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ABSTRACT 

During risky conditions, Powered-Two-Wheeler (PTW) drivers often alter their behavior 

from a regular driving pattern to an irregular chain of driving actions by braking, changing the 

throttle pressure, maneuvering and so on, or combinations of the above. However, both the 

actual and perceived thresholds of regular and irregular driving behavior differ among PTW 

drivers. A simple and flexible methodology is proposed in order to define PTW driving 

profiles by distinguishing between regular and irregular PTW driving behaviors using high 

resolution naturalistic data. “Irregularities” in driving behavior are consistently expressed as 

outlying values in the dataset of driving parameters. The detected irregularities are those that 

diverge from the centroid of the jointly considered driving parameters. These irregularities 

may be considered to define critical driving situations (incidents) that are further associated to 

typical driving events. Results indicate that the joint consideration of variables which are 

directly connected to the mechanical characteristics of PTW, such as front and rear brake 

activation, wheel speed, throttle and steering, are adequate to distinguish the regular from 

irregular PTW driving behavior. 
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1. INTRODUCTION 

Understanding Powered-Two-Wheelers (PTWs) driving behavior and interactions with the 

rest of the traffic is critical to the design of efficient accident countermeasures and is, hence, 

essential (Yannis et al., 2005). An efficient manner to understand PTW driving behavior - 

given the improvements and innovations of modern technology - is through constant 

monitoring and analysis of PTW driver’s actions during driving. Until recently, PTW accident 

risk has been largely studied through macroscopic and in-depth data analyses (Thomas et al. 

2005, Dupont et al. 2009, Yannis et al. 2010), as well as through behavior analyses such as 

questionnaire based surveys, guided discussions, video-based methods or simulators 

(Engstrom et al. 2005, Savolainen and Mannering 2007, Haque et al. 2010, Huang and Abdel-

Aty 2010).  These analyses are inherently destined to qualitatively assess on the factors that 

increase accident risk mainly from a social point of view, without being able to extract 

accurate and detailed information on the manner PTW drivers behave on the road and 

especially before, during and after critical driving situations (incidents). 

A new and efficient way to understand PTW driving behavior is by creating a least intrusive -

restrictive (naturalistic) - environment to monitor and record drivers’ actions on the road by 

employing advanced sensor technologies. Recently, a number of such attempts have been 

conducted in Europe, the US and Australia to understand driver’s behavior. Some prevailing 

efforts are described in large scale projects such as the 100-Car study (NHTSA 2006), SHRP 

2 Naturalistic Driving Study (SHRP2 2011) and Euro-FOT (Csepinszky and Benmimoun 

2010). Several findings on commercial vehicle driver’s behavior and inattention are 

summarized in Olson et al. (2009) and Klauer et al. (2010). However, so far no results are 

publicly available concerning PTW driver’s behavior (Reagan et al. 2006, NHTSA 2006, 

FESTA 2008, Baldanzini et al. 2009).  

A key problem in naturalistic PTW driving studies is to define which driving situation may be 

considered as critical or risky. Interestingly, in all relevant approaches documented so far, 
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such as the 100-Car study (NHTSA 2006) and SEMiFOT project (SEMiFOT 2010), typical 

driving parameters’ (speed, acceleration etc) thresholds (triggers) are empirically established 

uniquely for each driving parameter; based on those values, criticalities are extracted and 

further analyzed (a review of such approaches may be found in Baldanzini et al. 2009). This 

technique is univariate, since it detects incidents from changes in a single driving parameter. 

But maneuvering on roads may be reflected on changes to more than one parameter.  

Moreover, the specific technique addresses all drivers as being similar in their driving 

behavior. This lacks consistency with the fact that each driver has its personal stock of values, 

ideas, beliefs and practices, reflecting rigorously on its behavior on the road, such as the 

braking, overtaking and so on, that may not resemble to the behavior of other drivers on the 

road (Vlahogianni et al. 2013). Evidently, the driving conditions which are considered as 

critical are not the same for all drivers, but should be defined on the basis of driving 

parameters’ values that may vary among drivers. Moreover, a critical event may be reflected 

on changes to a single driving parameter (e.g. braking), but also to more than one driving 

parameter (e.g. steering and decelerating). In this context, the question that emerges is how 

the high resolution naturalistic driving data which is, by nature, multivariate and noisy, can be 

used to define a self-contained multivariate personalized PTW driver’s profile.  

The objective of this paper is to propose a methodology for identifying PTW driver’s profile 

based exclusively on high resolution naturalistic driving data without the need to observe the 

videos for identifying situations where the behavior of the driver may be considered as 

beyond normal. The data exploited concern information on wheel speed, acceleration, throttle, 

steering, brake activation and so on. A comprehensive methodological shell is proposed in 

order to distinguish between regular and irregular driving behavior. “Irregularities” in the 

driving behavior are consistently expressed as outlying values in a multivariate consideration 

of the available driving parameters. The detected irregularities are those values that diverge 

from the centroid of the jointly considered driving parameters and define critical driving 

situations that may further be associated to typical driving events. 
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2. EXTRACTING POWERED-TWO WHEELER IRREGULAR DRIVING 
PATTERNS 

2.1 The Concept 

In general, driving is a complex - often cyclic - task; at a specific instance, the driver will 

have to scan and recognize stimuli from the road environment and decide which action(s) to 

take mainly described by braking, accelerating/decelerating or steering. The above actions 

lead to a change of the status of the vehicle (e.g. velocity or yaw, pitch or roll rate). During 

the course of a trip, the driver will be forced to repeat these actions for forthcoming driving 

instances. Evidently, this cyclic task is strongly dependent on factors such as the level of 

actual knowledge and skill, the amount of experience, the individual level of development and 

maturity, the social situation and lifestyle (Gregersen and Berg 1994, Boyce and Geller 2002, 

Møller 2004); thus, each vehicle’s driver may act or react to stimuli in a unique manner. 

Given the ability to monitor the exact actions of a PTW driver, literature has for long 

supported the uniqueness of driver behavior in automobiles and the possibility to use it for 

personal identification to achieve safer driving (Igarashi et al. 2004, Wahab et al. 2009). This 

uniqueness may be reflected to the variability of driving signals e.g. braking, accelerating and 

so on; such driving characteristics, in particular, the amount of pressure a driver applies on the 

accelerator pedal and/or the brake pedal have been utilized in personal identification and 

define personal driving profiles (Wahab et al. 2009). Although such argument may readily 

extend to the case of PTWs, PTW research lacks focus on defining PTW driver individual 

profiles. Nevertheless, the ability to define a driver- specific profile is important and may hav 

significant implications to various Intelligent Transportation Systems (ITS) applications. A 

system that may recognize each driver’s individual style and manner to react to different 

driving situations may improve the safety and mitigate the risk during driving. By 

implementing necessary actions, a system can control the vehicle every time a driver may 

deviate from its individual driving norm and engage in irregular driving.  
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The challenge of the proposed approach in introducing a manner to distinguish between 

normal and irregular driving patterns lies in two issues: first, deviation from the average 

“normal” PTW driving may not be uniquely defined based on one driving signal. Second, a 

mathematical manner to define the PTW driving vector and the emergence of irregularity 

should be introduced. In the present paper, a distance based metric is implemented to define 

the vector of driving and the concept of outlier data is used to distinguish between normal and 

irregular driving. Outliers form an important concept of multivariate time series. According to 

Barnett and Lewis (1994), an outlier is an observation (or subset of observations) which 

appears to be inconsistent with the remainder of that set of data. In the specific study, an 

outlier is defined as an observation for a specific time interval, during which the PTW driver 

for some reason drastically alters its driving behavior due to an external or internal stimulus. 

Outliers may be caused by measurement error or equipment failure (faulty values) or may 

depict a critical pattern in the observed data much more rich in information about the systems 

than the rest of the data e.g. congested patterns in traffic flow (Chen et al. 2009). 

2.2 The Method  

Although, intuitively, naturalistic data can be used to analyze transportation safety and driving 

behavior in various ways, their spatial and temporal characteristics is a multiplier of the 

complexity of any analyses, in both concept and computational intensity. PTW driving data 

collected in extremely high resolutions (e.g. 100Hz) may be considered to contain outliers. 

Outliers defined as any abnormal data may contain information on the shift of a driver’s 

profile to extreme driving style due to a non-recurrent unexpected event. The detection of 

those values may be a cumbersome task – if conducted manually - especially in cases where 

rich data exist in terms of resolution and driving parameters monitored. The goal of the 

proposed methodology is to provide a manner to automatically detect those outliers using as 

inputs only the most relevant driving parameters.  

Outlier detection is a critical step in data mining aiming at describing the abnormal data 

behavior as reflected in the data that deviates from the natural data variability (Hodge and 
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Austin 2004). There exist both univariate and multivariate approaches to outlier detection. In 

complex and highly volatile phenomena such as the evolution of the driving variables, the 

multivariate consideration is imperative, as, for a specific time interval, although one or more 

variables may be considered as outliers, the entire driving behavior defined by the joint 

consideration of all variables may not be a multivariate outlier. In the present paper, the 

proposed algorithm is a multistep approach known as BACON (Blocked Adaptive 

Computationally Efficient Outlier Nominators) that produces a set of observations nominated 

as outliers along with the discrepancies based on the Mahalanobis distance relative to a basic 

subset of the data. Let 1( ,..., ),  1,...,i i ipX x x i n   be the multivariate space of p driving 

parameters of n observations. The Mahalanobis distance 
id  is defined as: 

      1ˆ ˆ ˆ, ,       1,...,   ,i i id S x S x i n       (1) 

Where ̂  and 
1S 
 are the sample mean and covariance matrix respectively. In contrast to the 

Euclidean distance, the Mahalanobis distance takes into account the correlation structure of 

the data as well as the individual scales (Barnett and Lewis 1994).  

The selection of the initial subset is based on Mahalanobis distances; the m cp  observations 

with the smallest values of  ˆ,id S  are identified and nominated as a potential basic subset. 

The term c is a constant that is selected by the researcher; setting c equal to 4 or 5 in a good 

typical choice (Hadi 1994). Although this approach for selecting the initial subset is not 

robust, it does not depend on the location, or scale of the data - especially for small 

percentages of outliers – and computationally less intensive than previous methods (Billor et 

al. 2000).  

The outlier detection algorithm encompasses 4 steps. In the first step the selection of the 

initial basic subset of size m occurs. Second, the computations of the discrepancies of each 

multivariate observation with the basic subset are conducted using the following equation 

(Billor et al. 2000):  
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      1ˆ ˆ ˆ, ,       1,...,   ,i b b i b b i bd S x S x i n       (2) 

where ˆ
b  and 

1

bS 
 are the sample mean and covariance matrix of the basic subset 

respectively. Third, the new basic subset to all points with discrepancy less than , /npr p a nc  , 

where 2

,p a  is the 1 a  percentile of the chi-square distribution with z  degrees of freedom, 

npr np hrc c c   is a correction factor with   max 0, / ( )hrc h r h r   ,  1 / 2h n z      , 

r  is the length of the subset and 
1 1

1np

z
c

n z n h z


  

  
. The smaller the choice of a 

parameter the stricter the criterion for selecting which driving multivariate observations are 

outliers. The second and third steps are iterated until the size of the basic subset no longer 

changes. With the convergence of the algorithm, a set of observations are tagged as outliers 

and are excluded from the final basic subset. 

The algorithm has been found to substantially reduce the number of iterations (Billor et al. 

2000); it usually takes 3–5 iterations to converge and tolerates up to 20% contamination level 

(Kondylis et al. 2006). Each of these iterations requires computing and inverting a covariance 

matrix, but the number of iterations does not grow with the sample size n. Moreover, Billor et 

al. (2000) show evidence that if the first subset of observations is not near enough to the 

center of the (non-outlying) data, the successive provisional basic subsets identified by the 

algorithm tend to drift toward the center. The specific algorithm for outlier detention has not 

been previously implemented to transportation data. 

The proposed approach requires defining which input data should be considered in the 

process of incident detection. In this paper, different models with different input spaces will 

be considered and the optimum input space will be identified using as criterion to produce the 

least data intensive model that will be able to detect all significant shifts from regular to 

irregular driving patterns. The statistical difference between the different models will be 

judged on the basis of the conditional entropy between two different categorizations of data – 

outlying or regular patterns - produced by two different models. The conditional entropy is an 
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information theoretic criterion that quantifies the uncertainty of a variable Y conditional on 

the variable X taking a certain value x provided by the following equation (Schreiber 1999):  

 |

1 1

1
( | ) log( ),

log

Y XC C

r j ij i j

j iX

H p p p
C  

   Y X  (3) 

where i, j are the categories, CX, CY the total number of categories in data categorizations Χ 

and Υ equally and p is a probability. 

 

3. IMPLEMENTATION AND FINDINGS 

3.1 The experiment 

The available data come from a naturalistic driving experiment that took place in and around 

the city of Volos, a medium size Greek city, as part of the large scale naturalistic PTW 

driving study conducted in the framework of the focused research collaborative project 

2BESAFE. ‘Naturalistic’ refers to a method of observation that captures driver behavior in a 

way that is most representative of typical driving and not influenced by the artificial features 

of controlled studies (Baldanzini et al. 2009). This method allows researchers to study drivers 

in their own vehicle and environment. Such data may provide insight into factors that may 

influence safe driving. In the specific naturalistic driving study, an instrumented BMW F650 

FUNDURO was utilized. Instrumentation focused on throttle position, 3-axis accelerometer, 

3-axis gyroscope (roll, pitch and yaw), handle bar rotation, brake lever application, turn signal 

activations, synchronised video (forward & driver facing) and GPS. Details on the 

instrumentation specifications may be found in 2BESAFE (2010).  

The experiment was conducted in three phases. The first phase involved a testing period in 

order to correct malfunctions in the instrumentation. During the second phase, a pilot study 

was conducted in order to test the motorcycle’s instrumentation in “on road” naturalistic 

conditions for verification and data quality issues using one PTW drivers for a period of 4 
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weeks. The scope of the pilot runs was twofold: first to detect and correct any installation or 

sensors malfunctioning problems and, second, to evaluate whether the recorded data maintain 

certain levels of quality (missing values, proper values ranges and so on).  

The third phase involved the actual experiments; 3 PTW drivers for a period of 6 weeks each 

were recruited. Previous literature has indicated that male PTW drivers are over-represented 

in accidents and in the PTW driving population (Vlahogianni et al. 2012). Moreover, 

experience is an important factor of PTW driver risk and it is positively related to age and low 

accident risk. Consequently, it was decided to select experienced participants (at least 5 years 

of actual driving on a motorcycle resembling the experiment’s motorcycle) of age ranging 

from 24 to 38 years old that are less prone to risky behaviours, to reduce the likelihood of 

participants being involved in accidents (Vlahogianni et al. 2012). In terms of driving 

environment, PTWs in Greece are mainly used for commuting to avoid delays due to 

congestion rather than for leisure purposes; therefore, most of the time spent on PTW is 

within the urban and suburban road network. As such, the selected participants were chosen to 

be familiar with urban road environments and use PTWs for trips inside urban and suburban 

areas.  

The specific experiment may be characterized as one of the largest naturalistic PTW driving 

experiment is a national level across EU. Although, the sample of the drivers may not claim to 

be representative of the entire population of young PTW drivers in Greece limiting, thus, the 

ability to extract generalized information on the PTW driving patterns, the small number of 

drivers may not be considered as a limitation for the applicability of the proposed approach; 

the proposed methodology for detecting critical driving patterns is focused on each driver 

individually and not on averaging the drivers’ behaviors for extracting generalized thresholds 

of driving parameters.  

3.2 Data Description and Preliminary Analysis 
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Data for all signals was recorded at a rate of 100Hz except for video signals which are 

sampled at 10Hz and GPS position which can be sampled at 1Hz (values indicate minimal 

requirements). GPS signals were not included in the analyses to follow because of their 

reduced reliability  due to frequent signal disruptions. The selection of the specific signals 

will ensure that the PTW drivers’ evasive maneuvers (necessity for: accelerations, speed, 

brake activation, throttle position and steering angle), as well as the interaction of PTW 

drivers with the environment will be continuously monitored. Moreover, video installation 

was used to capture the frontal environment (required a minimum 90° field of view) and the 

driver’s face. The most important signals (driving parameters) monitored are given in Table 1. 

<Table 1> 

A look at Table 1 reveals two groups of available variables. The first is related to the 

mechanical characteristics and includes braking (front/rear brake activation and rear brake 

pressure), yaw rate, pitch rate and roll rate, throttle, steering and wheel speed. The second 

group refers to the traffic related variables such as linear acceleration components and speed. 

This distinction is made in order to differentiate those parameters that are directly related to 

driver’s reactions from those that may be considered as outcome of others, such as 

acceleration. 

Data selected for further study encompass approximately 20-30 minutes long trips made 

during a period of six weeks by one PTW driver in suburban two-way roads. Although the use 

of data from a single driver may not claim to produce generalizable results, it is adequate to 

test the usefulness and efficiency of the proposed methodology. The specific route has 

shoulder width less than 1.2m, rolling terrain and high curvatures, mixed traffic conditions, 

not equally distributed traffic across the two directions, a significant number of uncontrolled 

access points and several zones where passing is permitted; this setting seems to be 

challenging for PTW drivers in terms of driving patterns’ complexity and difficulty in 

maneuvering. All trips were made in daylight with good visibility and fine weather 
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conditions. The final dataset consists of 56 trips of 20 to 30 minutes duration, meaning a set 

of time series of driving parameters with 6.72∙10
6
 data. To eliminate any noise in the dataset a 

smoothing technique was implemented; data were averaged every 0.02 sec, meaning using 1 

measurement before and one after a specific time interval. Figures 1 to 3 depict the time series 

of the most important driving parameters for a typical trip of approximately 30 minutes. As 

can be observed all driving parameters exhibit a highly oscillating behavior over rime.  

3.3 Models for Detecting Irregular Behavior 

The proposed outlier detection methodology is applied to the available PTW driving variables 

in order to detect the outliers and distinguish between regular driving behavior and changes to 

irregular driving style. The first step of the analysis is to assess the number of variables that 

should be taken into consideration. Three distinct outlier detection models are further 

evaluated: 

 Model A: steering, throttle, brake activation and wheel speed. 

 Model B: linear acceleration and speed. 

 Model C: All available driving parameters. 

For each model, the distance metric is calculated (Equation 1) and, based on the Bacon 

algorithm, observations are tagged either as outliers or normal driving patterns; consequently, 

a series of data categorization to mean “normal” driving pattern or irregular driving pattern is 

produced.  

In order to evaluate the differences between the three models, comparisons are established on 

the basis of the distance metric and the produced categorization using the Wilcoxon signed 

rank test (Washington et al. 2010); this test may reveal differences in the temporal evolution 

of paired samples of data produced by the three different models. The null hypothesis is that 

the pairs of data computed using the three models come from the same population. As seen in 

Table 2 that depicts the results of the test, the difference between Model A and the other two 

Models with respect to the evolution of the driving patterns is significant. Moreover, the 
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distance metric produced by Model B significantly differs from the one produced by Model 

C. Results also demonstrate that the nominated outliers produced by the three models are 

significantly different.  

<Table 2> 

Figure 4 shows the distance metric time series produced by Models A and C for a 5 minute 

time period. The dotted line represents the threshold values of the distance metric for 5% level 

of significance; values of the distance metric above that threshold may be nominated as 

outliers. As can be observed, the proposed methodology not only distinguishes between 

irregular and regular driving behavior, but it may reveal the specific time interval where a 

shift to irregular behavior may occur, as well as the actual duration of the irregularity. The 

larger the metric distance the more extreme the driving behavior is.  

Evidently, although the proposed models may classify the available PTW driving data to 

regular and irregular (outlying) patterns, it seems that the three models may diverge in terms 

of the produced categorization. Figure 4 shows that using all driving parameters for defining 

the regular and irregular driving may not necessarily be beneficial regarding the ability to 

define extreme driving patterns; the three incidents picked up by the Model A that uses as 

input variables the steering, throttle, brake activation and wheel speed are not detected by 

Model C that uses all the driving parameters available. The differences between each model 

will be further evaluated in the following section. 

3.4 Comparing models for critical driving situations detection  

A comparative study is undertaken in order to identify the least data intensive and most 

efficient model for the detection of critical PTW driving situations. First, considering the 

resulting categorization of patterns produced by each model, the conditional entropy is 

estimated in order to quantify the relation between two different data categorizations 

produced by two different models. The conditional entropy for Model B and Model C 

categorization knowing Model A categorization - Model B Model A( | )rH c c  and 
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Model B Model A( | )rH c c  respectively - equals to 0.009 and 0.025 respectively. These small 

values of conditional entropy indicate that the knowledge for the type of driving pattern 

coming from Model B and C when the classification from Model A is known does not 

provide any further information.  

The above results underline that the larger the number of variables considered in the input 

space of the algorithm, the lesser the ability of the methodology to discern irregular from 

regular driving behavior and detect critical incidents degrades with the increase of the input 

space. This is probably due to the fact that certain variables are correlated (e.g. rear brake 

activation and brake pressure, acceleration and throttle position). Moreover, it seems that 

correlations between variables mask (smooth out) the dynamics of driving behavior. This is 

clearly observed in Figure 4 where the distance metric of the time series of all available 

variables is depicted (Model C); a critical incident is canceled out when using the entire set of 

driving variables instead of the ones that are directly connected to the PTW mechanical 

characteristics. 

The variables which are related only to the PTW mechanical-related characteristics are more 

influential to the process of detection than using all the available variables including speed 

and acceleration, because the latter may be considered as the direct outcome of changes in 

throttle and brake activation. Furthermore, speeding or accelerating/decelerating may be the 

effect of more than one combination of the mechanical-related characteristics, such as 

steering, throttle and/or braking. 

To assess the effectiveness of the detection methodology in relation to the different 

parameterizations three measures are implemented the Detection Rate (DR), the False 

Detection Rate (FDR) and the Precision of detection (P):  
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Nr. of Outliers Correctly Detected
DR     100  (%)

Total Nr. of True Outliers

Nr. of Outliers Falsely Detected
FDR   100  (%)

Total Nr.of Data without Outliers

Nr. of Outliers Correctly Detec
P         

 

 


ted

100  (%)
Total Nr. of Outliers Detected



 (4) 

DR is a measure of model’s sensitivity that relates to its ability to identify outliers. FDR 

measures of the model’s “false alarm” frequency. Finally, P is the ratio of the detected 

outliers that are true outliers to the sum of the detected outliers. To estimate these measures, 

test videos were used to detect outliers and, then, the same videos were thoroughly observed 

to manually detect any critical riding situations. From the application of the proposed 

approach to the test videos, all outliers picked up point to a change – regardless of being 

smooth or abrupt - in the driving style. Among the situations detected are braking and moving 

on the right to avoid opposing vehicle, braking due to pedestrians in high grade, waiting at an 

intersection to enter main traffic, moving on the left to avoid fixed object, entering sharp turn 

when interacting with opposite lane’s traffic, braking and moving on the right after having 

overtaken vehicles (vehicles are in front of the PTW as well), overtaking more than one 

vehicle and PTW moving to the left to avoid stationary object. These situations may be 

considered as incidents where a driver is engaged to an unusual - far from the mean - driving 

behavior and, thus, may be candidate “critical” driving situations with high accident risk. The 

detected set of incidents may vary with regard to the accident risk they encompass.  

Table 3 demonstrates the results with respect to the Detection Rate (DR), the False Detection 

Rate (FDR) and the Precision of detection (P) from comparing the detected critical PTW 

driving situations to those that were manually chosen as critical from direct video 

observations. Model C has a significantly decreased ability to detect outliers.  

<Table 3> 
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The use of mechanical related driving parameters seems to be adequate in terms of detection 

rate and false detection rate (Model A). The errors that are observed may be attributed to the 

difficulty in detecting those situations where the PTW driver does change its driving 

characteristics but from the video it is evident that they may be considered as critical driving 

situations. A very frequent example in the on the fly overtaking that is associated with high 

opposing traffic. 

4. DISCUSSION AND CONCLUSIONS 

PTW drivers are a critical group of road users frequently engaged to high risk driving 

situations. During risky conditions, PTW drivers often alter their behavior from a regular 

driving pattern to an irregular chain of actions by braking and maneuvering, or combinations 

of the above. However, both the actual and perceived thresholds of regular and irregular 

driving behavior differ among drivers. To address this issue, the present paper presents a 

methodology to provide custom-made driving profiles by automatically detecting from 

collected driving parameters deviations from the individual regular driving behavior. By using 

high resolution naturalistic PTW driving data, the proposed methodology ensures that no 

artificial common thresholds of regular driving behavior are established and no subjective 

judgments of what is regular driving is required, while looking at videos. The detected 

irregularities are those that diverge from the centroid of the jointly considered driving 

parameters and define critical driving situations that may further be associated to typical 

driving events.  

The proposed modeling approach is applied to a number of naturalistic driving trips made 

during a period of three months by one PTW driver in suburban two-way roads. Results from 

the application of the proposed methodology indicate that the joint consideration of variables 

that are directly connected to the PTW mechanical characteristics, such as braking, wheel 

speed, throttle and steering, are adequate to distinguish regular from irregular driving 

behavior. The traffic related parameters (acceleration, speed, etc) were found to contribute 
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only marginally to the detection of the critical driving situations when the mechanical related 

parameters were considered. This can be explained by the fact that traffic related 

characteristics may be considered as the outcome of the driver’s actions. The information 

conveyed by these actions in the procedure for the definition of the “critical” conditions is 

obviously predominant and precedes any information conveyed by the outcome of these 

actions. This outcome may open a discussion on the required instrumentation of PTWs during 

naturalistic studies. However, the use of fewer sensors to detect incidents does not necessarily 

mean that the other driving parameters should not be measured, as they may still prove useful 

in providing additional information for categorizing critical situations.  

By considering these deviations from the mean driving style no useful information on which 

of the observed situations is associated to more extreme/irregular driving behaviors may be 

identified. An additional limitation lies in the fact that there might still be few cases that may 

not be detected by the specific approach, as well as by any other approach that relies on 

signals only and not on videos. These include cases where a critical situation may arise (e.g. 

red light violation by the PTW driver) and go unnoticed by the PTW driver, or other critical 

situations where the PTW driver may cope with - efficiently or not - without significantly 

altering its driving characteristics, or those driving characteristics that are being measured. In 

such cases, integrating video analytics to the proposed approach will increase the detection 

power and decrease any subjective judgment coming from manually observing videos.  

Moreover, further research is needed for uncovering the determinants of each driving 

behavior with respect to the manner a PTW driver conduct a maneuver in the beginning or 

during a critical driving situation. In any case, it should be noted that as the available dataset 

did not encompass any crashes, the deviations from the mean driving style may not 

characterize direct accident risk. The situations revealed may be considered as potential 

situations with increased probability of having an accident (“near-miss”). Moreover, the 

specific approach does not incorporate any information on the road, traffic and control 

conditions that may be valuable to explaining the causes of the emergence of irregular 
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driving. Although the causalities involved during non-recurrent driving situations fall beyond 

the scope of this paper, the incorporation of information on the road, traffic and control 

conditions should be considered in future modeling approaches for enhancing the explanatory 

power of the models. 

From a conceptual perspective, the proposed methodology is capable of defining custom-

made driving profiles and detects critical driving incidents with regard to the risk they 

encompass only on the basis of the magnitude of the deviation from the average driving style 

of each PTW driver individually. However, the proposed approach as presented and applied 

encompasses certain limitations. It is evident from the restriction on the available PTW 

driver’s sample size that no generalized results may be extracted; nevertheless, this limitation 

seems not to conceptually contradict the scope of the proposed approach. Moreover, at this 

point, this methodology cannot group irregular driving conditions by relating then to specific 

parameters associated to the road types, trip characteristics and so on. Furthermore, such 

conditions cannot be directly associated to specific types of real life driving incidents; further 

research therefore is needed towards uncovering the determinants of the individual driving 

reactions in the beginning or during a critical driving situation, in an effort to reveal the type 

of incident PTW drivers are involved in. 
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Table 1: The list of monitored PTW driving variables and their description. 

Variable Description 

Longitudinal acceleration [g] 

linear acceleration Lateral acceleration [g] 

Vertical acceleration [g] 

speed [kph] longitudinal speed 

yaw rate [deg/s] 

roll, yaw and pitch rates pitch rate [deg/s] 

roll rate [deg/s] 

Throttle [%] throttle position 

Brake Rear [%] brake pressure rear 

Steering [%] steering angle 

Brake activity Front [0/100] brake activation front 

Brake activity Rear [0/100] brake activation rear 

Wheel Speed [km/h] Speed of the rear wheel 
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Table 2: Wilcoxon Signed Rank Test. 

 Model B- Model A Model C-Model A Model B-Model C 

 Distance Metric d 

z -277.330 -106.776 361.249 

Prob > |z| <0.001* <0.001* <0.001* 

 Detected Outlier 

z 86.022 96.500 -26.372 

Prob > |z| <0.001* <0.001* <0.001* 

*1% level of significance 
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Table 3: Incident detection results regarding the detection rate (DR), the false rate (FR) and the 

precision (P) with 5% level of significance. 

 Model A Model B Model C 

DR 80.0% 76.0% 8.0% 

FR 3.5% 4.7% 0.0% 

P 86.9% 82.6% 100.0% 
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Figure 1: Time series of speed and wheel speed for a typical 30 minute trip form the naturalistic PTW 

driving study. 
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Figure 2: Time series of acceleration (longitudinal, vertical, lateral) and the roll, pitch and yaw rate for 

a typical 30 minute trip form the naturalistic PTW driving study. 
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Figure 3: Time series of the brake activation (front and rear), the throttle and steering for a typical 30 

minute trip form the naturalistic PTW driving study. 
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Figure 4: Time series of the Mahalanobis Distance computed for the Model A and C for a 5 minute 

time period. Any distance metric value above the 5% threshold value signifies an irregular behaviour. 

 

 


