *  

Slope  (stratum 2) 7.42E-05    4.89E-04    1.12E-04    8.03E-13    1.86E-03    1.75E-03    

Model H-matrix tests 

      GDP Greece 5.17E-06    1.13E-09    2.42E-04    3.62E-06    1.02E-09    1.75E-09    

GDP Greece 9.00E-05    1.62E-09    6.50E-05    2.69E-05    2.57E-08    2.60E-09    

Correlation between fatalities and exposure       

Beta test 0.448 0.635 0.455 0.902 0.982 2.042 

Significance 0.338 0.324 0.609 0.391 0.239 0.139 

Note: *, **, and *** denote significant at the 95%, 99% and 99.9% level respectively 
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Similarly, Table 2 summarizes the results from the SUTSE models for the Cyprus data. The 1 
model diagnostics do not reveal any systematic violations of the underlying assumptions. 2 
Therefore, based on the significance of the estimated beta parameters of the various models, it 3 
is observed that the number of vehicles in circulation and fuel consumption might be 4 
correlated with fatalities, and therefore will be further investigated using LRT models in the 5 
next section. 6 

 7 

TABLE 2. Summary statistics of estimated SUTSE models (Cyprus) 8 

 

Vehicles GDP Fuel 

log likelihood 42.38 56.10 52.81 

AIC -83.97 -111.41 -104.83 

Model Quality 
   Box-Ljung test  1 Exposure 4.15* 1.34 4.68* 

Box-Ljung test  2 Exposure 4.15 1.50 5.17 

Box-Ljung test  3 Exposure 6.69 1.51 5.43 

Box-Ljung test  1 Fatalities  2.33 1.71 1.89 

Box-Ljung test  2 Fatalities 3.83 3.15 2.02 

Box-Ljung test  3 Fatalities 4.22 3.23 2.62 

Heteroscedasticity Test Exposure Proxy 4.67 1.92 0.503 

Heteroscedasticity Test Fatalities  0.37 2.13 2.63 

Normality Test standard Residuals Exposure Proxy 2.15 0.126 1.23 

Normality Test standard Residuals Fatalities  2.37 9.48** 5.06 

Normality Test output Aux Res Exposure Proxy 0.329 1.57 0.359 

Normality Test output Aux Res Fatalities 0.514 0.464 4.41 

Normality Test State Aux Res Level  (stratum 1) 0.784 0.0258 11.63** 

Normality Test State Aux Res Slope  (stratum 1) 0.0726 0.0210 0.108 

Normality Test State Aux Res Level  (stratum 2) 0.620 3.58 2.01 

Normality Test State Aux Res Slope  (stratum 2) 0.0129 0.00472 0.0669 

Model Q-matrix tests 
   Level  (stratum 1) 1.42E-19  5.05E-04  7.13E-15  

Level  (stratum 2) 4.58E-17   9.06E-05  3.06E-04  

Slope  (stratum 1) 1.52E-04 * 1.95E-05  1.12E-04 * 

Slope  (stratum 2) 2.66E-19  2.43E-04  4.38E-17  

Model H-matrix tests 
   GDP Greece 1.68E-04  3.15E-05  4.12E-04  

GDP Greece 1.82E-03  6.43E-04  7.76E-04   

Correlation between fatalities and exposure 
   Beta test -1.257 0.615 1.213 

Significance 0.102 0.691 0.161 

Note: *, **, and *** denote significant at the 95%, 99% and 99.9% level respectively 9 

 10 

 11 

  12 
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DEVELOPMENT OF LRT MODELS  1 

Based on the results of the SUTSE models analysis, three models are considered for Greece 2 
(for the period 1995-2010):  3 

 An LLT model in which the fatalities are not assumed to be correlated with the 4 
available exposure measures 5 

 LRT models in which the fatalities are considered to be correlated with the respective 6 
proxy to the exposure, i.e. GDP and fuel consumption. 7 

Table 3 summarizes the main statistics of the estimated models for Greece. There are several 8 
criteria that can be considered in choosing a single model among these. The validation of the 9 
predictive ability of each model (using a subset of the observations for the model estimation 10 
and then using the remainder of the observations for validation) is one important aspect. In 11 
this case, three such validations have been performed for each model, each one holding out 12 
the last 4, 7 or 10 observations. Considering the small number of overall observations (16 or 13 
20), it is noted that the number of observations available for the model estimation was limited 14 
in several cases. The violations in the various statistical tests are another criterion that can 15 
help identify possible issues with each model. Finally, the log-likelihood and AIC index can 16 
be used to compare among nested models; i.e. they cannot be used to compare e.g. the models 17 
using GDP versus the models using fuel consumption. A full model is estimated first, in 18 
which the level and slope of the exposure and risk are allowed to vary. Depending on the 19 
output of these models, restricted models (in which insignificant parameters were fixed) were 20 
also estimated. Therefore, the procedure of determining the “optimal” restrictions may be an 21 
iterative process in which the modeler incrementally fixes one or more variables and inspects 22 
the impact of these restrictions in the model performance. Similar models are presented in 23 
Table 4 for Cyprus. 24 

Based on these criteria, a model has been singled out for each country and highlighted in 25 
Table 3 and 4. Regarding Greece, and considering that the various tests do not show 26 
significant differences between the models, the restricted LRT model when using GDP as a 27 
proxy for the exposure is selected, as it provides significant better (in sample) predictive 28 
performance. This may appear as a counter-intuitive finding, but it may be attributed to the 29 
noise incorporated in the (full) model by the (insignificant) terms that are (inappropriately) 30 
included as random. As shown in the table, the level of the exposure, as well as the level and 31 
slope of the risk variable have been considered as fixed (based on the results of the full LRT 32 
model). Similarly, for Cyprus the best model is a restricted LRT model with fuel consumption 33 
as the proxy variable. Again, while occasionally a test is violated, there are no significant 34 
differences in the diagnostics tests across models, so the optimal model is selected mostly 35 
based on in-sample predictions. One interesting observation is that both the proxy variables 36 
considered as potentially correlated with fatalities (resulting from the SUTSE model tests), 37 
and the finally selected (from the LRT model results) are not the same for the two considered 38 
countries. Considering that the two countries have several similarities, this is an interesting 39 
finding, suggesting that the selection of proxy variables may be a very volatile process, 40 
dependent on many variables. 41 

  42 
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TABLE 3. Model results and prediction validation for considered models 1 
(Greece) 2 

 

LLT LRT - GDP LRT - Fuel 

Index 

 

Full Restricted Full Restricted 

log likelihood 85.66 56.78 53.07 39.47 31.94 

AIC -171.20 -112.45 -105.65 -77.82 -63.39 

Model Quality 

     Box-Ljung test  1 GDP  

 

3.32 3.15 1.75 0.648 

Box-Ljung test  2 GDP  

 

3.33 3.18 3.80 1.38 

Box-Ljung test  3 GDP  

 

3.35 3.20 3.97 3.19 

Box-Ljung test  1 Fatalities  2.73 7.24** 7.44** 4.73* 10.17** 

Box-Ljung test  2 Fatalities  3.63 14.66*** 9.24** 9.91** 10.17** 

Box-Ljung test  3 Fatalities  5.82 16.87*** 15.83** 11.75** 11.68** 

Heteroscedasticity Test GDP  

 

22.34* 20.95* 1.36 1.28 

Heteroscedasticity Test Fatalities  0.785 0.253 1.30 0.308 7.19 

Normality Test standard Residuals GDP  

 

10.77** 11.11** 0.707 0.777 

Normality Test standard Residuals Fatalities  0.798 0.573 3.53 0.560 0.700 

Normality Test output Aux Res GDP  

 

1.02 0.374 0.360 0.448 

Normality Test output Aux Res Fatalities  1.27 1.39 1.710 0.821 1.28 

Normality Test State Aux Res Level exposure 

 

0.13 0.169 1.18 0.802 

Normality Test State Aux Res Slope exposure 

 

8.06* 7.80* 0.233 0.420 

Normality Test State Aux Res Level risk 1.61 0.929 0.699 0.795 0.621 

Normality Test State Aux Res Slope risk 0.047 0.142 0.000 0.541 0.008 

Model Q-matrix tests 

     Level exposure 

 

3.32E-06  - 3.59E-05   - 

Level risk 3.91E-03 * 1.85E-03  - 1.91E-03   - 

Slope exposure 

 

2.4E-04* 2.4E-04* 1.1E-04* 1.5E-04* 

Slope risk 1.25E-04 * 3.24E-06   - 1.34E-04   - 

Transition Correlations 

     Level exposure with Level risk 

 

0.97 

 

0.99 

 Slope exposure with Slope risk 

 

-1 

 

-1 

 Model H-matrix tests 

     GDP Greece/Fuel consumption 1.00E-09  1.01E-09  2.14E-06  6.97E-09   9.62E-06   

Fatalities Greece 

 

4.75E-09  2.4E-03* 6.60E-08   4.7E-03* 

Validation of predictive performance 

   ME Fatalities 10 -900 -805 -263 -805 -210 

MSE Fatalities 10 956930 757465 76753 757459 50784 

ME Fatalities 7 -693 147 110 148 359 

MSE Fatalities 7 551770 25790 15793 26023 137757 

ME Fatalities 4 -131 -139 46 -139 208 

MSE Fatalities 4 28162 31137 7061 30823 45604 

Note: *, **, and *** denote significant at the 95%, 99% and 99.9% level respectively 3 

  4 
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TABLE 4. Model results and prediction validation for considered models 1 
(Cyprus) 2 

 

LLT LRT -Vehicles LRT - Fuel 

Index Full Restricted Full Restricted Full Restricted 

log likelihood 13.68 13.68 42.39 42.39 52.96 52.72 

AIC -27.06 -27.16 -83.88 -84.18 -105.02 -105.05 

Model Quality 

      Box-Ljung test  1 GDP  

  

4.15* 1.00 4.70* 4.25* 

Box-Ljung test  2 GDP  

  

4.16 4.16 5.30 4.76 

Box-Ljung test  3 GDP  

  

6.71 4.16 5.67 5.20 

Box-Ljung test  1 Fatalities  1.25 1.19 2.33 2.16 1.61 2.16 

Box-Ljung test  2 Fatalities  2.99 1.25 3.84 2.33 1.90 2.17 

Box-Ljung test  3 Fatalities  3.06 2.99 4.23 3.84 2.27 2.32 

Heteroscedasticity Test GDP  

  

4.68 4.68 0.469 0.505 

Heteroscedasticity Test Fatalities  2.13 2.13 0.37 0.37 2.44 2.39 

Normality Test standard Residuals 

GDP  

  

2.15 2.15 1.98 1.15 

Normality Test standard Residuals 

Fatalities  6.83* 6.83* 2.38 2.38 5.88 4.61 

Normality Test output Aux Res GDP  

  

0.33 0.33 0.923 0.284 

Normality Test output Aux Res 

Fatalities  0.375 0.375 0.51 0.51 3.737 4.36 

Normality Test State Aux Res Level exposure 

 

0.00546 1.63 1.63 10.01** 

Normality Test State Aux Res Slope exposure 

 

0.0789 0.10 0.10 0.0952 

Normality Test State Aux Res Level 

risk 3.81 3.815 0.62 0.62 2.689 0.473 

Normality Test State Aux Res Slope 

risk 0.00616 0.00616 0.01 0.01 0.0772 0.00454 

Model Q-matrix tests 

      Level exposure 

  

6.2E-19 - 9.2E-05 - 

Level risk 1.91E-16 - 3.2E-15 - 6.53E-04 - 

Slope exposure 

  

1.5E-04* 1.5E-04* 1.1E-04* 1.1E-04* 

Slope risk 3.8E-04 3.8E-04* 7.7E-04* 7.7E-04* 8.1E-06  - 

Transition Correlations 

      Level exposure with Level risk 

  

0.049 

 

-1 

 Slope exposure with Slope risk 

  

-1 -1 1 

 Model H-matrix tests 

      Vehicles/Fuel consumption 

  

1.6E-04 1.6E-04*  3.6E-04  4.1E-04* 

Fatalities 1.0E-09  1.0E-09  1.8E-03 1.8E-03 1.1E-03 8.0E-04  

Validation of predictive performance 

    ME Fatalities 10 -11 -11 -19 -45 -19 -14 

MSE Fatalities 10 256 256 525 2592 529 343 

ME Fatalities 7 5 5 7 7 7 6 

MSE Fatalities 7 156 156 170 178 170 159 

ME Fatalities 4 -17 -17 -19 -26 -19 -6 

MSE Fatalities 4 358 358 447 808 447 84 

Note: * and ** denote significant at the 95% and 99% level respectively 3 

 4 
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ASSESSMENT OF PREDICTIONS 1 

Figure 2 presents the forecast plots for the selected model for Greece, i.e. the restricted LRT 2 
model using GDP as a proxy to exposure. There are several observations that can be made 3 
about these figures. Starting from the top subfigure, the projection of the GDP for Greece 4 
appears to follow a downward trend all the way to 2020. While this is not impossible, it is 5 
highly unlikely. The reason for this trend is that the model detects the drop in the GDP in the 6 
last couple of years (due to the recession) but has no way to tell whether this trend will be 7 
reversed at some point. One way to overcome this would be to add an additional 8 
intervention variable to the model, which would indicate that the last few observations 9 
are part of a temporary recession phenomenon. This variable could then be used to 10 
indicate when the recession is expected to be over. Another way to indicate the same 11 
point (i.e. that these points are an intermediate disruption of an otherwise constant 12 
trend) would be to fix the slope of the exposure. However, the latter option would 13 
imply that the recovery would start from the first predicted point (i.e. 2011), which is 14 
clearly not the case. Therefore, the approach of an intervention recession variable has 15 
been selected, using 2013 as the last recession year. Figure 3 shows the results of this 16 
model, i.e. assuming that the recession is expected to last until 2013. 17 

Figure 4 shows the predictions for Cyprus, which seem plausible and therefore no 18 
further investigations are made.  19 

Table 5 summarizes the models’ forecasts: for Greece there is the previously selected 20 
model (top), followed by the model that includes the intervention that captures the 21 
recovery from the recession (middle), assuming that the recovery will start after 2013, 22 
and the forecasts for the selected model for Cyprus. 23 

 24 

  25 
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 1 

 

 
FIGURE 2. Forecasting results, without considering recession (Greece) 2 
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FIGURE 3. Forecasting results, considering recession until 2013 (Greece) 1 
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FIGURE 4. Forecasting results (Cyprus) 1 
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TABLE 5. Selected model forecasts (top: Greece, middle: Greece reflecting 1 
recession recovery, bottom: Cyprus) 2 

Greece – (originally) selected model based on goodness-of-fit statistics 

Year 

Forecast 

GDP 

Greece 

(Euro) 

Lower 

(2.50%) 

forecast 

(Euro) 

Upper 

(97.50%) 

forecast 

(Euro) 

Forecast 

Fatalities 

Greece 

Lower (2.50%) 

forecast 

Upper 

(97.50%) 

forecast 

2011 20137.3 19520.3 20773.7 1111 988 1249 

2012 19237.2 17952.4 20613.9 993 867 1136 

2013 18377.3 16372.9 20627.1 886 751 1046 

2014 17555.9 14826.9 20787.2 792 643 975 

2015 16771.1 13342.9 21080.3 707 545 918 

2016 16021.5 11939.5 21499.1 631 458 870 

2017 15305.4 10628.1 22041.1 564 383 831 

2018 14621.2 9414.8 22706.9 504 318 798 

2019 13967.7 8302.0 23500.0 450 262 771 

2020 13343.4 7289.1 24426.1 402 216 748 

Greece – including recession intervention (to capture recovery from recession at the end of 

2013) 

Year 

Forecast 

GDP 

Greece 

(Euro) 

Lower 

(2.50%) 

forecast 

(Euro) 

Upper 

(97.50%) 

forecast 

(Euro) 

Forecast 

Fatalities 

Greece 

Lower (2.50%) 

forecast 

Upper 

(97.50%) 

forecast 

2011 20401.7 20088.1 20720.3 1126 1005 1262 

2012 19681.3 19213.1 20160.9 1015 902 1143 

2013 18986.4 18336.4 19659.4 916 809 1036 

2014 19593.1 18710.8 20517.1 883 776 1006 

2015 20219.3 19029.3 21483.6 852 742 979 

2016 20865.4 19313.8 22541.8 822 708 955 

2017 21532.2 19574.0 23686.4 793 674 934 

2018 22220.4 19814.7 24918.1 765 641 914 

2019 22930.5 20038.3 26240.1 738 608 897 

2020 23663.3 20246.1 27657.1 712 576 881 

Cyprus – selected model based on goodness-of-fit statistics 

Year 

Fuel 

Cyprus 

(x1000 

tn.eq. oil) 

Lower 

(2.50%) 

forecast 

Upper 

(97.50%) 

forecast 

Fatalities 

Cyprus 

Lower (2.50%) 

forecast 

Upper 

(97.50%) 

forecast 

2011 881.5 824.4 942.6 69 61 78 

2012 885.4 807.0 971.4 66 57 76 

2013 889.3 784.2 1008.5 62 52 74 

2014 893.3 757.9 1052.8 59 48 73 

2015 897.2 729.2 1103.9 56 44 72 

2016 901.2 698.8 1162.2 53 40 71 

2017 905.2 667.3 1227.8 50 36 71 

2018 909.2 635.2 1301.3 48 32 71 

2019 913.2 602.8 1383.5 45 29 71 

2020 917.3 570.4 1475.0 43 26 71 

 3 
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DISCUSSION AND CONCLUSION 1 

Developing credible road safety forecasting models is a key prerequisite to assessing and 2 
improving future road safety. One of the key requirements (and often the weakest link) in this 3 
process is reliable and up-to-date exposure data. While some countries may have the 4 
appropriate data, e.g. vehicle-kilometers as the suitable variable for exposure, many countries 5 
and regions face limitations. One practical way to overcome this issue is to identify and use 6 
appropriate proxy variables that could be used instead of the actual exposure variables.  In 7 
this research, three alternative (and in general widely available) variables are considered as 8 
suitable exposure proxies: (i) number of vehicles in circulation, (ii) GDP and (iii) fuel 9 
consumption. A number of different structural time-series models have been developed for 10 
each proxy for two Mediterranean countries with many similar socio-economic 11 
characteristics: Greece and Cyprus. 12 

Based on the findings of this analysis, a number of observations can be drawn: 13 

 Proxy variables can provide reasonable results, when exposure data are not available; 14 
 Even in two countries with many similarities, such as Greece and Cyprus examined in 15 

this research, the selected proxy measure differs. This suggests that the underlying 16 
conditions that make a variable a suitable proxy for exposure is complex and needs 17 
further investigation. 18 

The findings of this research also suggest a number of directions for future research. Beyond 19 
the obvious need for investigation of more proxy variables, as well as application in more 20 
countries and regions, a useful test would use data from a country or region that does have 21 
exposure data to compare the predictive results of models using the proxy measures versus 22 
those obtained with models directly using exposure. As the available data sample is rather 23 
small for such complicated models, it is expected that longer time-series would lead to better 24 
models. The investigation of the impact of other parameters (such as the size of the region) is 25 
also an interesting endeavor, as e.g. in smaller regions (such as Cyprus and Greece) the 26 
annual number of accidents can fluctuate a lot, compared to larger regions such as Germany 27 
or the US.  28 
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