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Abstract 

In this paper, macroscopic road safety trends in Greece are analysed using state-space models and data for 52 years 

(1960-2011). Seemingly Unrelated Time Series Equations (SUTSE) models are developed first, followed by richer 

latent risk time-series (LRT) models. As reliable estimates of vehicle-kilometers are not available for Greece, the 

number of vehicles in circulation is used as a proxy to the exposure. Alternative considered models are presented and 

discussed, including diagnostics for the assessment of their model quality and recommendations for further 

enrichment of this model. Important interventions were incorporated in the models developed (1986 financial crisis, 

1991 old-car exchange scheme, 1996 new road fatality definition) and found statistically significant. Furthermore, the 

forecasting results using data up to 2008 were compared with final actual data (2009-2011) indicating that the models 

perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting results up 

to 2020 are also presented and compared with the forecasts of a model that explicitly considers the currently on-going 

recession. Modeling the recession, and assuming that it will end by 2013, results in more reasonable estimates of risk 

and vehicle-kilometers for the 2020 horizon. This research demonstrates the benefits of using advanced state-space 

modeling techniques for modeling macroscopic road safety trends, such as allowing the explicit modeling of 

interventions. The challenges associated with the application of such state-of-the-art models for macroscopic 

phenomena, such as traffic fatalities in a region or country, are also highlighted. Furthermore, it is demonstrated that 

it is possible to apply such complex models using the relatively short time-series that are available in macroscopic 

road safety analysis. 
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1. Introduction 

The analysis of macroscopic road safety trends has received a lot of attention in the literature (e.g. 

Washington et al., 1999; Lassarre, 2001; Page, 2001; Abbas, 2004; Kopits and Cropper, 2005; Eksler et 

al., 2008; Yannis et al., 2011a, 2011b; Antoniou et al., 2011). A critical review of a number of approaches 

for modeling road safety developments can be found in Hakim et al. (1991), Oppe (1989) and Al-Haji 

(2007). Beenstock and Gafni (2000) suggest that the downward trend in the rate of road accidents reflects 

the propagation of road safety technology and is embodied in motor vehicle and road design, rather than 

road safety policies. Many of the studies use simple statistical and econometric models, and one of the 

recommendations is often that more elaborate statistical approaches might yield better results. For the 

descriptive, explanatory, or forecasting analysis of time series from road safety research, using dedicated 
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time series analysis techniques such as ARMA-type models for stationary data and ARIMA or state space 

models for non-stationary data is recommended. These two types of models are not exclusive of one 

another as each type of model may also be written under different forms, and equivalences between well-

defined specifications have been empirically demonstrated. The introduction of exogenous variables in 

these models also responds to different objectives. In all cases, the performance of these explanatory 

models is significantly improved. A recent discussion of these models in the context of road safety time 

series data statistical inference is presented by Commandeur et al. (2013).  

A number of other interesting approaches have been proposed in the literature, often targeted at 

specific challenges. To overcome the limited ability of safety models to properly reflect crash causality, 

an issue often associated with aggregated (and frequently of poor quality) data, Tarko (2012) proposes a 

modeling paradigm that integrates several types of safety models. Huang and Abdel-Aty (2010) propose a 

5-level hierarchy that considers heterogeneity and spatiotemporal correlation to represent the general 

framework of multilevel data structures in traffic safety starting with the geographic region at the top level 

and considering the individual occupant at the lowest level. Huang and Abdel-Aty (2010) use Bayesian 

hierarchical models to show the improvements on model fitting and predictive performance over 

traditional models. Abdel-Aty and Pande (2007) compare crash data analysis following two approaches 

(using aggregate data versus considering data at the individual crash level) and discuss the advantages and 

disadvantages of each.  

In this research, the macroscopic road safety trends in Greece (as expressed through road safety 

fatalities) are analysed using state-space models and data for 52 years (1960-2011). Simpler Seemingly 

Unrelated Time Series Equations (SUTSE) models are developed first, followed by richer latent risk time-

series (LRT) models. Statistical tests on the results of the SUTSE model can indicate whether the time 

series are correlated. Restrictions of the stochastic model specifications (e.g. fixing the slope and/or the 

level components) are considered and evaluated versus the unrestricted model. Furthermore, both 

explanatory variables and intervention variables are entered into the model to improve its fit. As reliable 

estimates of vehicle-kilometers are not available for Greece, the number of vehicles in circulation is used 

as a proxy to the exposure. Naturally, the incorporation of surrogate measures of exposure has 

consequences as it introduces other effects into the equation. For example, the use of vehicle stock as the 

proxy measure may actually have different effects that those of the actual traffic, when e.g. the degree of 

motorization increases slowly (as is often the case even in times of recession), when the annual distance 

driven per vehicle may actually decrease sharply. In order to more accurately model exogenous factors, 

interventions that may have affected the road safety trends are identified, and –following statistical 

validation- three main events are considered and analysed.  

The remainder of the paper is structured as follows. Section 2 presents the methodological tools that 

are used and outlines the used data. Section 3 presents the model estimation results and diagnostics, while 

section 4 presents the validation and forecasting results until the 2020 horizon. Section 5 presents 

validation and prediction results for the LRT model that explicitly considers recession. Concluding 

remarks and a discussion of the main findings and the relevance of the presented research for researchers 

and practitioners are presented in Section 6. 

2. Methodology and data 

2.1. Multivariate state-space models 

In a multivariate state space analysis, the observation and state equations have disturbances associated 

with a particular component or irregular. The multivariate time series model with unobserved component 

vectors that depend on correlated disturbances is referred to as a seemingly unrelated time series 
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equations model. The name underlines the fact that although the disturbances of the components can be 

correlated, the equations remain ‘seemingly unrelated’ (Commandeur and Koopman, 2007).  

The structural time series models can easily be generalized to the multivariate case (Harvey and 

Shephard, 1993). For instance, the local level with drift becomes, for an N-dimensional series 

  

 

where  are nonnegative definite NxN matrices. Such models are called seemingly unrelated 

time series equations (SUTSE), reflecting the fact that the individual time series are connected only via 

the correlated disturbances in the measurement and transition equations.  

The multivariate unobserved components time series modelling framework is adopted to formulate a 

risk system for the observed variables exposure, outcome and loss. The latent risk model (LRT) model 

relates these observed variables within a multivariate system of equations. This model is outlined in the 

context of road safety in the next section, while a detailed coverage, along with practical applications can 

be found in e.g. Bijleveld et al. (2008). The two-level form that is being used in this research and includes 

latent factors for exposure Et and risk Rt, which are associated with the observed variables exposure Xt 

and outcome Yt, for time index t=1,…,n, is outlined next. The basic form of the model links the 

observable and the latent factors via the multiplicative relationships: 

     (3) 

     (4) 

where  are random error terms with unit mean for t=1,…,n and a=X,Y. The non-linear 

formulation can be transformed to a linear formulation by taking the logarithm of each equation. In this 

research, this approach has been followed.  

 

2.2. Structural time-series models for road safety: The Latent Risk Time-Series (LRT) model 

A basic concept in road safety is that the number of fatalities is a function of the road risk and the level 

of exposure of road users to this risk (Oppe, 1989, 1991). This implies that in order to model the 

evolution of fatalities it is required to model the evolution of two parameters: a road safety indicator and 

an exposure indicator. While fatalities are a common and intuitive road safety indicator, exposure may 

include a number of direct or indirect (proxy) measures, depending on the data available for each modeled 

situation (e.g. country or region). Bijleveld (2008) formalizes the assumption that “the development of 

traffic safety is the product of the respective developments of exposure and risk” in the following, using 

traffic volume as the exposure measure: 

                          
Trafficvolume = Exposure

Numberof fatalilties = Exposure´Risk
            (5) 

 

which represents a latent risk time-series (LRT) formulation. In this case, both traffic volume and 

number of fatalities are treated as dependent variables. Effectively, this implies that traffic volume and 

fatality numbers are considered to be the realized counterparts of the latent variables “exposure”, and 

“exposure x risk”. When the logarithm of Equations (5) is taken (and the error term is explicitly written 

out) the –so called– measurement equations of the model can be rewritten as:  
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LogTrafficvolume = log exposure+ randomerrorintrafficvolume

LogNumberof fatalities = logexposure+ logrisk + random errorof fatalities
  (6) 

 

The latent variables [log (exposure) and log (risk)] need to be further specified by state equations, 

which, once inserted in the general model, describe (or explain) the development of the latent variable. It 

is under their unobserved, or “state” form that the variables investigated can be decomposed into the 

several components (trend, seasonal, cycles…). Equations (7) and (8) show how the variables can be 

modeled (to simplify the illustration only the number of fatalities is decomposed as an example). Note 

that the variables of exposure and risk in this case are modeled independently, and not simultaneously as 

in the case of the LRT model presented next. 

 

Equation (7) reflects the fact that the recorded number of fatalities is only a (possibly erroneous) 

observation of the true number of fatalities. The true development of the fatalities time-series is therefore 

modeled through the state equations and then used as independent variable in the measurement equation, 

where –along with the error term– result in the total observed fatalities.  

 

Measurement equation:  

       logNumberof Fatalitiest = logLatentFat.t +et                               (7) 

 

State equations: 

    
Level(logLatentFatt ) = Level(logLatentFatt-1)+Slope(logLatentFatt-1)+xt

Slope(log(LatentFatt ) = Slope(logLatentFatt-1)+z t
      (8) 

 

A more general formulation is presented in Equation (9), in which Yt represents the observations and is 

defined by the measurement equation within which t  represents the state and tε  the measurement 

error. The state t  is defined in the state equation, which essentially describes how the latent variable 

evolves from one time point to the other.  
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                     (9) 

The state tμ  thus corresponds to the fatality trend at year t. It is defined by an intercept, or level  

1tμ  (thus the value of the trend for the year before, assuming an annual time-series) plus a slope , 

which is the value by which every new time point is incremented (or decremented depending on the slope 

sign, which is usually negative in the case of fatality trends). The slope tν  thus represents the effect of 

time on the latent variable. It is defined in a separate equation, so that a random error term can be added 

to it ( tζ ). These random terms, or disturbances, allow the level and slope coefficients of the trend to vary 

over time.  

The basic formulation presented in Equation (9) allows the definition of a rich family of trend models 

which covers an extensive range of series in a coherent way; when both the level and slope terms are 
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allowed to vary over time the resulting model is referred to as to the local linear trend (LLT) model. The 

next model, Latent Risk Time-Series (LRT), simultaneously models exposure and fatalities. To 

accomplish this, the latent risk model contains two measurement equations: one for the exposure (e.g. 

traffic volume) and one for the fatalities; two state equations can be written for each measurement 

equation, modeling the level and slope of the corresponding latent variable.  

 

For traffic volume:  

Measurement equations:  

logTrafficVolumet = logExposuret +et
e
                                        (10) 

 

State equations: 

Level(logExposuret ) = Level(logExposuret-1)+Slope(logExposuret-1)+xt
e

Slope(logExposuret ) = Slope(logExposuret-1)+z t
e

    (11) 

 

 

For the fatalities:  

Measurement equation: 

logNumberof Fatalitiest = logExposuret + logRiskt +et
f
                         (12) 

 

State equations: 

Trend(logRiskt ) = Level(logRiskt-1)+ Slope(logRiskt-1)+xt
r

Slope(logRiskt ) = Slope(logRiskt-1)+z t
r

                     (13) 

 

 

Note that Equation (12) now includes the Risk (and not the fatalities), which can be estimated as:  

 

logRiskt = logLatentFatt - logExposuret        (14)

  

 

The LRT models the observed development of traffic volume and fatalities (the measurement 

equations) but also of the latent, true values of exposure and fatality risk (state equations). Explanatory 

variables that are thought to affect either traffic volume or the number of fatalities can be added to the 

model in three different ways: 1) into the measurement equation, where they are assumed to explain the 

observation errors, 2) in the level equation, where they are assumed to explain the level disturbances and 

3) in the slope equation, where they are assumed to explain the slope disturbances. An explanatory 

variable is inserted into the measurement equation if it is thought to have an effect on observation errors 

(if, for example, one has reasons to suspect that it affected the registration of fatalities or traffic volume). 

It will be included in the level equation if it is thought to have an effect on the level of fatalities or 

exposure, and in the slope equation if it is thought to affect the steepness or direction of change. 

Seemingly Unrelated Time-Series Equations (SUTSE) (Petris et al., 2009), a third class of models, are 

also used in this approach as a preliminary step in establishing whether the two time-series may be 

correlated.   
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2.3. Considered data 

The data that are considered in this research comprises fatalities and vehicles in circulation. The data 

have been collected for 52 years (1960-2011) and are presented visually in Figure 1. Before 1996 road 

accident fatalities in Greece were recorded based on the 24-hour definition (i.e. counting a person that has 

been injured in a traffic accident as a road-safety fatality, only if that person passed away within 24 hours 

of the occurrence of the accident), while since then the 30-day definition is used. The data presented in 

Figure 1 correspond to the 30-day definition for the entire period (converted via appropriate factors for 

the period prior to 1996). It is widely accepted that vehicle kilometers are an appropriate exposure 

measure. However, there are no vehicle kilometers data available for Greece and therefore the vehicle 

fleet is used as a proxy. A number of biases can be introduced by the use of vehicle fleet instead of 

vehicle-kilometers as the surrogate exposure measure. For example, the reduction in the use of the 

vehicles (kilometers per vehicle) is not directly reflected in the number of vehicles. Furthermore, the 

retirement of vehicles from circulation is a more long-term process that would be reflected in the 

exposure time-series with a lag. 

A clear increasing trend is evident in the number of vehicles in circulation. The presented fatality data 

for Greece shows two distinct trends: an increasing one until approximately 1995, followed by a 

decreasing one thereafter. As there are only 16 data points describing the decreasing trend, it is expected 

that reserving a large number of observations for forecasting may affect the accuracy of the model.  

While the exposure data seem rather smooth, the fatality data exhibit certain irregularities that could 

affect the model estimation results. In order to better account for these external shocks to the process, it 

was decided to seek possible events that could be identified and explicitly entered into the model. There 

are three main events that can be entered as interventions in the model for the period and data that are 

being analysed: 

I1986: in 1986 Greece encountered a financial crisis, which affected mobility and therefore exposure 

(note that –due to lack of the data- the exposure variable in the Greek dataset is vehicles in circulation and 

not direct exposure). This intervention is entered into the model as a shock in the specific time point. 

I1991: in 1991 Greece introduced an “old-car-exchange” scheme, under which old cars could be 

exchanged for a cash incentive to buy a new (safer and cleaner) car. While this did not affect the number 

of vehicles in circulation, the number of kilometres driven may have increased considerably, as newer 

cars replaced older cars that may have been driven only slightly. The introduction of the newer cars in 

circulation might have thus significantly increased exposure and related risk. On the other hand, the 

introduction of newer, safer cars could have had a positive effect in road safety. However, the overall net 

effect is apparently negative at the time of the intervention, while the positive effects themselves 

manifested themselves after a few years, i.e. around 1996 (it is noted that the system run from 1991 

through the end of 1993) (Yannis, 2007). This intervention is also entered into the model as a shock in the 

specific time point. 

I1996: in 1996 the fatality recording system in Greece switched from 24-hour to 30-day. This meant 

that the use of the adjustment factor (from 24-hour to 30-day fatality figures) stopped at that time and real 

data was used from that point on. This intervention has been entered in the slope of the fatalities, as its 

impact is assumed to be unlike a point shock, but rather a sustained shift.  
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Fig. 1. Fatalities (top) and Exposure (Number of Vehicles in circulation, bottom) for Greece from 1960 to 2011 

3. Model estimation results 

This section presents the main estimation results of the SUTSE and latent risk models. As a simpler 

model, the SUTSE model was also used as a diagnostic in order to determine whether more elaborate 

models (such as the latent risk time-series model) would be beneficial for this application. The models 

have been implemented by the DACOTA EU project (www.dacota-project.eu/) participants in the R 

language for statistical computing (R Core Development Team, 2012) and the ggplot2 package for 

graphical output (Wickham, 2009). 

Table 1 presents the main diagnostic tests for the three main specifications that were tested. The 

SUTSE model is first presented, followed by the two latent risk model specifications: one without and 
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one with interventions. As can be seen from the bottom of Table 1, all three interventions are found to be 

statistically significant. In general the SUTSE results are very similar to the base LRT model. Since the 

three models are not nested, however, they cannot be compared based on their summary likelihood-based 

diagnostics (final log-likelihood and AIC, An Information criterion, Akaike, 1974). The considered 

models fit the model quality tests equally well. Essentially, the models test for autocorrelation (Box-

Ljung test), heteroscedasticity, normality, as well as transition correlations. For a discussion of the 

various tests, the reader is referred to e.g. Bijleveld et al. (2008), where they are applied in the LRT case, 

or the general statistics literature.  

As mentioned in the previous section, the interventions on the financial crisis (1986) and the vehicle 

exchange/renewal program (1991) are entered as shocks on the level of the fatalities, while the impact of 

the switch in the way that fatalities are recorded is entered as a change in the slope of fatalities. 

Figure 2 presents the varying level and slope estimation results of the SUTSE model: in particular the 

smoothed state plots for the exposure (top) and risk (bottom) variables. The left subfigure in each row 

shows the level estimate for the corresponding variable and the right subfigure shows the slope estimate. 

Confidence intervals are also presented in these figures. The confidence intervals on the levels are rather 

tight and are closely following the trends. What is perhaps more interesting is the slope of the variables. 

The slope of the exposure (top right subfigure) is always positive, but its magnitude is declining. The 

slope of the risk (bottom right subfigure) is also decreasing.  
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Table 1. Main diagnostics for model specifications (ns: not significant; *, **, ***: significant at 90, 95, 99% level) 

 SUTSE 

Latent risk 

model 

Latent risk 

model with 

interventions 

Model criteria    

Log-likelihood 242.432 242.433 223.856 

AIC -484.518 -484.519 -447.366 

Model Quality    

Box-Ljung test  1 Vehicles (x1000) Greece 3.559 3.563 4.345* 

Box-Ljung test  2 Vehicles (x1000) Greece 3.877 3.878 4.442 

Box-Ljung test  3 Vehicles (x1000) Greece 4.033 4.032 4.531 

Box-Ljung test  1 Fatalities Greece 3.296 3.291 4.456* 

Box-Ljung test  2 Fatalities Greece 4.289 4.286 6.303* 

Box-Ljung test  3 Fatalities Greece 6.846 6.851 6.332 

Heteroscedasticity Test Vehicles (x1000) Greece 0.263* 0.263* 0.270* 

Heteroscedasticity Test Fatalities Greece 0.885 0.884 0.776 

Normality Test standard Residuals Vehicles (x1000) Greece 58.668*** 58.719*** 52.849*** 

Normality Test standard Residuals Fatalities Greece 0.317 0.320 1.438 

Normality Test output Aux Res Vehicles (x1000) Greece 10.062** 10.059** 7.013* 

Normality Test output Aux Res Fatalities Greece 0.957 0.956 0.644 

Normality Test State Aux Res Level exposure 28.431*** 36.716*** 32.956*** 

Normality Test State Aux Res Slope exposure 27.537*** 4.429 1.335 

Normality Test State Aux Res Level risk 1.229 1.240 1.682 

Normality Test State Aux Res Slope risk 0.214 0.215 0.175 

Model Q-matrix tests    

Level exposure 1.38E-04  ns 1.38E-04  ns 1.28E-04  ns 

Level risk 4.12E-03 * 3.77E-03 * 2.48E-03 * 

Slope exposure 2.08E-04 * 2.08E-04 * 2.23E-04 * 

Slope risk 1.59E-04 * 2.59E-04  ns 1.07E-04 * 

Transition Correlations    

Level exposure with Level risk 0.32 0.14 0.34 

Slope exposure with Slope risk 0.30 -0.66 -1 

Model H-matrix tests    

Vehicles (x1000) Greece 2.08E-08  ns  1.09E-09  ns  1.28E-08  ns  

Vehicles (x1000) Greece 3.66E-07  ns  2.43E-09  ns  1.83E-07  ns  

Intervention and explanatory variables tests    

(slope fatalities 1996)   -0.0713 * 

(level fatalities 1986)   -0.192 * 

(level fatalities 1991)   0.191 * 
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Fig. 2. SUTSE estimation results. Top row: (a) exposure level; (b) exposure slope, bottom row: (c) risk level; (d) risk slope 
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4. Validation and forecasting 

Model estimation is a very complex task and there are a number of diagnostics that can be used to 

assess its quality. However, dangers, such as over-fitting, are always present. In order to overcome these 

and ensure that the estimated models provide a useful forecasting tool, several other steps can be taken. In 

this section, validation (prediction for a period for which data are available) is performed to assess the 

quality of the prediction. Furthermore, forecasting (prediction for a future period, for which data are not 

available) is also performed.  

4.1. Validation results 

In order to assess the model quality, the candidate models are run while holding a number of 

observations for validation. However, as can be seen from Figure 3, the nature of the data (i.e. the 

breakpoint in the mid 1990s) implies that the subsequent downward trend is only supported by few data 

points. Therefore, as the number of observations that are left aside for validation (and therefore not for 

model estimation) increases, then the model is less likely to capture the current (and forecasted) trend. 

Therefore, the LRT model has only been run keeping 4 observations (2008-2011) for validation, i.e. using 

the time-series from 1960 to 2007 for the model fitting. This allows for the downward trend that has 

started in the fatality data after the mid-1990s to manifest itself through the data. Still, one can notice that 

the model fails to predict the rapid decline of the fatalities, due to the sharp decline in the exposure 

(which is not manifested sufficiently by the small decrease in the rate of increase of the vehicles in 

circulation). It is clarified that while the model uses the real fatality and exposure time-series as inputs, it 

estimates the structural relationship between the two time-series (risk and exposure), and uses this 

information for the forecasts. 

  

Fig. 3. Validation results for selected LRT model (a) risk; (b) exposure 
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The current global financial crisis, which has profound implications in vehicle traffic and road safety, 

is a prime example of the unforeseen different conditions that may throw off the predictive models. In this 

case, the most likely model forecasts provided by the model for 2009, 2010 and 2011 were 1514, 1469 

and 1425 respectively. The actual fatality data for 2009, 2010 and 2011 in Greece were 1456, 1258 and 

1087 fatalities respectively. Clearly, the model cannot be expected to foresee such dramatic exogenous 

forces, affecting the modeled level of road safety. However, even in this extreme situation, the lower 

bound estimates of the model were 1285, 1196 and 1116 fatalities for 2009, 2010 and 2011 respectively, 

indicating that indeed the calculated bounds, which might at first look seem very conservative, were 

appropriate for capturing such unusual events. 

4.2. Forecasting results 

Table 2 presents the forecasting results from the selected LRT model with the interventions until 2020, 

while Figure 4 presents the results in the context of the entire time-series with the observations and the 

confidence intervals super-imposed. Several observations can be made based on this information. First of 

all, as the prediction horizon increases, so does the width of the confidence interval. This is a natural and 

expected finding; however, when one encounters predictions such as “the expected forecast number of 

fatalities is 694 and we are 95% certain that it will be between 445 and 1081” decision makers might feel 

less than confident. Correspondingly, the actions that can be supported with such predictions may not be 

as bold as one might want. On the other hand, this is a true representation of the uncertainty, and more 

“tight” boundaries of the confidence intervals of the future predictions might result in unrealistic 

expectations (and thus possibly misguided policies and actions). 

 

Table 2. Forecasting results for the LRT model with interventions 

 Exposure (vehicles in circulation x1000) Fatalities 

Year Forecasted value Lower limit 
(2.5%) 

Upper limit 
(97.5%) 

Forecasted 
number 

Lower limit 
(2.5%) 

Upper limit 
(97.5%) 

2012 8674.0 8327.5 9035.0 1054 930 1193 

2013 8948.5 8254.4 9701.0 1000 841 1189 

2014 9231.6 8125.7 10488.0 949 765 1178 

2015 9523.7 7949.1 11410.3 901 698 1163 

2016 9825.1 7732.3 12484.3 855 638 1147 
2017 10135.9 7482.4 13730.5 812 583 1130 

2018 10456.6 7205.8 15174.1 770 533 1113 

2019 10787.5 6908.2 16845.2 731 487 1097 

2020 11128.8 6594.8 18780.0 694 445 1081 

Note: The upper and the lower limit define the confidence interval in which the values lie with 95% chance if the present trend is 

continued. 
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Fig. 4. Forecasting results for final LRT model (a) risk; (b) exposure 

 

5. Considering recession 

A critical assessment of the forecasting results presented in the previous section raises the following 

question. During the past few years, the precarious financial situation in Greece has resulted in a slow-

down in the increase of vehicle fleet and –more evidently- to a significant reduction to the number of 

fatalities. It is well understood that this reduction is to a large degree due to the economy slowdown, 

leading to a reduction in exposure and possibly a traffic behavior change (less speeding for less fuel 

consumption, etc.). Basing the future forecasts on this situation introduces the risk of under-predicting 

fatalities, as the implicit assumption is that the current situation would continue. On the other hand, it is 

expected that the recession will end in the next few years and economic recovery will begin (bringing 

increased exposure and more fatalities as a side-effect). 

In this section, an additional intervention has been incorporated into the model, representing recession. 

It is necessary to make assumptions about the start and end date of the recession. The beginning has been 

set as 2008, while it has been assumed that the recession will end after 2013. Table 3 presents the 

forecasting results for this scenario, while Figure 5 presents these results along with the entire time series. 

Modeling the recession results in a higher forecast for vehicles in circulation for 2020 (approximately 

13.8 million vehicles instead of approximately 11.1 million vehicles when the recession recovery is not 

modeled). This in turn results in a higher forecast of fatalities for 2020, i.e. 733 fatalities when the 

recession recovery is considered vs. 694 fatalities when it is not considered. 
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Table 3. Forecasting results for the LRT model with interventions and considering a recession ending in 2013 

 Exposure (vehicles in circulation x1000) Fatalities 

Year Forecasted value Lower limit 

(2.5%) 

Upper limit 

(97.5%) 

Forecasted 

number 

Lower limit 

(2.5%) 

Upper limit 

(97.5%) 

2012 8655.9 8308.8 9017.4 1031 911 1166 

2013 8908.5 8207.1 9669.7 959 806 1141 

2014 9484.5 8295.0 10844.5 923 749 1137 

2015 10097.8 8291.8 12297.0 888 697 1132 

2016 10750.7 8232.7 14038.8 855 648 1127 

2017 11445.9 8130.2 16113.7 822 603 1122 

2018 12186.0 7991.0 18583.0 791 561 1117 

2019 12973.9 7820.2 21524.0 762 522 1112 

2020 13812.8 7621.9 25032.3 733 485 1108 

Note: The upper and the lower limit define the confidence interval in which the values lie with 95% chance if the present trend is 

continued. 

  

Fig. 5. Forecasting results for final LRT model considering the effects of a recession ending in 2013 (a) risk; (b) exposure 

6. Conclusion 

Within this research, multivariate state-space models were developed for the analysis and forecasting 

of macroscopic road safety trends in Greece. The Latent Risk Timeseries (LRT) model developed 

includes several improvements over simpler models such as the SUTSE and the local linear trend (LLT) 

model. The main ones are the inclusion of an exposure measure (in this case the number of vehicles in 

circulation, as more direct exposure data was not available for this analysis) and the modelling of fatality 

risk instead of fatalities themselves. The model also allows the incorporation of interventions that can 

affect the modelled phenomenon. In the application presented in this paper, three interventions have been 
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constructed based on real events that are expected to have affected the development of road safety in 

Greece. These interventions concerned the 1986 financial crisis, the 1991 old-car exchange and the 1996 

new road fatality definition. Indeed, all three of them appear to be statistically significant. Therefore, the 

model that has been retained includes all the considered interventions.  

Furthermore, validation and forecasting results of the models are presented, demonstrating the 

explicative power of the models. Comparisons with final actual data (2009-2011) indicate that the models 

perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting 

results until the 2020 horizon (set by the EU and national road safety plans) are also presented, along with 

similar forecasts obtained from a different model that explicitly accounts for the expected recession 

recovery after 2013. The results obtained from the recession model show somewhat higher (and more 

likely to be realized) fatality forecasts for 2020 and thus it is expected that this model is more credible. 

This research provides both added value to the scientific literature in the field, as well as implications 

to practice. From a scientific point of view, state-of-the-art state-space models are developed, specified 

and estimated using long time-series of fatalities and vehicle fleet (as an exposure proxy). These models 

provide theoretical advantages over simpler time-series approaches used for road safety analyses (such as 

piece-wise linear regression, Yannis et al., 2011a, or non-linear regression, Yannis et al., 2011b). A 

natural question that arises from the discussion of more complex models relates to the degree of marginal 

contribution that the additional complexity offers. This concern becomes especially relevant when one 

considers that they are applied to macroscopic data of a very general phenomenon such as the number of 

traffic crash fatalities in a country or a region. Such phenomena depend on a large number of endogenous 

and exogenous factors that interact in unpredictable ways. The presented models rely on capturing the 

combined effects on the slope and the trend of the exposure and risk time-series, as well as their relation. 

By also capturing the structural relationship of the evolution of these measures over time, the structural 

time-series models used in this research capture the complex dynamics of road safety trends.  

From a practical point of view, this study demonstrates how the presented models can be made 

approachable to practitioners, through the presentation of a series of statistical tests that are required to 

assess the validity of the models. Furthermore, practical ways to visualize and interpret the results are also 

presented. Decision makers and other practitioners may use these models not only to better support the 

road safety target setting process, but also to monitor safety performance progress, by comparing with the 

forecasted and expected outcome than simply comparing annual changes. 

Further research directions include the enrichment of the model with additional macroscopic 

parameters, as well as the investigation of other functional forms and model specifications. A more direct 

measure of exposure (presumably vehicle-kilometers) is expected to considerably improve the 

performance of the model. In the absence of such data, additional parameters (such as the Gross Domestic 

Product, GDP, or fuel consumption) may assist separate exogenous effects and isolate road safety trends. 

GDP or fuel consumption are expected to more directly exhibit the reduction in exposure, while the 

vehicle fleet is less responsive, because while new vehicles may be added at a lower rate, older vehicles 

(whose use declines) are still not removed for the fleet. Other functional forms may also provide valuable 

insight into the road-safety problem. Comparing the models across multiple countries and regions may 

also provide valuable insights for the differences between the road safety patterns in these countries, thus 

helping policy makers focus on the parameters that are more pertinent for each country and region.  
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