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Abstract 
 
Hierarchical structures in road safety data are receiving increasing attention in 
the literature and methods are proposed for applying statistical models that 
appropriately handle hierarchical relations among the observations. These 
models are known as multilevel models. Road safety data may concern a 
broad range of response variables, including road accidents and casualties, 
exposure, safety performance indicators, behavioural indicators, and so on; 
these may be structured according to two types of hierarchies: geographical 
hierarchies (road safety data nested into road sites, nested into regions, 
nested into countries etc.), and hierarchies related to the accident process 
(i.e. road users nested into vehicles, nested into accidents). The former is 
often the case in macroscopic analyses, whereas the latter is typically to be 
considered in microscopic analyses.. This paper presents the theoretical 
background for multilevel analysis and discusses the objectives, model 
formulations, and underlying assumptions. A complete and comprehensive 
framework for multilevel analysis in road safety research is proposed. 
Moreover, the techniques are illustrated and assessed through a detailed 
presentation of numerous examples relevant to road safety research. As 
regards geographical dependences, the examples range from geographical 
multilevel analyses, to cross-country analyses, and to more sophisticated 
spatial models of road safety. As regards dependences in the accident 
process, the examples include analyses of the effects of various parameters 
on accident outcomes, mainly using in-depth accident investigation data. The 
review of the theory and applications of multilevel modelling in road safety 
research confirms the need for testing road safety data for hierarchical 
dependences, given that the consequences of ignoring such dependences 
may be important under certain conditions. On the other hand, a number of 
difficulties are identified in applying the proposed techniques on road safety 
data, particularly as regards the accident-process dependences. The 
balancing of the possible conceptual problems rising form not considering 
multiple levels in the analysis of road safety data on the one hand, and of the 
feasibility to apply the appropriate multilevel models on the other hand is a 
challenging question for further research. 
 
Key-words: road safety; multilevel models; hierarchical structures; 
geographical dependences; road accident process dependences. 
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1. Introduction 
 
Most of the data of interest for road safety research happen to be 
hierarchically organized, i.e., to belong to structures with several hierarchically 
ordered levels. The observable units can be defined within each level in a way 
that each unit on a lower level can unambiguously be assigned to one and 
only one unit on the higher level. These hierachical structures result for a part 
from the spatial (and temporal) distribution of the various data collected, for 
another part from the very nature of accidents. From a spatial point of view, 
the observations made belong to larger geographical areas or units (these 
can be as various as road sites, segments, or intersections, counties, or 
regions). In a similar vein, data concerning vehicles, drivers, of individual road 
users involved in accidents are inevitably “clustered” within the accidents: the 
observations are derived from higher-level units: the accidents, as each road-
user, driver or vehicle observation “pertains” to one and only one accident.  
 
One of main problem associated with hierarchical data organisation is the 
dependence that they generate among the observations. Observations that 
are sampled from the same geographical higher-level units have in common a 
series of unobserved characteristics that are proper to these larger 
geographical areas, which are heterogeneous themselves. One can think of 
road-side surveys where observations about the behaviour of drivers are 
made from various road sites, some situated in the vicinity of cafés and 
restaurants (drink-driving), others being remote from them, some situated in 
highly congested areas, others in areas where the flow of traffic is much more 
free (speed). One can also think of intervention studies that are based on 
crash-frequency data aggregated over a sample of road intersections or 
segments, … Whenever accident data are disaggregated at the individual 
level (drivers or all individuals involved in accidents, for example), account 
should be taken of the fact that observations made on individuals occupying 
the same vehicles and involved in the same accident are likely to resemble 
each other more than observations made on individuals involved in different 
vehicles or accidents. This is so because these observations will be 
commonly influenced by vehicle and accident characteristics of that are often 
left unobserved in a given analysis.  
 
The estimations obtained from most standard analysis techniques rest the 
assumption that the observations are sampled from a single homogeneous 
population, and that the residuals resulting from the model are independent. 
However, the hierarchical organisation of data fundamentally challenges 
these assumptions. Applying traditional statistical techniques (linear of 
generalized linear models) results in underestimated standard errors and 
exaggerately narrow confidence intervals. “This is especially the case when 
the risk factor corresponds to a crash or car feature “collapsed to the level of 
the casualties and simply replicated across all individual sharing those 
characteristics” (Lenguerrand et al., p44) 
 
Statistical models have been developed that allow accounting for hierarchical 
data structures, and consequently taking the dependency they introduce 
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among the data into account. These are the so-called multilevel or 
hierarchical models. This starts with a definition of hierarchical models and of 
some theoretical concepts that fundamentally relate to them. We also briefly 
discuss the advantages of hierarchical data analyses compared to other 
statistical techniques that have been applied to address the issue of 
dependency in data. We then provide a comprehensive overview of the 
hierarchies that are most often encountered in road safety research, we 
discuss the application of hierarchical model taking into account the types of 
dependent variables that are frequently measured at the different levels of the 
hierarchy, along with the associated response distributions.  
 

Definition and general model formulation:  
 

The essential feature of hierarchical models is the fact that the model 
specifies the observations at the lower levels as being clustered into higher-
level units, and that these units themselves are considered to constitute a 
sample from a larger population (of accidents, of road sites, or segments, …). 
A multilevel/hierarchical model can thus be defined as a regression model 
(based on linear or generalized linear models) in which the regression 
coefficients are assigned a probability model. The higher levels of the model 
have parameters of their own – the “hyperparameters” of the model – which 
are also estimated from the data (Huang & Abdel-Aty, 2010, p. 1560).   
Or: ML/hierarchical model are defined as model in which the parameter are 
allowed to vary across units situated at higher levels of the hierarchy.  
Hierarchical models are models in which the effects of higher levels on the 
parameters (intercept and covariate coefficients) estimated on the basis of 
observations made at a lower level.  
 
To further define the principles underlying ML models, a simplified two-level 
model will be used first. The response variable corresponds to the probability 
for driver i involved in accident j to die as a result of this accident.  
 
The response yij is defined as being a function of the expected value defined 

for accident j ( j ) and of driver-specific variation ( ijR ).  

 ijjij Ry     (2.3.5) 

 
The expected average probability for each accident is in turn defined as being 
a nonlinear function of a linear combination of predictors. 
 

  ijj Xf     (2.3.6) 

 
where f(x) represents the link-function, the logit link being chosen for this 
example1.  

Logit ( ojhij

r

h
hij ux  

1
0)  (2.3.9b) 

 

                                            
1
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The expected probability for driver I to die in accident j is now defined as 
being a logit function of the linear combination of an average value holding for 

the accident population ( 0 ), of the effect of level-1 (and/or) level-2 predictors 

( hij

r

h

h x
1

 ) and of accident-related random deviation oju . 

 

 Logit ( jj u00)    (2.3.7) 

where 0  represents the average of logit( j ) across accidents and ju0  the 

accident-specific deviation from this population average value (the “accident-
level random variation). These deviations are assumed to be normally 
distributed, with mean 0 and variance 2

0u   

The model just defined allows the model intercept to vary on the basis of the 
accident, so that the expected probability of dying can be higher for some 
accidents than for the others. This variation is meant to represent the 
influence exerted by the unobserved characteristics of the accident-level units 
on the observations made on the individual drivers, and thus to account for 
the dependence introduced at that level.  
The technique moreover allows the specification of accident-level predictors 
at the correct level of analysis (predictors that are assigned the subscript…). 
Had this higher level been ignored, while accident-level predictors were 
considered of being of interest for this analysis, the only solution one would 
have had would be to replicate every accident-variable value across for all the 
drivers involved in the accident, and to consider them as “independent driver 
observations”.  
Models such as the one presented above are called random intercept or 
variance components models. The only parameter that is allowed to vary 
across higher-level units is the intercept. These models allow quantifying the 
part of the random variation in the observations that is associated with with 
the higher level considered (so, the proportion of variance in the outcome: the 
probability for drivers to die as a result of the crash that results from between-
accident variation). 
Indeed, the outcome variance is now partitioned into two components: the 

variance of the ju0  and the variance of ijR . The intraclass correlation 

coefficient establishes the ratio of the higher level variation to the total 
variation in the observations. However, in the case where discrete responses 

are modelled, the variance of ijR  is not available (the model in equation xxx 

does not contain a parameter for the level-1 variance). The reader is referred 
to Goldstein (xxxx) and Bryk and Raudenbush (xxx) for methods to 
appropriately estimate the ICC for non-normally distributed responses.  
 
In a next step, the coefficients for the covariates included in the model 

( hij

r

h
hx

1

 ) can also be defined as varying randomly across the higher-level 

units. The accident-level random variation of the covariates ( ijj xu 11 ) is then 

added to the model which is now written as: 
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 Logit ( ijjojhij

r

h
hij xuux 11

1
0)  



  (2.3.10) 

Observing that the effect of driver characteristics, age for example, can be 
considered uniform (fixed) across all accidents. A significant variation of this 
predictor’s effect at the accident level would suggest an interaction between 
some unobserved accident characteristic (the type of impact, for example) 
interacts with the driver-level characteristic (age) to determine the probability 
of the driver to die or survive the accident.  
 

All residuals components defined at the higher level higher level ( 0jμ  and 

1jμ ) are assumed to be: 

(1) normally distributed with mean 0 and variance 0

2
u and mu

2 ; 

(2) independent across the j-units 
(3) independent from the residuals at other levels of the model 

 
The higher-level random terms estimated on the basis of ML models reflect 
the correlations between the observations that are induced by the unobserved 
characteristics of the higher-level units. In the case of a correctly specified ML 
model, the residuals at the lowest level can be said to be independent, 
conditional on other effects in the model. In other words, the error term at the 
lowest level is “cleaned” for the influences of the higher levels by the 
specification of the corresponding random effects, and can thus be 
considered to display independence. .  
 
3.2. The importance of using multilevel models in road safety:  
The use of hierarchical models improves the correctness of the estimation 
and inferences made from hierarchically structured data. It is thus warranted 
and recommended for purely statistical reasons.  
 
Apart from that, it is important to recognize that, in comparison to traditional, 
models, the specification of ML models forces the researcher to refine his/her 
view of the phenomenon investigated. These models require that attention is 
paid to the level at which the observation units are defined, as well as to the 
level(s) at which the predictors of interests are expected to exert their 
influence. Actually, many problems in road safety research cannot be 
understood correctly if only one level is considered, and interpreting results 
without taking the hierarchical framework into account can lead to erroneous 
conclusion. The error that is frequently made consists of considering that the 
relationships that are observed at given levels of the hierarchies also hold for 
the others.  
 
This is nicely illustrated by a simulation study conducted by Davis on the 
probability of car-pedestrian collisions (2002, quoted in Davis (2004)),. On the 
basis of actual observations, vehicle/pedestrian encounters were simulated, 
and the relation between collision probability and variables such car speed or 
the traffic volume was assessed. The data simulated corresponded to three 
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levels of aggregation: the individual pedestrian/vehicle encounter, the road 
site level, and the “population level”, combining the information from all road 
sites. On the basis of the population-level aggregate data, it appeared that 
collision probability was clearly related to traffic volume, but not to speed. This 
suggests that speed is unimportant for pedestrian safety. The analyses made 
at the road site level, however, showed that the value of the slope for the car 
speed–pedestrian risk relation appeared to depend on traffic volume, so that 
at certain road-sites no relation could be observed between speed and 
collision probability, while a positive relation was observed between both 
variables at other road sites. Working at the road-site level allowed holding 
that characteristic constant, and thus allowed for the relation between the 2 
predictors at the lower level to show up. The term “ecological fallacy” is 
usually used to refer to instances where inferences made at one level of 
analysis are erroneously and straightforwardly applied to other levels.  
 

2. A general hierarchical framework for road safety 
 
2.1. Prevailing hierarchies in road safety research: Spatial distributions 
of data and the nature of the accident process 
 
One can distinguish two prevailing hierarchies in road safety research data, 
namely: geographical and accident hierarchies.  
 
 

 
 

Road site 1 Road site 2 …

Region

Accident 1 Accident 2 Accident  3 Accident 1 Accident2 …..
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Accident

Vehicle 1 Vehicle 2

Road User 1 Road User 2 Road User 3
 

Figure 1. Geographical (top panel) and accident (bottom panel) hierarchies of 
road safety outcomes  
 
As illustrated in Figure 1, road safety data are organized in geographical units 
that are nested into each other (for example: road-sites nested into counties 
that are themselves nested into regions and countries). Similarly, the 
observations made on individual road-users are nested into vehicles, which 
are themselves clustered into different accidents.  
 
The two hierarchies are actually complementary and have been incorporated 
into a single framework to represent prevailing data structures in road safety 
(Huang & Abdel-Aty, 2010). In Figure 3, an adapted version of this general 
hierarchical framework.  
 

 
Figure 3. Framework for multilevel analysis in road safety research (adapted 

from Huang &Abdel-Aty, 2010) 

 
This hierarchy can be described as follows:  
The first “geographical” level represents the various types of entities 
(countries, regions, states… ) within which lower-level observations can be 
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nested. “This level is normally associated with a number of contextual factors 
potentially affecting the traffic safety situation, such as driving regulations, 
road density, spatial features, population and other socio-economic features” 
(Huang & Abdel-Aty, 2010, p. 1559).  
 
The next level, ‘road-sites” designates entities defined to operationalise the 
data collection (sampling) of various types of data on various locations 
defined in a homogeneous way (road segments or road junctions, for 
example). As such, they play an important role in accident frequency studies, 
but also in interventions studies (when, for example, the efficiency of some 
treatment is evaluated by pairing and comparing road sites with the treatment 
applied to others where the treatment hasn’t been applied). Road sites are 
also used for the collection of behavioural data in road-side surveys.  
 
The accident hierarchy is rather self-explaining: road-users are nested in 
vehicles which are themselves nested in accidents. It is important to note, 
following Huang and Abdel-Aty (2010) that, depending on the specific 
research question and of the particular types of observation made, “drivers” 
can be considered as part of the vehicle level or of the individual road-users 
level. Severity studies based on driver injury severity and/or vehicle damage 
(example) are an example of cases where drivers and vehicles could be 
defined as “exchangeable units”. Studies focusing on accident causes, where 
the behaviour of driver is a “characteristic” common to all other vehicle 
occupant are another example. When injury severity of injuries – or the 
survival probability – of the individual road users is the focus of the research, 
however,  
 
Drivers and driver-related covariates can be defined either at the vehicle or 
“road-user” level depending on the focus of the study. When injury severity or 
vehicle crashworthiness is concerned, drivers should be considered as “road 
users” like others. The driver characteristics included in the model should, 
however, be carefully assigned to the appropriate level: covariates indicative 
of the drivers’ behaviour are common to all road users in the same vehicle 
and should consequently be defined at the vehicle level. The personal 
characteristics of the drivers that are likely to affect their vulnerability should, 
however, be treated just like the characteristics of interest for the other vehicle 
occupants and defined at the “road-user” level.  
 
In Figure 3 a lower level is foreseen “level 0”, to express the capacity of 
multilevel of handling complex types of response variables (multivariate 
responses, multinomial responses, or repeated measurements) as being 
nested within individuals.  
 
A horizontal ‘time’ dimension can be also included in the framework (Huang & 
Abdel-Aty, 2010; Aguero-Valverde & Jovanis, 2006), as time is another 
dimension susceptible to create dependences in the observations (two 
observations that are made closer in time will resemble each other more than 
two observations that are made further apart in time).  
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 The multilevel structure can also be a multiple membership structure, as 
indicated by the double arrow inside the pyramid, or a cross-classification 
structure, as indicated by the crossed arrows inside the pyramid.  

 
Intuitively, geographical hierarchies call for macroscopic analysis, while 
accident hierarchies, with individual road users or drivers as unit of analysis 
are the ideal basis for microscopic analysis (e.g.: what are the accident, 
vehicle, or driver characteristics that help predicting the occurrence of 
accidents and/or their outcomes?).  
 
For the sake of clarity, we will use the term “aggregate analyses” to refer to 
studies in which the response variable – indicators of accident frequency in 
most cases – is aggregated over some geographically defined units (road 
sites or intersections, for example) and to “disaggregate analyses” whenever 
the response variable is defined at the accident level (for example: the most 
severe injury sustained by the road users involved in the same accident), at 
the vehicle level (the severity of the drivers’ injuries), or at the road-user level 
(the severity of the injuries sustained by each and every road-user involved). 
Studies focusing on the behaviour of individual drivers, or on the attitudes of 
individual road-users constitute a special case, in the sense that the response 
variable is measured at the lowest levels of the hierarchy presented in Figure 
3. However, the intermediate levels defining the accident hierarchies are 
irrelevant for understanding and correctly specifying the variation of the 
observations. The highest levels (road-sites, geographical areas) are 
nevertheless likely to be of importance.  
 
In the following section, the usefulness of ML modeling is illustrated on the 
basis of empirical examples. We first discuss studies focusing on accident 
frequency and the geographical distribution of the accident data. Then, 
disaggregated analyses of accident severity are reviewed, and finally studies 
aiming at collecting information on driver and road-user behaviour are 
discussed. In each case, the type of distribution followed by the response 
variables is defined, the level at which the observations are made along with 
the levels that are explicitly accounted for in the models are indicated.  
 
Aggregate analyses of accident frequency 
 
The analysis of aggregated data, focusing almost exclusively on the 
geographical part of the hierarchy can be generally considered to fall within 
the broader family of spatial analyses.  
 
These may range from ecological analyses, examining road accidents or 
fatalities nested within sites, areas or regions (Yannis et al. 2007), to complex 
spatio-temporal analyses (Aguero-Valverde & Jovanis, 2006; Eksler, 2008). 
This type of hierarchy is conceptually intuitive and computationally 
undemanding in most cases, and can be considered to be the most broadly 
used multilevel framework for road safety analysis. Obviously, the number of 
geographical levels depends on the scope of each research question and the 
hierarchy can be much more detailed than the broad ‘accidents into road sites 
into regions’. Sometimes, the observations belong to several geographical 
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units at the same time (multiple memberships), or need to be classified into 
two distinct but non strictly hierarchical dimensions at the same time (cross-
classifications). 
 
The simplest way to account for spatial dependence on the basis of ML 
modeling is to define (more or less arbitrarily) higher geographical units which 
are assumed to differ from each other on a number of characteristics (…), and 
within which the units of observations are clustered.  
 
Spatial dependence is in this case refers to a general co-variation of 
properties within a geographical space. One way to account for spatial 
dependence is by specifying the hierarchical organization of the observations 
in the statistical model, as it is done when modeling “road-site accident counts 
nested into regions”, for example. 
 
When applied to road safety, the basic idea behind spatial modelling 
techniques is the decomposition of the random variation of road accident risk 
into two distinct components: a "structured" component, which is assumed to 
represent the spatial structure of the road safety outcomes, and an 
"unstructured" component, which is assumed to be random. Therefore, the 
road safety outcome Yi of county (i) is considered to be the result of 
systematic variables effects βixi, and random variation εi, which is further 
decomposed into "structured" random variation (ui) and unstructured random 
variation (vi). Typically, a Poisson distribution is assumed for road safety 
outcomes, with an exposure estimate (e.g. the population Ni) incorporated as 
an offset term.  
 
Spatial models are based on a "neighbourhood matrix", in which the spatial 
structure is defined through the identification of neighbouring geographical 
units. Obviously, the neighbourhood matrix needs to be symmetrical. The way 
this neighbourhood matrix is used differs for the various methods. A detailed 
presentation of the formulation and statistical properties is beyond the scope 
of this article, and only a summary of basic assumptions is presented here. 
The reader is referred to Eksler and Lassarre (2008) for a complete 
presentation. 
 
The MMMC model is a multilevel model, which combines a cross-nested 
structure and a multiple membership structure. The cross-nested structure is 
used to describe the fact that the variation in the observations comes for a 
part from the geographical unit they belong to (i.e. overdispersion in the 
accident counts), and for another part from the neighbourhood structure (i.e. 
spatial effects). The multiple membership structure is used to describe the fact 
that each region has more than one neighbour. The MMMC model assumes 
that geographical units are separate entities. Two types of random effects are 
estimated in an MMMC model: an "exchangeable geographical unit effect" to 
account for overdispersion, and, to account for spatial dependence, (r) 
random effects for each geographical unit, with (r) equal to the number of its 
neighbours. The remaining random variation is the unexplained part of the 
model. 
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The CAR model uses a slightly different approach, in which geographical units 
are no longer considered as separate entities (Browne, 2004) and a 
conditional auto-regressive distribution is initially assumed for the structured 
variation. Consequently, in the CAR model, the set of neighbours of each 
geographical unit is initially examined as a whole, and one (global) random 
neighbourhood effect is estimated for each observation. Moreover, no 
exchangeable random effect (overdispersion) is initially assumed in the CAR 
model. Incorporating overdispersion gives the CAR convolution model, in 
which both the structured and the unstructured components are estimated, 
through a mixture of exchangeable normal and conditional autoregressive 
distributions.  
 
In general, the CAR method results are considered to be more reliable, for 
both theoretical and practical reasons.  
 
In a Greek study on the effects of speed and alcohol enforcement on road 
safety (Yannis et al., 2007), fatal accident and fatalities, as well as the number 
of alcohol controls and of speeding tickets for a period of 5 years were 
registered for each county. The data were analysed in multilevel poisson-
family regression models, including poisson, extra-poisson and negative 
binomial models, with counties-aggregated accidents counts nested into 
regions. It turned out that both enforcement measures were highly correlated 
(i.e. in counties where the police executed many alcohol controls were also 
those in which many speeding tickets were issued), and that they together led 
to a significant decrease in fatalities. Moreover, there was significant regional 
variation in the number of accidents and in the related effect of enforcement. 
In particular, the enforcement measures proved most effective in those 
regions that had the highest accident rate in the first place. The same data set 
was analysed in a multivariate multilevel model (Yannis et al. 2008), allowing 
the simultaneous investigation of the effects of enforcement measures on two 
road safety outcomes (fatality and accident counts). The two outcomes were 
correlated, and part of their covariance was situated at the regional level. As 
was the case in the previous analyses, the regional variation of the effect of 
enforcement was significant for accident counts, but not for fatalities. A 
possible interpretation is that enforcement has an important overall effect on 
fatal accidents because these result from more risky behaviours. The reason 
why the enforcement effect on fatalities is uniform for all regions would be that 
drivers perceived an increased nationwide presence of the police and 
improved their overall behaviour accordingly. The decrease of non-fatal 
accidents (which result from less risky behaviours) would, however, have 
reflected differences in local enforcement practices and have been more or 
less important from one region to the other as a consequence.  
 
In a study aiming at examining the relation between the safety of road 
segments in Vancouver to their traffic and geometric characteristics, El-
Basyouny and Sayed (2009) took into account the clustering of the road 
segments into larger geographical units or “corridors”. They fit both random 
parameters and random coefficients models. The results indicate that a 
substantial part of the variation in accident counts at the road-segments level 
is attributable to the “corridor level” (random intercept) and that the effect of 
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several of the road-segment characteristics investigated also varies 
significantly from one corridor to the next. Moreover, some of the parameters 
estimated, while being significant when estimated on the basis of a standard 
regression model are not significant any more once the hierarchical 
organization of road segments into corridors is properly accounted for.  
 
Papadimitriou et al. 2011 applied a neighborhood matrix to the analyses of 
Greek-counties accident counts described earlier. The neighborhood matrix 
was defined to account for the road connections between counties. The 
results suggested that the spatial structure examined accounts for an 
important part of the variation in road accidents in the Greek counties, 
revealing a general pattern of risk increase from northern to southern Greece. 
Importantly, the results indicated that the effect of enforcement would have 
been quite overestimated had spatial effects not been taken into account.  
 
Guo et al. (2009) modeled the spatial dependence among road-site accident 
counts by specifying the clustering of road sites into larger corridors2 and 
examining the variation of the model coefficients at the corridor level. These 
authors also fitted a Conditional AutoRegressive (CAR) model to account for 
the spatial dependency in a refined way, by modeling the “micro-level spatial 
correlation”. Whatever the type of model used, the authors observed that 
several parameters became nonsignificant once spatial dependence is 
accounted for and that “ignoring overdispersion and spatial correlations 
among observed data lead to overly optimistic and invalid statistical inference” 
(p. 91).  
 
 
Disaggregate analyses of accident severity 
 
The analysis of disaggregated accident data, on the other hand, focusing on 
individual road safety casualties, requires the accident hierarchy to be taken 
into account. Of course, road users or accidents can be further nested into 
road sites, areas, regions and so on, expanding thus the hierarchy towards 
geographical elements. Because road sites can be considered to belong to 
both hierarchies, they constitute the link between geographical and accident 
hierarchies, the macro- and microscopic ML structures. Consequently, 
although geographical and accident hierarchies have different scopes and 
properties, they are also inter-related, so that one might consider that the 
accident hierarchy as a whole is nested into the geographical hierarchy. Road 
sites can consequently be seen as the elements that “link” the macro- and 
micro- levels of the hierarchies.  
 
An important specificity of accident-like hierarchies deserves to be briefly 
discussed at this point: while the number of accidents is usually rather large, 
the number of cars per accident and of individuals per car is typically very low. 
Theoretically speaking, it makes sense to consider that outcomes will be 
affected by unobserved accident and vehicle characteristics, and that 

                                            
2
 “Corridors” are in this case explicitly defined “as a multi-lane highway with high speed limit 

and serving relatively long trips between major points” (Guo et al., 2009, p. 85). 
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observations made in the same vehicles and in the same accidents will 
consequently be correlated. The low numbers of sub-units at each level can 
however cause computational difficulties when estimating the random 
parameters in the model. On the basis of the analysis of observed accident 
data, and of 100 simulated datasets with unit-per-cluster numbers that are 
representative of those generally observed in accidents (i.e., less than 2 cars 
per accident and less than two occupants per vehicle), Lenguerrand et al. 
(2006) observed that the estimation of the variance of the random effect is 
problematic: the variance of the vehicle random effects is falsely estimated as 
“0” in 36% of the cases, and the standard deviation of the random effects’ 
variance was often incorrectly estimated as 0 as well). These incorrect 
estimations are clearly related to the small number of observations available 
per vehicle and per accident3. The ML formulation, however, provided the less 
biased estimates for the fixed effects also included in the model. According to 
the authors, this is due to the fact that the covariates estimates are adjusted 
to other confounding factors related to the occupant-vehicle-accident 
structure. The authors conclude that ML models are best applied – in the 
context of disaggregate accident data – to large accident datasets, accident 
data characterized by large numbers of occupants per vehicle, or when the 
results obtained from traditional models seem questionable (in contradiction 
with earlier empirical findings, for example).  
 
Two studies, focusing on the outcomes of fatal accidents for the individual 
road users involved. As in many “severity studies”, the aim was to investigate 
the relationship between various accident, vehicle-driver and road-users 
characteristics to the probability for each road-user to sustain injuries of 
different severity levels (modeled as a multinomial response, Papadimitriou et 
al., xxx) or to survive the accident (modeled as a binomial response; Dupont 
et al., 2011). On the basis of the first study, no random variation at the vehicle 
and accident level, with the exception of the probability of serious and slight 
injury which appeared to vary significantly across vehicles. In the second 
study, no significant random variation was observed, either at the accident or 
vehicle level.  
 
Often, this problem is solved by “ignoring” the vehicle level, and by directly 
modeling the nesting of individuals within accidents instead (Lenguerrand et 
al., 2006; Jones & Jorgensen, 2003). Other studies have selected the 
“vehicle-driver entity” as observation unit, so that the lower level, namely, that 
of occupants within vehicles, is ignored (Huang, Chin, & Haque, 2008).  
 
Behavioural studies:  
Data from a Belgium roadside survey on seatbelt use were analysed in a 
single-level and a multilevel framework (Vanlaar, 2005a). These data were 
collected at randomly selected road sites: Seatbelt wearing was recorded for 
the driver and, if present, the front passenger of each car passing on the road-
site. The probability of seatbelt use was modeled by means of a binary logistic 
regression model (yes / no). The results showed significant variation between 

                                            
3
 The correctness of the estimates of the variances of the random parameters increases when 

the number of observations per car or accident units increases in the simulated data.  
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road sites in the probability of wearing a seatbelt, suggesting that the ML 
approach was appropriate. The speed limit at the road site could explain 
some of this variation (drivers on roads with higher speed limit had a higher 
probability of wearing a seatbelt), but not all of it. There was of course also 
significant variation between the drivers themselves, some of which could be 
explained by gender i.e. women tend to wear seatbelts more often than men 
(Vanlaar, 2005a).  
 
Results obtained on the basis of a single and multi-level approach were also 
compared for another road-side survey conducted in Belgian, this time 
focusing on drink-driving. The result of the alcohol checks is expressed in 
Belgium on the basis of 3 values, indicating whether BAC (breath alcohol 
concentration) is below 0.05 mg per litre (the legal limit), between 0.05 and 
0.08 mg, or above. A first way to analyse these data is to dichotomize them by 
merging the two upper categories and simply differentiating between blood-
alcohol concentrations under or above the legal limit (i.e. by means of a binary 
response variable) (Vanlaar 2005b). The original three response categories 
can also be kept in the analysis, and model as an ordered multinomial 
response (Dupont & Martensen, 2007). Among predictors defined at the road 
site level, the time of testing was the most important predictor, as the 
probability of drink driving on weekend nights by far exceeds that at all other 
time points. At the individual level gender and age were the most notable 
predictors with, men between 40 and 54 having the highest risk of drink 
driving.  
 
 

 A road safety question is associated either with individuals or with 
accidents, in the form of a response variable of different types. 

 
Especially as regards the response variable, different road safety questions 
may be examined, resulting in different response variables. More specifically, 
in accident hierarchies, the response variable will be the number of casualties 
(fatalities or injuries). In geographical or practical hierarchies, however, a 
broad range of response variables may be considered, including: 

 Road accidents or casualties i.e. fatalities, injuries etc. 

 Behavioural or performance indicators, such as the driver’s speed, the BAC 
level, the use of seat belt or helmet etc. 

 Attitudinal or perceptual indicators, such as the acceptance of road safety 
measures, the perceived risk of speeding or drink-driving.  

 
Obviously, these different types of road safety questions will be typically 
attached at the road user level (or at the accident level, if accident counts are 
examined), and expressed on the basis of response variables that may be 
normal, discrete (binomial, multinomial, count), multivariate etc.  
 
 
 

Accident analysis, risk analysis, severity analysis behavioural 
analysis 
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4.5. A note on estimation methods for multilevel models 
 
For most of the models presented in the previous sections, conventional 
default estimation methods can be used in the modelling process. The default 
estimation methods are either maximum likelihood or some approximation of 
maximum likelihood (e.g. quasi-likelihood), which are based on Generalized 
Least Squares estimation (GLS) (Dupont & Martensen, 2007; Browne et al. 
2001).  
 
However, an important problem often rises from the use of approximation 
methods, as the estimated likelihood ratio is very approximate and cannot be 
used for the assessment of fit of the model. Moreover, when these methods 
are applied to more complex data structures, such as the "non-purely 
hierarchical" structures mentioned above, numerical and convergence 
difficulties are encountered.  
 
A group of alternative estimation methods for multilevel models, based on 
Bayesian inference (e.g. the Markov Chain Monte Carlo (MCMC) and the 
bootstrap methods) may be used. These advanced methods are both based 
on simulation techniques and the estimates they produce are dependent on 
randomly generated numbers. In contrast to the conventional methods, where 
an estimate for a parameter (mean and variance) is obtained on the basis of a 
single sample, these simulation methods generate a large number of samples 
from the initial sample, providing thus a sample of parameters (means, 
variances), and allow for the calculation of intervals of parameter estimates. 
Because they are based on intervals estimates, they also allow for the 
calculation of accurate likelihood values (Dupont & Martensen, 2007). These 
simulation-based estimation methods are also more powerful in dealing with 
complex data structures, as well as with datasets with missing data, or with 
few data (Huang & Abdel-Aty, 2010). 
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*Levels designated by a red dot indicate the level at which the response variable is operationalised.
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Drink-driving survey in Belgium Seat belt use (yes/no) Discrete, Binary Logistic regression        Significant 

Drink-driving survey in Belgium BAC (<0.5gr/lt, 
>0.5gr/lt) 

Discrete, Binary Logistic regression        Significant 

Drink-driving survey in Belgium BAC (<0.5gr/lt, 0.5-
0.8gr/lt, >0.8 gr/lt) 

Discrete, Multinomial Logistic regression        Significant 

Road safety enforcement in Greece Accidents Discrete, Counts Poisson 
Quasi-Poisson, 
Negative Binomial 
regression 

       Significant 

Road safety enforcement in Greece Accidents, Fatalities Discrete, Counts Poisson regression        Significant 

Spatial road safety analysis in 
Greece 

Accidents Discrete, Counts CAR model, Multiple 
membership (MM) 
model 

       Marginally significant 
(MM) or significant 
(CAR) 

Joint analysis of CARE and SARTRE 
data 

Accidents, Fatalities  Discrete, Counts Quasi-Poisson 
regression 

       Significant 

Injury severity mis-reporting Police and Safetynet 
severity scores (lower 
score, matching, higher 
score) 

Discrete, Multinomial Logistic regression        Non significant 

Injury severity in fatal accidents (all 
road users) 

Injury severity (fatality, 
serious or slight injury) 

Discrete, Multinomial Logistic regression        Significant (vehicle) 

Injury severity in fatal accidents (car 
occupants and their opponents) 

Injury severity (fatality, 
non fatality) 

Discrete, Binary Logistic regression        Non singificant 
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6. Discussion 
 
6.1. When is it necessary to use multilevel modeling? 
 
The results described above confirm that hierarchical dependences are very 
often encountered in road safety problems, and that a multilevel 
representation may offer a solid conceptual and computational basis for the 
analysis, both when it comes to geographical hierarchies and accident 
hierarchies.  
 
The question remains, however, of knowing whether the hierarchy-induced 
dependences in the observations cannot be accounted for on the basis of 
other, more simple methods. Choosing to focus on drivers, for example, is a 
simple way of performing an individual severity analysis while avoiding 
vehicle-induced correlations. Yet, this selection comes at the cost of data and 
information losses, and it also does not prevent the researcher from 
committing the “ecological fallacy” when straightforwardly concluding that 
driver-based observations hold for other vehicle occupants.  
 
One could also argue that dependences in the observations can be corrected 
for by directly taking up higher order variables (e.g., the speed limit or traffic 
limit at the road site), without actually introducing a higher level (road site 
itself) into the analysis. Such an assertion amounts to (1) ignoring the fact that 
the higher-order variables will always have to be disaggregated to the level at 
which the observations are made, with the problematic statistical 
consequences that we have described earlier; (2) assuming that the 
researcher is able to exhaustively identify all the sources of variations at play 
at the level(s) in question – while experience tells us that this is challenging 
enough when considering a single level of analysis. Indeed, as noted by 
Huang & Abdel-Aty: “in the real world …, similar groups may be different in 
omitted factors and thus may have different means” (2010, p.1559) 
 
In fact, modeling the random variation at the different levels is the most 
efficient and informative way of “controlling” for the multiple sources of 
observation dependences that are typically at play in observational studies. , 
and the view that a researcher can get from the phenomenon he/she 
investigates can be considerably enriched by even simple ML models (e.g., 
the variance component models, where only the intercept is allowed to vary).  
 
It is nevertheless important to stress that, while multilevel models offer an 
elegant solution to the problem of hierarchical data structures, they inherit a 
good deal of the limitations shown by the regression models from which they 
are derived. An example is the treatment of correlated predictors. There is, 
also, a major drawback that is specific of ML models: they can grow very 
complex very quickly. The number of levels that can be specified is 
theoretically unlimited, random slopes can be defined at any level for any of 
the predictors tested… Therefore, it is not only important to check that the 
application of ML models is indeed warranted (variance partition coefficients, 
significance of the variances of the random effects…), the responsibility is 
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also left to the researcher to fit parsimonious models, introducing random 
slopes for particular predictors very sparsely, preferably on the basis of 
theoretical reasons. In most of the case-studies presented above, for 
example, random intercepts have been sufficient for correcting the 
dependence among observations. 
 
6.2. When is it feasible to use multilevel modeling? 
 
The results of the present research confirm the feasibility of applying 
multilevel models for capturing hierarchical dependences in the observations, 
resulting from both geographical and accident clustering. However, they also 
illustrate that this application is much more straightforward in the case of 
geographical than in that of accident hierarchies. 
 
Geographical higher level effects were found to be significant in almost all 
types of research question examined, regardless of the geographical unit 
examined e.g. road sites, regions, countries etc. In most of the cases where 
accident hierarchy was examined, on the contrary, the results yielded the 
conclusion that there was no significant variation at the accident or vehicle 
level. In principle, this means that no substantial correlation is introduced to 
the data by that type of hierarchical structure, or that the predictors included in 
the model efficiently tackle the residual variation associated with the higher 
levels. 
 
However, precisely because of the particular nature of accident data (i.e. 
many accidents with few vehicles and persons involved in each), it is difficult 
to tell whether there is indeed no substantial variation at the accident and/or 
vehicle level, or whether this seems to be the case simply because the 
number of observations per accident and/or vehicle is insufficient to allow the 
estimation of the different variance components. In such cases, the choice 
has been made to leave the model in its single level state, and to perform a 
standard regression analysis. This choice is motivated by the fact that the 
particular hierarchical structure of accident data (i.e. many accidents with few 
vehicles and persons) also leads them to be closer to the structure of 
independent observations (Lenguerrand et al., 2006)4. 
 
The results of the present case studies on accident hierarchy also suggest 
that, in broader and more disaggregate analyses, accident hierarchy effects 
may be more identifiable. It appears that, focusing on particular groups of 
road users, or aggregating the characteristics of road users, makes it less 
feasible to identify higher level random effects. It may be the case, however, 
that such relationships do exist, but seem to disappear because of the 
aggregation of different types of road users (“ecological fallacy”).  
 
Figure 5 summarises the theoretical and practical conditions for using 
multilevel models for analyzing road safety questions. As a general rule, it can 
be said that multilevel modeling appears to be both more meaningful and 

                                            
4
 The smaller the lower-to-higher units ratio (number of vehicles per accident, for example), 

the less serious the underestimation of the standard errors resulting from the fact that the 
existing correlation between the clustered observations is not taken into account. 
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easier to apply in the context of macroscopic analyses. On the other hand, the 
application of multilevel models in the context of microscopic appears to be 
less straightforward, but not necessarily less critical for the outcomes of the 
analysis - in several cases, additional insight may be indeed provided by a 
multilevel model specification. 
 

 Mostly feasible  
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ry
 

Geographical hierarchies 

           macroscopic 

                                           microscopic 

Accident hierarchies 

N
o

t alw
ays feasib

le 

 Not always necessary  

 

Figure 5. Needs and feasibility of multilevel modeling in road safety research 

5.3. The heuristic value of the multilevel framework for road safety 
research 
 
Although this has been the object of few explicit consideration in previous 
literature, it is important to insist on the idea that the relevance of ML 
formulations to road safety research is independent of the question of the 
necessity and feasibility of the application ML models to the data. In other 
words, the possible ML framework underlying a phenomenon also consists of 
a theoretical framework, whose heuristic value for road safety research is still 
currentlyunderestimated.  
 
As we saw, the added value of ML models can easily be spoiled if one seeks 
at fitting models that exhausts the possibilities of the theoretical hierarchy of 
interest. The theoretical ML framework, however, deserves being explored 
and used as a tool to identify, for example, the levels at which the 
hypothesized relationships between the predictors and the response variable 
is likely to be at play, in what form, and under which conditions.  
 
The heuristic value of ML formulations also applies when one is to assess 
results of previous research. In different studies treating of a given topic, the 
same dependent variable often appears to be operationalised at different 
hierarchical level, with potentially important implications for the comparability 
of the results observed. As an example, Table 3 provides an overview of 
(single-level) severity analyses. The unit of observations as well as the way 
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the “severity” dependent variable was operationalised clearly indicates that 
different levels of analysis are at play in the different studies.  
 

Reference Data Selection Response Variable Unit of observation 

Evans (1983) Drivers only Ratios of 
killed/surviving drivers  

Accident categories based 
on mass ratios 

Chang & Mannering (1999) All occupants 
-Truck involved 
-Non-truck involved 

Probability that the 
most severe injury 
among occupants will 
be (1) Prop damage 
only (2) Possible injury 
(3) Injury or Fatality 

Individual vehicles 

Khorashadi et al. (2005) Drivers only Driver injury severity 
(1) None (2) Pain 
Complaint (3) Visible 
Injury 
(4) Severe/Fatal injury 

Driver - Vehicle 

Shibata & Fukuda (1994) Fatalities and uninjured 
only  

Fatality risk   Individual Road User 

O’Donnell & Connor (1996) Vehicle occupants only  Occupant injury risk 
(non-treated injury, 
treated injury, 
admitted injury, death) 

Individual Road User 

Yau (2003) Single-vehicle accidents 
only 

Probability of most 
serious injury in crash 
(Fatal, serious, slight) 
 

Accident 

Yau et al. (2006) Multiple-vehicle accidents 
(no pedestrians) 

Probability of most 
serious injury in crash 
(Fatal, serious, slight) 
 

Accident 

Kockelman et al. (2002) - All crashes 
-2-veh crashes 
-Single crashes 

Probability of different 
types of injury for 
driver 

Driver - Vehicle 

Martin & Lenguerrand (2008) -2 vehicle crashes 
-single vehicle crashes  
-No crashes with only 
occupants killed or injured 

Driver’s vital status Driver – Vehicle and 
accident (2 analyses) 

Table 3. Overview of the unit of observations and operationalisation of the 
dependent variable for various accident severity analyses 

 
7. Conclusion 
 
Although multilevel models are commonly applied in many scientific areas, 
they are relatively new to the field of road safety. This article started on a 
discussion of the common hierarchical framework characterizing road-safety 
data, namely geographical and accident hierarchies. This allowed to 
emphasize the continuity between the two hierarchies, as well as to illustrate 
the fact that “pragmatic hierarchies” can also be defined to model the internal 
structure of some observations (multinomial responses, repeated and 
multivariate measurements).  
 
The general model formulation and basic principles underlying ML techniques 
were then discussed, and two types of consequences were demonstrated 
when ignoring a hierarchical structure in the data: statistical and conceptual. 
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The first consequence is the statistical inaccuracy resulting from the 
underestimation of standard errors due to the dependence of nested 
observations. The second consequence is a conceptually impoverished 
representation of the research topic investigated.  
 
An overview was also provided of the models to be applied to response 
distributions that are commonly used in road safety, not only to model 
accident frequency and accident outcomes, but also a host of other road 
safety indicators. Research applications of these models were also reviewed.  
 
On this basis, the distinction was made between macroscopic and 
microscopic road safety analyses, both in terms of the statistical need and the 
feasibility of applying multilevel models.  
 
The advantages and limitations of ML models were finally discussed, and it 
was stressed that the theoretical/heuristic value of the ML formulation of a 
research question needs to be considered independently of its 
practical/statistical applicability. 
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Table 1. Sampling models and example link functions for normal responses and for 
the most current types of discrete responses treated in road safety research. 
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(Raudenbusch & Bryk, 2001) 
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