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ABSTRACT 

Traffic state prediction is a key problem with considerable implications in modern traffic 
management. Traffic flow theory has provided significant resources, including models based 
on traffic flow fundamentals that reflect the underlying phenomena, as well as promote their 
understanding. They also provide the basis for many traffic simulation models.  Speed-density 
relationships, for example, are routinely used in mesoscopic models.  In this paper, an 
approach for local traffic state estimation and prediction is presented, which exploits available 
(traffic and other) information and uses data-driven computational approaches. An advantage 
of the method is its flexibility in incorporating additional explanatory variables. It is also 
believed that the method is more appropriate for use in the context of mesoscopic traffic 
simulation models, in place of the traditional speed-density relationships. While these general 
methods and tools are pre-existing, their application into the specific problem and their 
integration into the proposed framework for the prediction of traffic state is new. The 
methodology is illustrated using two freeway data sets from Irvine, CA, and Tel Aviv, Israel. 
As the proposed models are shown to outperform current state-of-the-art models, they could 
be valuable when integrated into existing traffic estimation and prediction models. 
 
Keywords: traffic state prediction; local speed prediction; data-driven approaches; clustering; 
classification; Markov process; locally weighted regression; neural network 

1 INTRODUCTION 

Traffic state prediction is a key problem with considerable implications in modern 

traffic management. Several modeling approaches have been used, including Kalman 

Filter (e.g. Wang et al., 2006a, 2006b, Liu et al., 2006), neural networks (e.g. 

Vlahogianni et al., 2005, van Lint et al., 2005, van Lint, 2008, Vlahogianni et al., 

2008, Dunne and Ghosh, 2012) and others (e.g. Stathopoulos and Karlaftis, 2003, El 

Faouzi et al., 2009). Karlaftis and Vlahogianni (2011) compare statistical methods and 

neural networks in transportation research, highlighting some of the differences 

similarities of the two types of data analysis tools. With the emergence of a number of 

data collection technologies (e.g. c.f. Antoniou et al., 2011, for a review) data-driven 

approaches offer the potential for the development of approaches that are more 

appropriate for capturing the dynamic characteristics of traffic. In this paper, an 

alternative approach is presented, which exploits available (traffic and other) 

information and data-driven computational approaches to predict local traffic state 

and speed. 

The fundamental traffic flow diagram has been often criticized as restrictive, but 

has proved useful over the past decades. Hall (1997) and May (1990) provide 
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thorough discussions of traffic stream models, including a number of extensions, such 

as multi-regime models. Examples include two- and three-regime linear models, and 

combinations of single regime models (see e.g. Edie, 1961, May and Keller, 1967, 

and Drake et al., 1967).  

Three somewhat related terms are used in the remainder of this paper; in order to 

avoid and ambiguity or confusion between them, they are clearly defined here: 

 (Traffic) state: the state in which traffic is at any given time can be described 

by a number of parameters such as flow, density, speed; as these are 

continuous variables, there can be an infinite number of traffic states; 

 Regime: traffic states can be grouped in regimes that reflect a somewhat 

homogeneous group with similar characteristics; the number of regimes may 

be determined purely on the basis of mathematical properties of the variables, 

and the regimes may not have direct interpretations; 

 Phase: simple traffic flow theory models assume a small (usually 2 or 3) 

number of traffic phases, which have direct physical interpretations (e.g. 

congested or uncongested). 

Several papers in the literature have discussed empirical situations in which the 

fundamental diagram seems to break down. Kerner (2004) has attempted to interpret 

such empirical observations in terms of a three-phase traffic theory (the three-phase 

traffic theory includes (i) a free traffic phase, (ii) wide moving jams and (iii) 

synchronized flow), while new microscopic traffic models that fit the interpretations 

of three-phase traffic theory (e.g. Kerner and Klenov, 2002) have been developed. It 

should be noted, however, that there is also vocal criticism to the three-phase traffic 

theory (e.g. Schoenhof and Helbing, 2009), as it also sometimes fails to fit and 

explain empirical data. 

Various techniques have been used to estimate multi-regime traffic models. For 

example, Einbeck and Tutz (2004) present an application of multimodal regression to 

speed-flow data, while Sun and Zhou (2005) use cluster analysis to segment speed-

density data and determine the regime boundaries for typical (two-regime and three-

regime) speed-density models. Sun et al. (2003, 2004) applied local regression for 

short term traffic forecasting and report that local regression was superior when 

compared to nearest neighborhood and kernel smoothing. Toledo et al. (2007) present 

a local regression approach for processing vehicle position data in order to develop 

continuous vehicle trajectories and consequently obtain speed and acceleration 

profiles.  The proposed methodology was successfully applied to a set of position data 

to develop profiles that were subsequently used for the calibration of car-following 

models. Antoniou and Koutsopoulos (2006b) provide a review of several flexible 

regression approaches [loess (Cleveland 1978, Cleveland et al., 1988), support vector 

regression (SVR) based on support vector machines (Vapnik, 1995, 1998), neural 

networks (Haykin, 1999)] applied to the task of speed estimation and find that loess 

behaves better (in terms of accuracy and computational performance) in this context. 

One particular advantage of the presented approaches (loess, neural networks, and 

support vector regression) is that, unlike the typical speed-density relationship, they 

are flexible in incorporating additional explanatory variables, such as time of day, day 

of week, weather, etc. 

Clustering and classification are popular techniques with many applications. El-

Faouzi (2004) presents a data-driven approach that aggregates multiple estimators, 

attempting to aggregate all the information which each estimation model embodies 

(some of which might be lost if only the “best” model was chosen and applied), while 
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El-Faouzi and Lefevre (2006) use two different approaches from evidence theory 

(classifier fusion and distance-based classification) for clustering and classification 

for road travel time estimation. Wang et al. (2005) use fuzzy clustering for the 

classification of car-following behavior into multiple regimes. Azimi and Zhang 

(2010) apply three different unsupervised learning methods (K-Means, Fuzzy C-

Means, and CLARA) to classify freeway traffic flow conditions based on the 

characteristics of the flow.  

The objective of this research is to develop and validate a dynamic data-driven 

framework that allows for traffic state estimation and prediction. Antoniou and 

Koutsopoulos (2006a) present a framework for the estimation of speeds using 

machine-learning approaches. While that work focused on estimation, in the current 

research the emphasis shifts to traffic state prediction using similar approaches, 

augmented by additional suitable models, required for the prediction part. Therefore, 

the main contributions of this paper include the development of a methodology for 

traffic state prediction. This methodology is, based on a set of flexible models, both in 

terms of functional specification and data to which they can be applied. As the 

proposed models are shown to outperform current state-of-the-art models, they could 

be valuable when integrated into existing traffic estimation and prediction models 

(such as DynaMIT, Ben-Akiva et al., 2002, 2010, DYNASMART, Mahmassani, 

2001, or RENAISSANCE, Wang et al., 2006a, 2006b), resulting in more accurate 

traffic predictions. These predictions could then better support downstream 

applications, such as traffic guidance generation. 

In this paper, the methodology will be presented and results will be provided 

illustrating how the presented approach performs compared to the existing state-of-

the-art. The main components of the methodology and the application setup are 

presented next, followed by application results and related discussion. Two freeway 

data sets from Irvine, CA, and Ayalon, Israel, have been used for this research. A 

discussion section provides further insight and directions for future research. 

 

2 METHODOLOGY 

2.1 Overall framework 

The overall framework is outlined in Figure 1: the left figure outlines the main 

methodological components and shows the information flows, while the right figure 

provides simple examples of the main tasks achieved by each methodological 

component. In general, each observation may include multiple attributes [e.g. (lagged) 

speed, density, flow, number of lanes, grade, meteorological information, vehicle mix, 

driver mix].  

The methodology comprises training and application steps. During the training step 

archived surveillance data are used to (A) identify the various traffic states through 

clustering the available observations; (B) estimate the transition processes between 

these regimes; and (C) estimate cluster-specific traffic models. This information is 

stored into a knowledge base and supports the application of the framework.   

As new measurements become available, they are (D) classified into the 

appropriate regimes and –based on the transition processes and the short-term 

evolution of the traffic state- (E) short-term predictions of the traffic state are 

performed using the applicable estimated transition processes. Furthermore, (F) the 
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appropriate flexible traffic model is retrieved and applied to the new observations to 

(G) perform speed predictions. 
 

 
 

Figure 1. Overall local traffic state prediction framework 

 

The framework presented in Figure 1 comprises a number of data driven models, 

outlined next and presented in more detail in the following subsections. While these 

general methods and tools are pre-existing, their application into the specific problem 

and their integration into the proposed framework for the prediction of traffic state is 

new.  

Clustering and classification. The available observations have different 

characteristics that can be used to cluster them (A) into groups with similar 

characteristics. Clustering is a well-researched area with a large number of available 

approaches and algorithms, often based on heuristics. Clustering involves several 

decisions, such as the optimal number of clusters that effectively clusters the 

observations to meaningful clusters. Conflicting objectives characterize this task, as 

on the one had a larger number of clusters may provide a more precise clustering, 

while a smaller number of clusters provide a more manageable (and possibly easier to 

interpret) clustering. When new observations become available, they can be classified 

(D) into one of the available clusters based on their specific attributes.  

Modeling the evolution of traffic states. The classified observations result in a 

time series of clusters. Studying the evolution of this time-series provides the ability 

to predict the future state, based on the last few states, through the estimation of an 

appropriate state-predictive process (B).  For example, assuming that the states 

identified under clustering are A, B, C, the model should be trained to predict that, 

given the sequence of the last few states is A-A-B the next state is C. In general, 
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simpler processes, with fewer states are expected to have a lower rate of 

misclassification. 

State-specific speed prediction. This step (C) employs appropriate flexible 

regression models based on the observations belonging to the corresponding cluster.  

These cluster-specific models (C) relate speed to all relevant data (e.g. density, flow, 

number of lanes, grade, meteorological information, vehicle mix, driver mix). When 

the cluster of a future observation has been predicted (E), the appropriate function for 

that cluster can be selected (F) and used to make a speed prediction (G). Such richer, 

data-driven models, are statistically driven (always motivated by traffic flow theory 

principles), and they have the potential to provide accurate speed predictions, as they 

incorporate more diverse data as explanatory variables.  

2.2 Clustering and classification 

2.2.1 Model-based clustering 

 

Clustering and classification are tasks that are rather well researched as they have 

extensive applications in many practical and research fields. As a result, a range of 

approaches and algorithms are available, often based on heuristics. One rigorous 

approach to cluster analysis is based on probability modes (see Bock, 1998a and 

1998b, for a survey). Some of the most popular heuristics used for clustering are 

approximate estimation methods for appropriately defined probability models (Fraley 

and Raftery, 2002). For example, standard k-means clustering (Mitchell, 1997) is 

equivalent to known procedures for approximately maximizing the multivariate 

normal classification likelihood when the covariance matrix is the same for each 

component and proportional to the identity matrix (Fraley and Raftery, 2002). 

Finite mixture models have been proposed and studied in the context of clustering 

(Wolfe, 1970, Edwards and Cavalli-Sforza, 1965, Day, 1969, Scott and Symons, 

1971, Duda and Hart, 1973, Binder, 1978), often as a statistical approach to shed 

some light into practical questions that arise from the application of clustering 

methods (McLachlan and Basford, 1988, Banfield and Raftery, 1993, Cheeseman and 

Stutz, 1995, Fraley and Raftery, 1998). Each component probability distribution in 

finite mixture models corresponds to a cluster. The problems of determining the 

number of clusters and of choosing an appropriate clustering method can be recast as 

statistical model choice problems, and models that differ in numbers of components 

and/or in component distributions can be compared. Outliers are handled by adding 

one or more components representing a different distribution for outlying data.  

Given data y with independent multivariate observations y1,…,yn the likelihood for 

a mixture model with G components is: 

   
 


n

i

G

k

kikkGGMIX fL
1 1

11 ||,,;,,  yy     (1) 

where kf  and k  are the density and parameters of the kth component in the mixture 

and k  is the probability that an observation belongs to the kth component.  

Data generated by mixtures of multivariate normal densities are characterized by 

groups or clusters centered at the means, with ellipsoidal surfaces of constant density.  

The geometric features (shape, volume, orientation) of the clusters are determined by 

the covariances k , which may be further parameterized to impose cross-cluster 
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constraints. In the simplest case of spherical clusters of the same size Ik  , 

while in the case of clusters with the same geometry (but not necessarily spherical) 

  

Sk = S (Friedman and Rubin, 1967). Only one parameter is needed to capture the 

covariance structure of the mixture when , while for d-dimensional data 

  

d d +1( ) /2 and 

  

G d d +1( ) /2( ) parameters are needed for constant 

   

Sk and unrestricted 

   

Sk 

(Scott and Symons, 1971). Banfield and Raftery (1993) and Murtagh and Raftery 

(1984) proposed more flexible and general frameworks for geometric cross-cluster 

constraints in multivariate normal mixtures by parameterizing covariance matrices 

through eigenvalue decomposition.  

The purpose of cluster analysis is to classify data of previously unknown structure 

into meaningful groupings. A strategy for cluster analysis based on mixture models is 

outlined next (Fraley and Raftery, 2002). The strategy comprises three core elements: 

(i) initialization via model-based hierarchical agglomerative clustering, (ii) maximum 

likelihood estimation via the expectation-maximization (EM) algorithm, and (iii) 

selection of the model and the number of clusters using approximate Bayes factors 

with the BIC (Bayesian Information Criterion) (Schwarz, 1978) approximation.  

Model-based hierarchical agglomerative clustering is an approach to computing an 

approximate maximum for the classification likelihood: 

    (2) 

where   

   

i
 are labels indicating a unique classification of each observation, taking the 

value k if yi belongs to the kth component. In the mixture likelihood (eq. 1), each 

component is weighted by the probability that an observation belongs to that 

component. The presence of the class labels in the classification likelihood (eq. 2) 

introduces a combinatorial aspect that makes exact maximization impractical (Fraley 

and Raftery, 2002).  

Murtagh and Raftery (1984) successfully applied model-based agglomerative 

hierarchical clustering to problems in character recognition using a multivariate 

normal model, with volume and shape held constant across clusters. This approach 

was generalized by Banfield and Raftery (1993) to other models and applications. 

In hierarchical agglomeration, each stage of merging corresponds to a unique 

number of clusters and a unique partition of the data. A given partition can be 

transformed into indicator variables, which can then be used as conditional 

probabilities in an M step of EM for parameter estimation, initializing an EM 

algorithm. This, combined with Bayes factors as approximated by BIC for model 

selection, yields a comprehensive clustering strategy:  

 Determine a maximum number of clusters, M, and a set of mixture models to 

consider.  

 Perform hierarchical agglomeration to approximately maximize the classification 

likelihood for each model and obtain the corresponding classifications for up to M 

groups.  

 Apply the EM algorithm for each model and each number of clusters 2,…,M, 

starting with the classification from hierarchical agglomeration.  

 Compute BIC for the one-cluster case for each model and for the mixture model 

with the optimal parameters from EM for 2,…,M clusters.  

Once the optimal number of clusters has been determined based on the outlined 

approach, it is possible to consider smaller numbers of clusters, leading to simpler 

models. 
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2.2.2 Nearest neighbors classification 

Clustering methods are usually accompanied by a classification algorithm so that 

they can be applied. Nearest neighbor classification is one of the standard 

classification methods. During the application phase, standard methods, such as the k-

nearest neighbor approach, can be used to classify new traffic measurements 

(characterized by e.g. flow and density) to the most appropriate cluster. k-nearest 

neighborhood learning is the most basic instance-based method, and assumes that all 

instances (or observations) correspond to points in the n-dimensional space (Mitchell, 

1997). The nearest neighbors of an instance are defined in terms of the standard 

Euclidean distance.     

Let an observation x be described by the feature tuple <a1(x), a2(x),..., an(x)> where 

ar(x) denotes the values of the r
th

 attribute of x. In the context of traffic dynamics, the 

attributes of x could be density and flow, but also other parameters, such as time of 

day, prevailing weather conditions, and traffic mix. The distance between two 

instances xi and xj is then defined to be: 

     



n

r

jrirji xaxaxxd
1

2
),(         (3) 

In nearest-neighbor learning the target function may be either discrete-valued or 

real-valued. In the discrete case, such as this one, where the goal is to assign each new 

instance xq to a cluster, the algorithm selected the k instances from the training set that 

are nearest to xq (as defined by the distance above), and returns  

    



k

i

i
Vu
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where δ is the Kronecker operator   



 


otherwise

baif
ba

0

1
),(           (5) 

The special case in which a single neighbor is considered (i.e. k=1) means that the 

class of each new observation is predicted to be the class of the closest training 

sample (nearest-neighbor). 

2.2.3 Classification using neural networks 

Classification was also performed using neural networks, in order to provide a 

reference case using a well-established technique. Neural networks (cf. e.g. Haykin, 

1999, Ripley, 1996) have been presented in many traffic related applications (e.g. 

Vlahogianni et al., 2005). Neural networks are well-described in the literature and 

therefore not presented here in the interest of economy of space. It is indicated, 

however, that single-hidden-layer neural networks are considered in this context. 

 

2.3 Modeling the evolution of traffic states 

One of the most general models for a stationary categorical process taking values in 

a finite categorical space X, is a full Markov chain (of possibly high, but finite order – 

for a Markov chain the order p is the number of past states on which a future state 

depends) (Markov, 1971). For example, in a traffic flow theory context, traffic flow 
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might be categorized as one of four states (say A, B, C and D), defining the 

categorical space X. A stationary full Markov chain of order p exists whenever the 

transition mechanism has no specific structure; that is the state space is the entire Xp. 

While such general models may be theoretically attractive, they also have practical 

limitations. For example, a full Markov chain is rather inflexible in terms of the 

number of parameters (i.e.  nodes) that it can represent. For a model with 4 states (as 

in the simple example of A through D above), chains with 0 to 5 parameters have 

dimensions of 3, 12, 48, 192 and 768, respectively. Markov chains can only be fitted 

in these “intervals”, thus reducing the model flexibility (e.g. if 48 parameters are not 

enough, one needs to estimate 192 parameters; intermediate values are not possible.) 

This issue introduces another problem with the full Markov chain model, the 

“dimensionality curse”, as the dimension of the model increases exponentially with 

the order p. 

Markov processes have found many applications in a diverse number of fields. For 

example, Geroliminis and Skabardonis (2005) propose an analytical methodology for 

prediction of the platoon arrival profiles and queue length along signalized arterials 

using Markov decision processes, while Yeon et al. (2008) develop a model that can 

estimate travel time on a freeway using Discrete Time Markov Chains (DTMC) where 

the states correspond to whether or not the link is congested). Other applications of 

Markov processes in transport-related literature include indicatively pavement 

management (Abaza et al., 2004) and bridge maintenance management (Scherer and 

Glagola, 1994, Ortiz-Garcia et al., 2006). Stamoulakatos and Sykas (2007) model 

mobile terminals communication with their base station using hidden Markov models 

in combination with clustering algorithms. 

Variable length Markov chains (vlmc) address both issues introduced above 

(inflexibility in terms of dimension and lack of scalability) and provide a natural and 

elegant way to avoid (some of) the difficulties mentioned. The idea is to allow the 

memory of the Markov chain to have a variable length, depending on the observed 

past values (Maechler and Buehlmann, 2004). For example, while a past history of 

states A-A-B-C-C may be a good indication of a next state being D, for other cases it 

might be sufficient to “store” a sequence of A-C as a precursor to a state C. The first 

example would indicate that the order p of the Markov chain would be five, resulting 

in a dimension of 768. However, a history of A-C is sufficient to make another state 

prediction and therefore, the “tree” of history following that tree is not required and 

can be deleted (or pruned, as is said in this context). A memory of variable length 

(five in the first case, but only two in the latter) is thus sufficient.  

Using this idea, fitting a vlmc from data involves estimation of the structure of the 

variable length memory, which can be reformulated as a problem of estimating a tree, 

using the so-called context algorithm (Rissanen, 1983), which can be implemented 

very efficiently. In the fitted tree-structured models, every terminal node (as well as 

some internal nodes) represents a state in the Markov chain and is equipped with 

corresponding transition probabilities. The context algorithm grows a large tree and 

prunes it back subsequently. The pruning part requires specification of a tuning 

parameter, the so-called cutoff. The cutoff K is a threshold value when comparing a 

tree with its subtree by pruning away one terminal node; the comparison is made with 

respect to the difference of deviance from the two trees. A large cutoff has a stronger 

tendency for pruning and yields smaller estimated context trees, i.e. a smaller 

dimension of the model.  
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2.4 State-based speed prediction 

Antoniou and Koutsopoulos (2006b) review several flexible regression approaches, 

such as locally weighted regression, loess (Cleveland 1978, Cleveland et al., 1988), 

support vector regression (SVR) based on support vector machines (Vapnik, 1995, 

1998), and neural networks (Haykin, 1999) applied to the task of speed estimation.  

They report that loess behaves better in this context. Based on this analysis, loess is 

considered in this methodology as an example of flexible regression approaches. 

Locally weighted regression (loess) was first proposed by Cleveland (1978), and 

Cleveland et al. (1988).  Cleveland and Devlin (1988) report various application areas 

of the method, such as support for exploratory graphical data analysis, provision of 

additional regression diagnostics for testing parametric models fitted to the data, and 

direct use of the local regression functions in place of parametric functions. The 

method has also found applications in machine learning.  It is used as a form of 

memory (or instance)-based learning, to learn continuous nonlinear mappings in 

applications such as learning robot dynamics, and process models (Atkenson et al., 

1997).   

Locally weighted regression can also be viewed as a generalization of the k-nearest 

neighbor approaches (Mitchell, 1997). Unlike the k-nearest neighbor approach, 

however, which can be thought of as approximating a target function g(x) at a single 

point, locally weighted regression constructs an explicit approximation of g(x) over a 

local region surrounding this point. Several functional forms can be used for this 

approximation, including e.g. a linear or a quadratic function, or a multilayer neural 

network.  

Following Cleveland and Devlin (1988), locally weighted regression 

  iii xgy  ˆ , where i  are residual errors, provides an estimate  xĝ  of the 

regression surface at any value x in the p-dimensional space of the independent 

variables. In this case, yi is local speed and independent, explanatory variables might 

include (possibly lagged) flow and density, geometric characteristics, vehicle mix or 

prevailing weather conditions. Let q be an integer,  nq 1 . The estimate of g() at 

x uses the q observations whose xi values are closest to x. Each of these points is 

weighted according to its distance from x, with points close to x having large weights 

and points farther from x having small weights. A function of the independent 

variables is fitted to the dependent variable using least squares with these weights. y = 

 xĝ  is then the value of this fitted function at x.  The objective function to be 

minimized is the weighted sum of square residuals  

q

i iiw
1

2  

A commonly used weight function is the tricube weight function (Cleveland and 

Devlin, 1988): 

 

 




 


otherwise

uifu
uW

0

101
)(

33
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Let d(x) be the distance of the qth-nearest xi to x. Then, the weight for observation 

(yi, xi) is (Cleveland and Devlin, 1988): 

 )(/),()( xdxxpWxw ii   (7) 
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where p(x,xi) is a distance function in the space of the independent variables.  In 

applications with a single independent variable p is the Euclidean distance, while in 

the multivariate case variables may have to be scaled first (e.g. by their corresponding 

standard deviation).  d(x) is the distance of the qth-nearest xi to x.  

An efficient computational approach for estimating the parameters of the local 

regressions is presented in Cleveland et al. (1988). 

 

 

3 CASE STUDY 

3.1 Data and experimental design   

Two freeway data-sets from Irvine, CA, and Tel Aviv in Israel have been used for 

this research. In both cases, weekday data were used. The Irvine data set includes five 

days of sensor data from freeway I-405. The application involved training/calibration 

with four days of data and subsequent testing/validation of the model framework for 

the fifth day (not used in the calibration). Data from 10am to 12midnight have been 

used, since this period includes the (pm) peak flow for this direction. Speed, 

occupancy and flow data over 2-minute intervals were available for calibration and 

validation. Occupancy data have been converted to density using a relationship from 

May (1990, eq. 7.2 in p. 193). 

The second data set was collected in Highway 20 (Ayalon Highway), a major intra-

city freeway running through the center of Tel Aviv in Israel. Four days of data were 

used for the training of the models and a different fifth day was used for validation. 

Speed, occupancy and flow data were available and were aggregated over 5-minute 

intervals. Occupancy data have been converted to density using the same relationship 

as above. Furthermore, it is noted that the occupancy data for Ayalon were rounded to 

percentage points, which –while common practice- could lead to rounding errors 

when the occupancy values are very small. 

The following different cases are developed, based on the type of approach that is 

used for state (where applicable) and speed prediction: 

I.   Typical speed-density relationship: A commonly used speed-density relationship 

is fit to the speed and density data of the training data set. The estimated 

relationship is then used to calculate speed values based on the densities in the test 

data set. The true densities (instead of predicted) are used in this process, thus 

eliminating any prediction error and providing an even better than expected 

prediction of speeds for this baseline model.  

II.   Locally weighted regression: The locally weighted regression (loess) algorithm is 

used to fit a flexible curve predicting speed based on density and flow 

measurements, using the training data-set. The test dataset is then used to predict 

the speed using density and flow measurements. The difference from the previous 

case, besides the more flexible functional form, is that this approach can easily be 

extended with additional explanatory variables, something that is not easy (if at all 

possible) using the typical speed-density relationship.  

III. Proposed framework: The complete state and speed prediction framework 

presented (Figure 1) has been applied using the available data.  In this scenario, a 

sensitivity analysis was also conducted to assess the impact of the number of 

clusters:   
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a. The optimal number of states, i.e. the number of states that minimizes the 

BIC, based on the results from the model-based clustering algorithm. 

b. Smaller number of clusters: The main difference from the previous case is 

that a smaller number of clusters has been used in an attempt to assess 

what the impact of a more parsimonious model structure would be on the 

model ability to predict traffic conditions. Using a smaller number of 

clusters one can argue that it might be now easier to compare this approach 

with the two or three-phase traffic models. 

IV. Simplified proposed framework: The complete state and speed prediction 

framework is used, but neural networks are used for the clustering and 

classification steps. This is a simpler approach that is implemented in order to 

assess the incremental benefits of the proposed framework components.  

 

The following speed-density relationship model was used as the reference model 

(Ben-Akiva et al., 2010):  

 

   










otherwisekkku

kkifu
u

jamf
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min

1
       (8) 

 

Where, u denotes the space mean speed, uf the free flow speed, k the density, kmin the 

minimum density, kjam the jam density, and α and β model parameters. This is a 

variant of the speed-density traffic flow theory relationship that is commonly used in 

mesoscopic traffic simulation models. For example, this is the relationship used in the 

DynaMIT model (Ben-Akiva et al., 2010) and very similar to the relationship used in 

the DynaSMART (Mahmassani, 2001) and mezzo (Burghout et al., 2005) models. 

The performance of the presented approaches is assessed using a number of 

appropriate goodness-of-fit statistics (e.g. Toledo and Koutsopoulos, 2004, Hollander 

and Liu, 2008). The purpose of using multiple statistics is that they can capture 

different aspects of the obtained results. The normalized root mean square error, 

RMSN, and root mean square percent error RMSPE (Pindyck and Rubinfeld, 1997) 

quantify the overall error of the method, while the mean percent error, MPE (Pindyck 

and Rubinfeld, 1997) indicates the existence of systematic under- or over-prediction.  

Another measure that provides information on the relative error is Theil's inequality 

coefficient (Theil, 1961). U is bounded and takes values between zero and one 

(0≤U≤1, where U = 0 implies perfect fit between observed and modeled 

measurements). Theil's inequality coefficient may be decomposed into three 

proportions of inequality: the bias (U
M

), the variance (U
S
) and the covariance (U

C
) 

proportions. By definition, the three proportions sum to 1 (U
M

+U
S
+U

C
 = 1). The bias 

proportion reflects the systematic error. The variance proportion indicates how well 

the simulation model is able to replicate the variability in the observed data. These 

two proportions should be as close to zero as possible. The covariance proportion 

measures the remaining error and therefore should be close to 1.  

 

3.2 Model training 

The fitting of the locally weighted regression is performed –as the name suggests- 

locally.  That is, the fit at point x, is made using points in a neighborhood of x, 

weighted by their distance from x. The number of points that are considered has a 
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direct impact on the smoothness of the regression curve (with more points resulting in 

a smoother line). The parameter which controls the degree of smoothing of the 

regression line (parameter , also referred to as span) in the locally weighted 

regression (loess) was determined using a line search for the case where a single curve 

is estimated for the entire data set, or a grid-search (along with the number of k 

neighbors to be considered for the k-nearest neighborhood classification algorithm) in 

the case where cluster-specific curves are fit. The range of estimated values for the 

smoothing parameter  are about 0.5-0.6 for the single curve and between 0.9 and 1.9 

for the cases with multiple clusters (with a higher number of clusters usually resulting 

in a larger value of the smoothing parameter). Larger values of  result in smoother 

functions that are less affected by fluctuations in the data (e.g. an outliner due to a 

measurement error in a detector). Smaller values of  result in curves that follow the 

individual data points more closely. 

Using the grid-search approach mentioned above, the number of k-nearest 

neighbors is found to be between 2 and 8, with higher values being obtained when 

fewer clusters are used.  

It is worth reiterating that these values have been obtained using line- or grid-

search techniques and selecting the values that minimized the objective functions (as 

indicated by the measures of effectiveness presented in the previous section; it is 

possible that different measures of effectiveness would result in somewhat different 

values and this would be an interesting point to consider in future research). It would 

be interesting to explore the impact of choosing different parameters that might have 

resulted in a marginally lower value of the objective function, but might provide 

superior results.  

The implementation of this research was performed within the R Software for 

Statistical Computing v.2.15.1 (R Development Core Team, 2012; Venables and 

Ripley, 2002) using the Mclust package (Fraley and Raftery, 2002) for model-based 

clustering, the vlmc package (Maechler and Buehlmann, 2004) for estimation of 

variable-length Markov chains and the nnet package (Ripley, 1996) for classification 

using neural networks.  
 

3.2.1 Clustering 

The best functional form of the mixtures to be considered for clustering, and the 

optimal number of clusters were sought using the model-based clustering algorithm 

(Fraley and Raftery, 2002). A large number of different mixture models were 

considered, varying in terms of shape and volume. For example, two clusters may 

have the same volume, shape and orientation; each of these restrictions (volume, 

shape and orientation) could also be relaxed to lead to a more flexible model. The less 

restrictive model, having an ellipsoidal structure with no restrictions on the volume, 

shape and orientation among clusters, is expected to match the data at hand better.  

Figure 2 shows –as an example- the clustering results (using the procedure outlined 

in Section 2.2.1) for the Irvine network for some cases:  

 Four clusters using the most restrictive model (same volume, shape and 

orientation) 

 Four clusters using the most flexible model 

 Three clusters using the most flexible model.  

Several observations can be based on this figure. For example, the restrictions on 

the volume, shape and orientation of the clusters in the top subfigure limit the ability 
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of the clusters to adequately reflect the shape of the data. As a result of these 

restrictions, the clusters cannot be formed in a way that is consistent with traffic flow 

theory. For example, the higher-density region of the data is not captured at all; 

furthermore, the clusters that have been created cannot be behaviorally explained. 

Relaxing these restrictions, however, allows the clusters to be formed in ways that are 

more meaningful and consistent with traffic flow theory. The middle subfigure of 

Figure 2 shows how the same number of clusters (four) can be used –with the 

relaxation of the shape, volume and orientation restrictions– to better capture the data 

points. The bottom subfigure demonstrates how a smaller number of clusters (in this 

case three, instead of four) can still adequately capture the data structure, in this case 

by essentially re-arranging the data in the higher-density clusters. 
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Figure 2. Different clustering scenarios applied on the Irvine dataset 
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Figure 3 shows the obtained curves of fit for each number of clusters. “Final” refers 

to the fit obtained by the selected, best model (in terms of volume, shape and 

orientation of the clusters), while “Reference” refers to the values obtained using the 

most restrictive model (equal volume, shape and orientation for all clusters). The 

“optimal” model has 4 clusters for Irvine and 8 clusters for Ayalon. However, it is 

recognized that determining the number of clusters solely on the basis of a goodness-

of-fit measure such as BIC is likely to favor larger numbers of clusters, which might 

also be more difficult to interpret from a traffic flow theory point of view. 

Furthermore, considering the incremental benefits of additional clusters (resulting in 

more complicated traffic descriptions), one notices that a smaller number of clusters 

appears to give a fit close to the optimal. For example, 5 clusters provide a similar fit 

to the optimal number of 8 clusters (in the Ayalon dataset). Furthermore, when the 

number of clusters is further reduced, e.g. down to 3 clusters, then the loss may not be 

large. In the remainder of this paper up to three cases per application will be 

investigated in parallel, i.e. the optimal number of clusters (based on the BIC 

criterion, as shown in Figure 3, i.e. 4 for Irvine and 8 for Ayalon) as well as numbers 

of clusters, resulting in more parsimonious models (in particular 5 and 3 clusters). In 

the remainder of this paper, “optimal” number of clusters refers to the number of 

clusters that minimizes the value of BIC. 
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Figure 3: Optimal number of clusters (left: Irvine, right: Ayalon)  

Figure 4 provides a visual representation of the clustering results for different 

numbers of clusters for the two networks. The results for the optimal clustering are 

presented in the top, followed by the results for the more parsimonious models. As 

expected, a smaller number of clusters results in a simpler clustering that could be 

more easily interpreted into recognizable and distinct traffic states. It is interesting to 

note that the resulting sets of clusters in the two networks have similar geometries. 

This becomes particularly evident as the number of clusters decreases, and especially 

in the 3-cluster cases.   
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 C. Ayalon, IL – 8 clusters 

 

 
A. Irvine, CA – 4 clusters D. Ayalon, IL – 5 clusters 

  
B. Irvine, CA – 3 clusters E. Ayalon, IL – 3 clusters 

  

Figure 4: Visualization of clustering results for different number of clusters (left: Irvine, right: Ayalon) 

kph             veh/min        veh/km/lane    
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3.2.2 Markov chain training 

 

As mentioned in Section 2.3, the difference between a variable length Markov 

Chain (vlmc) and a complete Markov chain model is that in the former, the 

“branches” that are not needed are deleted or pruned. In practice, the way the vlmc 

works is that it computes a huge tree and then prunes it, based on some appropriate 

parameter value. The cutoff for this pruning is an input parameter, which –in the case 

of this research- was obtained using a line-search for the value that provided the 

lowest value for the Akaike Information Criterion (AIC, Akaike, 1974). The 

“objective function” is this case was the degree to which the resulting vlmc was 

capable to reproduce the history. The results of this sensitivity analysis are presented 

in Figure 5. For each data set, the sensitivity analysis with respect to the cutoff K 

value is presented for different numbers of clusters. For the Irvine dataset using four 

clusters, the optimal value for the cutoff parameter is 4.1. The minimum AIC obtained 

with this cutoff value is equal to 1984.  Similarly, for the Ayalon freeway and eight 

clusters the optimal cutoff value is equal to 7.6 (minimum AIC equal to 1299.8). 

When the number of clusters is restricted to 5 for the Irvine data, then the optimal 

cutoff value is 4.6 (minimum AIC equal to 1985) and when only three clusters are 

considered the cutoff value drops to 3.7 (minimum AIC equal to 1389). Similarly, for 

the Ayalon data the optimal cutoff value for 5 clusters is 6.2 (minimum AIC equal to 

859.9), while for the case of 3 clusters the optimal cutoff is equal to 2.8 (minimum 

AIC value equal to 479.1). A smaller number of clusters leads to a smaller model and 

therefore a lower value of the cutoff. 
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Figure 5: Sensitivity analysis for the determination of the optimal variable length Markov Chain 
process (left: Irvine, right: Ayalon) 

Figure 6 illustrates the residuals of the fitted variable-length Markov Chain models 

against the contexts, i.e., produces a boxplot of residuals for all contexts used in the 

model fit. Intuitively, a context is a “case” that is not pruned from the context tree. 

For example, if 331 is retained as a context (and shown as a tick in the x-axis), it 

means that a sequence of states 3,3 and then 1 can be used to predict the next state 
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with reasonable accuracy. On the other hand, sequences of states that are not 

systematically followed by a specific state (and therefore cannot be used effectively 

for prediction) are not retained. The number of observations per context state is also 

illustrated, above the x-axis of the figure. Furthermore, the width of each boxplot is 

proportional to the square root of the number of observations that it represents. A 

small number of sequences implies that the evolution of the traffic state is usually 

explained by the preceding state. Examining the retained contexts, one observes that 

when a smaller number of states is used (4 for the Irvine data set), then longer 

sequences of states are retained as contexts. This is reasonable and expected, since 

when a smaller number of states is available, the same sequence of states is more 

likely to be observed (and similarly, the chance that the next state will be correctly 

predicted is increased, as there are fewer states). This is observed also when 

comparing the same plots for the Ayalon data set with 5 and 3 clusters; these plots 

however are not shown here in the interest of space economy. 
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Figure 6: Plots of residuals vs. context (case retained in the variable length Markov Chain) (top: Irvine, 
bottom: Ayalon)   

Figure 7 presents the context tree for the estimated models, which provides an 

alternative way to interpret the transition probabilities. Consider the tree for Ayalon 

and eight clusters, which –due to the larger number of clusters- has a simpler form. If 

the previous cluster is 2 through 8, then there is a fairly good idea of what the next 

cluster will be. Let’s consider now the case where the previous observation falls in 

cluster 1. Then, if the observation before that is 3, then one set of transition 

probabilities is obtained, while if, on the other hand, the previous observation (before 

1) was anything except for 3, then a different set of transition probabilities is used. 

When the number of clusters is reduced (as shown in the bottom right subfigure, 

where the number of clusters for the same Ayalon data set has been reduced to 5), the 

structure of the tree becomes richer, as the smaller number of clusters forces (or 

allows) more elaborate combinations of cluster histories. The more complicated 

context tree for the Irvine network and four clusters only can be interpreted in a 

similar way.  
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Figure 7. Context trees for variable length Markov chain models. 

 

3.3 Application for speed prediction 

Speed prediction for one interval ahead is considered. The duration of the interval 

is consistent with the time over which the surveillance data were aggregated, i.e. 2 

minutes for Irvine and 5 minutes for Ayalon. 

 

3.3.1 Traffic state prediction 

Traffic state prediction involves several steps utilizing different data. Clustering 

and classification use traffic data (i.e. density and flow), while state prediction relies 

on the traffic state during the previous intervals. In the presented framework in this 

research, clustering is performed using model based clustering. Furthermore, two 

different options for implementing the subsequent steps of the process outlined in 

Figure 1 are considered. In the first process, classification and one-step prediction are 

performed using single-hidden layer neural networks (with two units in the hidden 

layer), while in the second, classification is performed using k-nearest neighbors and 

one-step prediction using variable length Markov chains. In each case, the one-step 

predicted state with the highest predicted probability was selected as the most likely 

future state. The same explanatory variables (flow and density) were used for the 

prediction in both cases (vlmc and neural net). 

Using the calibrated Markov chain or neural networks to predict the future traffic 

state involves the inherent danger of misclassification, i.e. predicting a state that is 

different than the state that would be determined if the actual data from the future 

observation were classified using the k-nearest neighbor algorithm or the neural 

network. The extent of misclassification can affect the accuracy of the overall 

methodology. In this section, the one-step predicted cluster is compared with the 

“true” cluster, i.e. the cluster in which that observation would be classified when the 

data (flow, density) becomes available. It is noted that the “true” cluster is the cluster 

in which the observation is assigned when –in the future– the true measurements 
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become available. Therefore, this depends on the clustering and classification 

methodology. For example, in the Ayalon data-set with 5 clusters, the k-nearest-

neighbors method has assigned 83 observations in the “true” cluster 3, while the 

neural networks method has assigned 54. This clarification is useful in understanding 

that the distinction between the “true” and predicted classification is essentially the 

type of information that is available (measured vs. predicted). 

For the Irvine dataset, with the optimal number of 4 clusters, the Markov chain 

prediction correctly classified the traffic states in 79% of the cases, while the neural 

network predicts correctly 82% of the cases. The following table provides some more 

detail on this classification, with correct classifications shown in the diagonal and in 

bold. Cells with zero observations have been left blank for clarity. When the number 

of clusters is reduced to 3, then the number of correctly classified states reaches 84% 

of considered states for the Markov chain and 86% for the neural network, which is 

intuitive, considering that with a smaller number of states, there is a lower chance of 

misclassification.  

For the Ayalon dataset, when the optimal number of (8) clusters is considered, 85% 

of the states are correctly classified with the Markov chain prediction and 78% are 

correctly classified when the neural network approach is used. When the number of 

clusters is limited to 5, the percentage of correctly classified states increases to 90% 

for the Markov chain prediction approaches and 84% for the neural network 

approach, while when only three clusters are considered, 92% of the observations are 

classified in the correct state with the k-nearest neighbors (knn) and Markov chain 

approach, and 88% when the neural networks approach is used. Again, a better 

predictive performance is expected when a smaller number of candidate clusters is 

considered.  

One question that arises from the difference in the classification performance 

between the two data sets is why is performance better with the Ayalon data set. 

Looking at Figure 4, the range of observed density values that the Ayalon data cover 

is larger; therefore, the larger number of clusters may be due to the need to capture the 

wider range of data. Furthermore, it is evident that the Ayalon data have a smaller 

variability. This may be due to the characteristics of the flow, but are more likely to 

be due to the larger aggregation of the data (to 5-minute intervals, instead of 2-minute 

intervals as in the Irvine case). In the case of the Irvine data, larger variability does 

not necessarily mean that more clusters can be statistically identifiable, as there is 

more mass, and the underlying distributions have greater overlap. Ayalon, on the 

other hand, has a crisper diagram, so it might be easier to define (smaller) regions.  
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Table 1. Traffic state prediction results (left: Irvine, right: Ayalon)  
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3.3.2 Speed prediction 

Loess curves have been estimated for each cluster (and the entire sample) using the 

traffic data (speed, flow and density). Following the prediction of the state, it is 

possible to use the estimated loess curve for that cluster, along with the density and 

flow for that observation, to perform speed prediction.  Table 2 summarizes the 

prediction results for the cases presented in Section 3.1. Overall, the results are 

encouraging, with prediction accuracy of about 3%-4%, according to the RMSN and 

RMSPE metrics).  This represents an improvement of about 50% from the typical 

speed density relationship for both data sets. The MPE measure is in general low. For 

example, MPE for Irvine do not indicate an advantage for the proposed approach, 

while all values for prediction are negative. However, MPE is already essentially 0 for 

the base case (no bias in the predictions), so there is no further advantage to be 

gained. The values may have a negative sign, but they are extremely small (essentially 

zero, if e.g. they are rounded to 2 decimal digits). Also, the values indicated by the 

Theil inequality coefficient components are considerably improved after the 

application of the complete framework and in any case they have very low values in 

absolute terms. In addition, the following observations can be made: 

 Locally weighted regression applied to the entire dataset (i.e. without clustering) 

provides superior performance to the typical speed-density relationship. This is 

expected, as (i) it can integrate additional explanatory variables, and (ii) its 

functional form is less restricted (i.e. can better follow the data). 

 Decreasing the number of clusters from 8 to 5 (in the Ayalon data set), in the 

application of the full-blown methodology, does not significantly affect the 

performance (in terms of accuracy in traffic state and local speed prediction). 

Further reduction (to three clusters for the Ayalon data set) provides a deterioration, 

but still much better performance than the typical speed-density relationship. 

Similarly, decreasing the number of clusters from 4 to 3 (in the Irvine data set) does 

not significantly affect the performance (in terms of accuracy).  

 The proposed framework provides considerable benefits over the state-of-the-art 

(and often comparable with the full framework) also when a neural network is used 

in lieu of the clustering and classification algorithms. 
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Table 2. Summary results of speed prediction (top: Irvine, bottom: Ayalon) 
Irvine 

 
I. Speed-
density 

relationship 

II. Loess - 
no 

clustering 

III. Prediction (loess, clustering) 

 

a. 4 clusters 

(knn/vlmc) 

b. 3 clusters 

(knn/vlmc) 

c. 4 clusters 
(nnet) 

d. 3 clusters 
(nnet) 

RMSN 0.0702 0.0293 0.0255 0.0251 0.0253 0.0255 

RMSPE 0.0807 0.0381 0.0269 0.0271 0.0271 0.0277 

MPE 0.0016 -0.0074 -0.0008 -0.0020 -0.0015 -0.0015 

U 0.0346 0.0144 0.0126 0.0124 0.0124 0.0126 

Um 0.0102 0.0244 0.0008 0.0043 0.0023 0.0024 

Us 0.0751 0.1032 0.0018 0.0065 0.0033 0.0030 

Ayalon  

 
I. Speed-
density 

relationship 

II. Loess - 
no 

clustering 

III. Prediction (loess, clustering)  

 

a. 8 clusters 

(knn/vlmc) 
b. 5 clusters 
(knn/vlmc) 

c. 3 clusters 
(knn/vlmc) 

 

RMSN 0.0829 0.0490 0.0320 0.0420 0.0312  

RMSPE 0.0941 0.0532 0.0347 0.0459 0.0346  

MPE 0.0177 0.0032 0.0040 0.0044 0.0051  

U 0.0401 0.0238 0.0156 0.0204 0.0151  

Um 0.0166 0.0000 0.0036 0.0042 0.0109  

Us 0.0056 0.0049 0.0204 0.0013 0.0166  

 III. Prediction (loess, clustering)  

 
d. 8 clusters 

(nnet) 
e. 5 clusters 

(nnet) 
f. 3 clusters 

(nnet) 
 

RMSN 0.0508 0.0488 0.0477  

RMSPE 0.0530 0.0505 0.0494  

MPE 0.0000 0.0015 0.0016  

U 0.0247 0.0237 0.0232  

Um 0.0008 0.0000 0.0000  

Us 0.0002 0.0002 0.0000  

 

 

One question that might arise from these results is whether there is any 

differentiation in performance of the proposed algorithms under different conditions. 

For example, does the proposed approach outperform the reference cases both under 

peak and off-peak conditions? To answer this question, the results of Table 2 are 

presented in Figures 8 and 9 for all data (top), peak period data (middle) and off-peak 

(bottom) conditions. Figure 8 presents the results for the Irvine network and Figure 9 

for the Ayalon dataset. The results for the two networks suggest that the performance 

of the proposed approach does not depend on the prevailing traffic conditions. Having 

said that, there seems to be some differentiation between the results for the two 

networks, with the ones for Irvine showing lower variability, while those for Ayalon 

show a higher variability. This is consistent with the observations made earlier, 

regarding the spectrum of data available for the Ayalon network, which is wider than 

that for the Irvine dataset.  

The Theil Us coefficient shows some rather high values in some cases.  For 

example, it is higher for the off-peak conditions. As discussed, Us measures how well 

the model is able to replicate the variability in the observed data. When the off-peak 

data are considered, while the observed data have some variability (due to variability 

in desired speeds for example), the predicted data correspond more closely to the free 

flow speed and therefore have a very low standard deviation, especially compared to 
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the actual data. This is more of a problem with the basic approach, which uses the 

speed-density relationship of Equation 8, and less so with the other methods. 
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Figure 8: Comparison of the measures of effectiveness for all scenarios for the Irvine network (top: 
entire period, middle: peak conditions, bottom: off-peak conditions). 
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Figure 9: Comparison of the measures of effectiveness for all scenarios for the Ayalon network (top: 
entire period, middle: peak conditions, bottom: off-peak conditions). 
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4 DISCUSSION 

A methodology for the identification and short-term prediction of traffic state and 
local speed, designed to take advantage of the ever-increasing availability of traffic 
data through emerging sensors, has been presented. The methodology is a two-step 
approach, where in the first step an observation is assigned to a traffic state and then a 
state-specific function is used to estimate/predict the corresponding speed. An 
application of the methodology to short-term speed prediction in freeway datasets in 
Irvine, CA, and Tel Aviv, Israel, provides encouraging results. The two data sets have 
somewhat different properties (in terms of coverage of the range of possible traffic 
conditions, as well as variability), which helps identify how the proposed approaches 
perform under different conditions. The results also show that increasing the number 
of clusters (providing a finer description of traffic states) does not result in better 
performance, as it also increases misclassification errors and over-fitting.  Instead, a 
small number of traffic states provide a sufficient description of traffic conditions.   

In addition to further testing to validate the proposed methodology (e.g. in more 
networks, including urban arterials), a number of potential directions for further 
research include: 

 Incorporation of additional explanatory variables to capture impact of geometric 

characteristics, downstream conditions, weather conditions, etc.  The proposed 

methodology is well suited to include such variables.  The enrichment of the data 

driven models with such additional information may enable them to capture traffic 

characteristics that cannot be otherwise modeled explicitly.  Furthermore, the 

gradual enrichment of the “system knowledge” database (Figure 1) may result in 

increasingly more advanced models that will evolve and adapt to changing traffic 

dynamics.  

 Robustness of the methodology with respect to measurement and other errors that 

corrupt the data. In-depth analysis of alternative algorithms and specific model 

structures to be used within each component of the methodology. 

 A number of parameters were estimated using strictly optimization criteria (usually 

of some statistical measure, such as BIC).  It would be interesting to explore the 

impact of choosing different parameter values that resulted in a marginally lower 

value of the objective function, but might provide superior performance. 
The main contributions of this paper include the development of a methodology for 

traffic state prediction, based on a set of flexible models, both in terms of functional 
specification and data to which they can be applied. As the proposed models are 
shown to outperform current state-of-the-art models, they could be valuable when 
integrated into existing traffic simulation models, resulting in more accurate traffic 
predictions. These predictions could then better support downstream applications, 
such as traffic guidance generation. The data-driven algorithms that are integrated in 
the presented framework are readily implemented in widely used statistical software 
and as such could be easily interfaced with traffic simulation models. Alternatively, to 
improve efficiency, these algorithms are well documented and therefore could also be 
implemented directly within the traffic simulation systems. 

A number of applications can be explored.  One of the promising applications of 
the presented data-driven models is their introduction into mesoscopic traffic 
simulation models (for example the ones used by state-of-the-art simulation-based 
DTA models, DynaMIT, Ben-Akiva et al., 2002, 2010, DYNASMART, Mahmassani, 
2001, or RENAISSANCE, Wang et al., 2006a, 2006b) and the assessment of their 
performance and impact in such an environment. For each time step the model would 
then use the density, flow and other explanatory variables at each link to estimate the 
speed of the impacted vehicles. In the data-sets available for this research, no 
additional data –besides traffic variables- were available, and therefore it was not 
possible to further demonstrate the benefits of the developed approach. The 
application of the proposed approach to richer data sets is expected to further 
demonstrate its contribution to the development of more accurate traffic state 
prediction models. This becomes particularly relevant in the context of emerging data 
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collection possibilities and opportunistic data sets (a review of which can be found in 
Antoniou et al., 2011), which can be easily incorporated into the proposed model 
framework without requiring reformulations. 

Other potential applications in the field of motorway surveillance and control, in 
addition to local prediction of speed, include automated incident detection and 
capacity estimation. Incident detection, or at least a warning that conditions are 
drastically different than the ones expected, can be achieved when the observed traffic 
state differs from the state that was predicted by the model. A deviation from this 
expectation may suggest that some special event has disrupted the normal flow of 
traffic and trigger an intelligent system or the traffic management center operator to 
react quickly.  
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